1
|
Synergistic Inhibition of Protein Fibrillation by Proline and Sorbitol: Biophysical Investigations. PLoS One 2016; 11:e0166487. [PMID: 27870861 PMCID: PMC5117683 DOI: 10.1371/journal.pone.0166487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
We report here interesting synergistic effects of proline and sorbitol, two well-known chemical chaperones, in the inhibition of fibrillation of two proteins, insulin and lysozyme. A combination of many biophysical techniques has been used to understand the structural morphology and modes of interaction of the chaperones with the proteins during fibrillation. Both the chaperones establish stronger polar interactions in the elongation and saturation stages of fibrillation compared to that in the native stage. However, when presented as a mixture, we also see contribution of hydrophobic interactions. Thus, a co-operative adjustment of polar and hydrophobic interactions between the chaperones and the protein surface seems to drive the synergistic effects in the fibrillation process. In insulin, this synergy is quantitatively similar in all the stages of the fibrillation process. These observations would have significant implications for understanding protein folding concepts, in general, and for designing combination therapies against protein fibrillation, in particular.
Collapse
|
2
|
Wang C, Zhong X, Ruffner DB, Stutt A, Philips LA, Ward MD, Grier DG. Holographic Characterization of Protein Aggregates. J Pharm Sci 2016; 105:1074-85. [PMID: 26886303 DOI: 10.1016/j.xphs.2015.12.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 11/29/2022]
Abstract
We demonstrate how holographic video microscopy can be used to detect, count, and characterize individual micrometer-scale protein aggregates as they flow down a microfluidic channel in their native buffer. Holographic characterization directly measures the radius and refractive index of subvisible protein aggregates and offers insights into their morphologies. The measurement proceeds fast enough to build up population averages for time-resolved studies and lends itself to tracking trends in protein aggregation arising from changing environmental factors. Information on individual particle's refractive indexes can be used to differentiate protein aggregates from such contaminants as silicone droplets. These capabilities are demonstrated through measurements on samples of bovine pancreas insulin aggregated through centrifugation and of bovine serum albumin aggregated by complexation with a polyelectrolyte. Differentiation is demonstrated with samples that have been spiked with separately characterized silicone spheres. Holographic characterization measurements are compared with results obtained with microflow imaging and dynamic light scattering.
Collapse
Affiliation(s)
- Chen Wang
- Department of Physics, Center for Soft Matter Research, New York University, New York, New York 10003
| | - Xiao Zhong
- Department of Chemistry, Molecular Design Institute, New York University, New York, New York 10003
| | | | | | | | - Michael D Ward
- Department of Chemistry, Molecular Design Institute, New York University, New York, New York 10003
| | - David G Grier
- Department of Physics, Center for Soft Matter Research, New York University, New York, New York 10003.
| |
Collapse
|
3
|
Surface functional modification of self-assembled insulin nanospheres for improving intestinal absorption. Int J Biol Macromol 2014; 74:49-60. [PMID: 25433129 DOI: 10.1016/j.ijbiomac.2014.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 01/12/2023]
Abstract
In this work we fabricated therapeutic protein drugs such as insulin as free-carrier delivery system to improve their oral absorption efficiency. The formulation involved self-assembly of insulin into nanospheres (INS) by a novel thermal induced phase separation method. In consideration of harsh environment in gastrointestinal tract, surface functional modification of INS with ɛ-poly-L-lysine (EPL) was employed to form a core-shell structure (INS@EPL) and protect them from too fast dissociation before their arriving at target uptake sites. Both INS and INS@EPL were characterized as uniformly spherical particles with mean diameter size of 150-300 nm. The process of transient thermal treatment did not change their biological potency retention significantly. In vitro dissolution studies showed that shell cross-linked of INS with EPL improved the release profiles of insulin from the self-assembled nanospheres at intestinal pH. Confocal microscopy visualization and transport experiments proved the enhanced paracellular permeability of INS@EPL in Caco-2 cells. Compared to that of INS, enteral administration of INS@EPL at 20 IU/kg resulted in more significant hypoglycemic effects in diabetic rats up to 12 h. Accordingly, the results indicated that surface functional modification of self-assembled insulin nanospheres with shell cross-linked polycationic peptide could be a promising candidate for oral therapeutic protein delivery.
Collapse
|
4
|
Al-Domi H, Alzweiri M, Hamdan I, Jaradat Z. In vitroevaluation of potential complexation between bovine insulin and bovine serum albumin. Biomed Chromatogr 2013; 28:428-32. [DOI: 10.1002/bmc.3050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Hayder Al-Domi
- Department of Nutrition and Food Technology, Faculty of Agriculture; The University of Jordan; Amman 11942 Jordan
| | - Muhammed Alzweiri
- Department of Pharmaceutical Sciences, Faculty of Pharmacy; The University of Jordan; Amman 11942 Jordan
| | - Imad Hamdan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy; The University of Jordan; Amman 11942 Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering; Jordan University of Science and Technology; Irbid 22110 Jordan
| |
Collapse
|
5
|
Park AG, Paglia DN, Al-Zube L, Hreha J, Vaidya S, Breitbart E, Benevenia J, O'Connor JP, Lin SS. Local insulin therapy affects fracture healing in a rat model. J Orthop Res 2013; 31:776-82. [PMID: 23238765 DOI: 10.1002/jor.22287] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 11/08/2012] [Indexed: 02/04/2023]
Abstract
A significant number of lower extremity fractures result in mal-union necessitating effective treatments to restore ambulation. Prior research in diabetic animal fracture models demonstrated improved healing following local insulin application to the fracture site and indicated that local insulin therapy can aid bone regeneration, at least within an insulin-dependent diabetic animal model. This study tested whether local insulin therapy could accelerate femur fracture repair in normal, non-diabetic rats. High (20 units) and low (10 units) doses of insulin were delivered in a calcium sulfate carrier which provided sustained release of the exogenous insulin for 7 days after fracture. Histomorphometry, radiographic scoring, and torsional mechanical testing were used to measure fracture healing. The fracture calluses from rats treated with high-dose insulin had significantly more cartilage than untreated rats after 7 and 14 days of healing. After 4 weeks of healing, femurs from rats treated with low-dose insulin had significantly higher radiographic scores and mechanical strength (p < 0.05), compared to the no treatment control groups. The results of this study suggest that locally delivered insulin is a potential therapeutic agent for treating bone fractures. Further studies are necessary, such as large animal proof of concepts, prior to the clinical use of insulin for bone fracture treatment.
Collapse
Affiliation(s)
- Andrew G Park
- Department of Orthopaedics, University of Medicine, Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, 90 Bergen Street, Suite 7300, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pérez-López S, Blanco-Vila N, Vila-Romeu N. Bovine Insulin–Phosphatidylcholine Mixed Langmuir Monolayers: Behavior at the Air–Water Interface. J Phys Chem B 2011; 115:9387-94. [DOI: 10.1021/jp2033627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. Pérez-López
- Department of Physical Chemistry-Faculty of Sciences in Ourense, University of Vigo; Campus As Lagoas s/n 32004 Ourense, Spain
| | - N.M. Blanco-Vila
- Department of Physical Chemistry-Faculty of Sciences in Ourense, University of Vigo; Campus As Lagoas s/n 32004 Ourense, Spain
| | - N. Vila-Romeu
- Department of Physical Chemistry-Faculty of Sciences in Ourense, University of Vigo; Campus As Lagoas s/n 32004 Ourense, Spain
| |
Collapse
|
7
|
Nanev CN, Dimitrov IL, Hodzhaoglu FV. Growth of rhombohedral insulin crystals and in vitro modeling of their dissolution in the blood stream. CRYSTAL RESEARCH AND TECHNOLOGY 2010. [DOI: 10.1002/crat.201000381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Wang SH, Shi X, Chen X, Baker JR. Therapeutic efficacy of 2-methoxyestradiol microcrystals encapsulated within polyelectrolyte multilayers. Macromol Biosci 2009; 9:429-36. [PMID: 19370749 DOI: 10.1002/mabi.200800381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Development of a novel formulation of anticancer drugs to improve their water-solubility and bioavailability remains a great challenge. Herein, the potential anticancer agent 2-methoxyestradiol (2-ME) was selected as a model drug and was encapsulated within polyelectrolyte (PE) multilayers by layer-by-layer deposition of oppositely charged PEs onto the drug microcrystal surfaces. Cell viability and morphology observation of two cell lines reveal that the PE multilayer-encapsulated 2-ME microcrystals markedly decrease the cell viability, displaying similar inhibitory effect to that of the conventional formulation of 2-ME dissolved in ethanol. The current approach to encapsulate hydrophobic drug microparticles may be useful for formulating different drugs for a variety of biological applications.
Collapse
Affiliation(s)
- Su He Wang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI48109, USA
| | | | | | | |
Collapse
|
9
|
Chen H, Zhu H, Zheng J, Mou D, Wan J, Zhang J, Shi T, Zhao Y, Xu H, Yang X. Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J Control Release 2009; 139:63-72. [PMID: 19481577 DOI: 10.1016/j.jconrel.2009.05.031] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/15/2009] [Accepted: 05/25/2009] [Indexed: 01/12/2023]
Abstract
The transdsermal delivery of insulin remains a significant challenge due to low permeation rates at therapeutically useful rates. We report unilamellar nanovesicles with membrane thickness of 3-5 nm and entrapment efficiency of 89.05+/-0.91%, which can be driven by iontophoresis for enhancing transdermal delivery of insulin through microneedle-induced skin microchannels. The permeation rates of insulin from positive nanovesicles driven by iontophoresis through skins with microneedle-induced microchannels were 713.3 times higher than that of its passive diffusion. The in vivo studies show that the blood glucose levels of diabetic rats induced by the positive nanovesicles driven by iontophoresis through skins with microneedle-induced microchannels are 33.3% and 28.3% of the initial levels at 4 and 6 h, which are comparable to those induced by subcutaneous injection of insulin. The fluorescence imaging validated the penetration of insulin from the nanovesicles driven by iontophoresis through skins with microchannels. The nanovesicles with charges show significant permeation ability with the assistance of physical devices including microneedles and iontophoresis. This approach offers a new strategy for non-invasive delivery of peptides with large molecular weights using nanovesicles.
Collapse
Affiliation(s)
- Huabing Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wagner A, Diez J, Schulze-Briese C, Schluckebier G. Crystal structure of Ultralente-A microcrystalline insulin suspension. Proteins 2009; 74:1018-27. [DOI: 10.1002/prot.22213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Gasperino D, Yeckel A, Olmsted BK, Ward MD, Derby JJ. Mass transfer limitations at crystallizing interfaces in an atomic force microscopy fluid cell: a finite element analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:6578-86. [PMID: 16831000 DOI: 10.1021/la060592k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Although atomic force microscopy (AFM) has emerged as the preeminent experimental tool for real-time in situ measurements of crystal growth processes in solution, relatively little is known about the mass transfer limitations that may impact these measurements. We present a continuum analysis of flow and mass transfer in an atomic force microscope fluid cell during crystal growth, using data acquired from calcium oxalate monohydrate (COM) crystal growth measurements as a comparison. Steady-state flows and solute concentration fields are computed using a three-dimensional, finite element method implemented on a parallel supercomputer. Steady-state flow results are compared with flow visualization experiments to validate the model. Computations of the flow field demonstrate how nonlinear momentum transport alters the spatial structure of the flow with increasing flow volume, altering mass transport conditions near the AFM cantilever and tip. The simulations demonstrate that the combination of solute depletion from crystal growth and mass transfer resistance lowers the solute concentration in the region between the tip and the crystal compared with the solute concentration at the inlet of the AFM cell. For example, using experimentally measured growth rates for COM, the solute concentration in this region is 3.1% lower than the inlet value because the solute consumed by crystal growth beneath the AFM tip cannot be replenished fully due to mass transport limitations. The simulations also reveal that increasing the flow rate through the cell does not affect this difference significantly because of the inherent shielding by the AFM tip in proximity with the crystal surface. Models such as the one presented here, used in conjunction with AFM measurements, promise more precise interpretations of measurement data.
Collapse
Affiliation(s)
- David Gasperino
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132, USA
| | | | | | | | | |
Collapse
|
12
|
Bromberg L, Rashba-Step J, Scott T. Insulin particle formation in supersaturated aqueous solutions of poly(ethylene glycol). Biophys J 2006; 89:3424-33. [PMID: 16254391 PMCID: PMC1366838 DOI: 10.1529/biophysj.105.062802] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein microspheres are of particular utility in the field of drug delivery. A novel, completely aqueous, process of microsphere fabrication has been devised based on controlled phase separation of protein from water-soluble polymers such as polyethylene glycols. The fabrication process results in the formation of spherical microparticles with narrow particle size distributions. Cooling of preheated human insulin-poly(ethylene glycol)-water solutions results in the facile formation of insulin particles. To map out the supersaturation conditions conducive to particle nucleation and growth, we determined the temperature- and concentration-dependent boundaries of an equilibrium liquid-solid phase separation. The kinetics of formation of microspheres were followed by dynamic and continuous-angle static light scattering techniques. The presence of PEG at a pH that was close to the protein's isoelectric point resulted in rapid nucleation and growth. The time elapsed from the moment of creation of a supersaturated solution and the detection of a solid phase in the system (the induction period, t(ind)) ranged from tens to several hundreds of seconds. The dependence of t(ind) on supersaturation could be described within the framework of classical nucleation theory, with the time needed for the formation of a critical nucleus (size <10 nm) being much longer than the time of the onset of particle growth. The growth was limited by cluster diffusion kinetics. The interfacial energies of the insulin particles were determined to be 3.2-3.4 and 2.2 mJ/m(2) at equilibrium temperatures of 25 and 37 degrees C, respectively. The insulin particles formed as a result of the process were monodisperse and uniformly spherical, in clear distinction to previously reported processes of microcrystalline insulin particle formation.
Collapse
|
13
|
Cao X, Sun C, Thamann TJ. A Study of Sulfamerazine Single Crystals Using Atomic Force Microscopy, Transmission Light Microscopy, and Raman Spectroscopy. J Pharm Sci 2005; 94:1881-92. [PMID: 16052565 DOI: 10.1002/jps.20402] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sulfamerazine (SMZ) Form I and II single crystals were prepared from aqueous dispersions of SMZ bulk samples and studied using several microscopic and spectroscopic techniques. Transmission light microscopy and Raman spectroscopy were used to observe and identify single crystals. The results indicated that Form I single crystals tended to be rectangular laths while Form II ones tended to be hexagonal laths. Surface morphology of individual single crystals was further investigated by atomic force microscopy (AFM). AFM images revealed a smooth top surface, a uniform height, and sharp edges for both forms of single crystals. Both height and phase images showed crystalline terraces with different step heights for the top surface of Form I. Surface properties of single crystals were evaluated using AFM force measurements. Experimental results indicated that the top surface of Form I single crystals was more hydrophilic than that of Form II. Theoretical calculations predicted a dominant crystal face of (020) for the Form I single crystals and (002) for the Form II ones. The correlations between calculation predictions and experimental results were discussed.
Collapse
Affiliation(s)
- Xiaoping Cao
- Pfizer Global Research and Development, 7000 Portage Road, Kalamazoo, Michigan 49001, USA.
| | | | | |
Collapse
|
14
|
Dai Z, Heilig A, Zastrow H, Donath E, Möhwald H. Novel Formulations of Vitamins and Insulin by Nanoengineering of Polyelectrolyte Multilayers around Microcrystals. Chemistry 2004; 10:6369-74. [PMID: 15532049 DOI: 10.1002/chem.200400579] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Microcapsules loaded with vitamin K3 (VK3), biotin, or insulin were prepared by using a novel coating technology based on the layer-by-layer (LbL) deposition of oppositely charged polyelectrolytes onto microcrystal templates. This produced multilayered, polymeric shells of varying thickness around the crystalline cores. Dissolution of the core material (VK3 with ethanol, biotin with basic solution, and insulin with acidic solution), resulted in its release through the shells. Microelectrophoresis was employed to monitor the microcrystal coating process; confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) were used to verify multilayer coating and the formation of hollow polymer shells following removal of the microcrystal templates. The release rates of both VK3 and insulin decreased as the wall thickness (the number of polyelectrolyte layers deposited onto the microcrystal cores), increased. The release time could be varied by a factor of more than ten, depending on the number of polyelectrolyte layers applied. Following the addition of 70 mass % ethanol, the solubility of VK3 increased by as much as 170-fold, resulting in an increased rate of VK3 release. By selecting appropriate polymer materials for the shells, and by controlling the number of polyelectrolyte layers applied, shells of various thickness, stiffness, aqueous solubility, dispersibility, biocompatibility, and permeability can be constructed.
Collapse
Affiliation(s)
- Zhifei Dai
- Max-Planck Institute of Colloids and Interfaces, 14476 Golm/Potsdam, Germany.
| | | | | | | | | |
Collapse
|
15
|
Bergeron L, Filobelo LF, Galkin O, Vekilov PG. Thermodynamics of the hydrophobicity in crystallization of insulin. Biophys J 2004; 85:3935-42. [PMID: 14645082 PMCID: PMC1303694 DOI: 10.1016/s0006-3495(03)74807-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For insight into the solvent structure around protein molecules and its role in phase transformations, we investigate the thermodynamics of crystallization of the rhombohedral form of porcine insulin crystals. We determine the temperature dependence of the solubility at varying concentration of the co-solvent acetone, Cac=0%, 5%, 10%, 15%, and 20%, and find that, as a rule, the solubility of insulin increases as temperature increases. The enthalpy of crystallization, undergoes a stepwise shift from approximately -20 kJ mol(-1) at Cac=0%, 5%, and 10% to approximately -55 kJ mol(-1) at Cac=15% and 20%. The entropy change upon crystallization is approximately 35 J mol(-1) K(-1) for the first three acetone concentrations, and drops to approximately -110 J mol(-1) K(-1) at Cac=15% and 20%. DeltaS degrees cryst>0 indicates release of solvent, mostly water, molecules structured around the hydrophobic patches on the insulin molecules' surface in the solution. As Cac increases to 15% and above, unstructured acetone molecules apparently displace the waters and their contribution to DeltaS degrees cryst is minimal. This shifts DeltaS degrees cryst to a negative value close to the value expected for tying up of one insulin molecule from the solution. The accompanying increase in DeltaH degrees cryst suggests that the water structured around the hydrophobic surface moieties has a minimal enthalpy effect, likely due to the small size of these moieties. These findings provide values of the parameters needed to better control insulin crystallization, elucidate the role of organic additives in the crystallization of proteins, and help us to understand the thermodynamics of the hydrophobicity of protein molecules and other large molecules.
Collapse
Affiliation(s)
- Lisa Bergeron
- Department of Chemical Engineering, University of Houston, Houston, Texas 77204-4004, USA
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Peter G Vekilov
- Department of Chemical Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
17
|
Waizumi K, Plomp M, van Enckevort W. Atomic force microscopy studies on growing surfaces of bovine insulin crystals. Colloids Surf B Biointerfaces 2003. [DOI: 10.1016/s0927-7765(03)00037-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Brader ML, Sukumar M, Pekar AH, McClellan DS, Chance RE, Flora DB, Cox AL, Irwin L, Myers SR. Hybrid insulin cocrystals for controlled release delivery. Nat Biotechnol 2002; 20:800-4. [PMID: 12134168 DOI: 10.1038/nbt722] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to tailor the release profile of a drug by manipulating its formulation matrix offers important therapeutic advantages. We show here that human insulin can be cocrystallized at preselected ratios with the fully active lipophilically modified insulin derivative octanoyl-N(epsilon)-LysB29-human insulin (C8-HI). The cocrystal is analogous to the NPH (neutral protamine Hagedorn) crystalline complex formed with human insulin, which is commonly used as the long-acting insulin component of diabetes therapy. The in vitro and in vivo release rates of the cocrystal can be controlled by adjusting the relative proportions of the two insulin components. We identified a cocrystal composition comprising 75% C8-HI and 25% human insulin that exhibits near-ideal basal pharmacodynamics in somatostatin-treated beagle dogs. The dependence of release rate on cocrystal ratio provides a robust mechanism for modulating insulin pharmacodynamics. These findings show that a crystalline protein matrix may accommodate a chemical modification that alters the dissolution rate of the crystal in a therapeutically useful way, yet that is structurally innocuous enough to preserve the pharmaceutical integrity of the original microcrystalline entity and the pharmacological activity of the parent molecule.
Collapse
Affiliation(s)
- Mark L Brader
- Bioproduct Pharmaceutical Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Stark M, Möller C, Müller DJ, Guckenberger R. From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy. Biophys J 2001; 80:3009-18. [PMID: 11371473 PMCID: PMC1301484 DOI: 10.1016/s0006-3495(01)76266-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In tapping-mode atomic force microscopy, the phase shift between excitation and response of the cantilever is used as a material-dependent signal complementary to topography. The localization of information in the phase signal is demonstrated with 1.4-nm lateral resolution on purple membrane of Halobacterium salinarum in buffer solution. In a first-order approximation, the phase signal is found to correlate with modulations of the tip oscillation amplitude, induced by topography. Extending the analysis to contributions of the tip-sample interaction area as a second-order approximation, a method is proposed to extract information about the interaction from the phase signal for surfaces with a roughness in the order of the tip radius.
Collapse
Affiliation(s)
- M Stark
- Max Planck Institute for Biochemistry, Department of Molecular Structural Biology, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
21
|
Ward MD. Bulk crystals to surfaces: combining X-ray diffraction and atomic force microscopy to probe the structure and formation of crystal interfaces. Chem Rev 2001; 101:1697-725. [PMID: 11709996 DOI: 10.1021/cr000020j] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M D Ward
- Department of Chemical Engineering and Materials Science, University of Minnesota, Amundson Hall, 421 Washington Avenue, Southeast, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
22
|
Adams G, Clark J, Sahota T, Tanna S, Taylor MJ. Diabetes mellitus and closed-loop insulin delivery. Biotechnol Genet Eng Rev 2001; 17:455-96. [PMID: 11255678 DOI: 10.1080/02648725.2000.10648002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- G Adams
- School of Nursing, University of Nottingham, Dukeries Centre, King's Mill Centre, Mansfield Road, Sutton-in-Ashfield, Nottinghamshire NG17 4JL, U.K
| | | | | | | | | |
Collapse
|
23
|
Danesh A, Connell SD, Davies MC, Roberts CJ, Tendler SJ, Williams PM, Wilkins MJ. An in situ dissolution study of aspirin crystal planes (100) and (001) by atomic force microscopy. Pharm Res 2001; 18:299-303. [PMID: 11442268 DOI: 10.1023/a:1011046728622] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To observe in situ and on individual aspirin crystal faces the comparative rates and processes of dissolution of the dominant faces. METHODS The kinetics of the dissolution rate of two aspirin crystal planes (001) and (100) under 0.05M HCl are studied in situ at room temperature using Atomic Force Microscopy. The dissolution process of each crystal plane was followed by observed changes in topographic features. RESULTS The results revealed that crystal plane (001) dissolves by receding step edges, and has a dissolution rate of 0.45 nm s(-1). Conversely. plane (100) displays crystal terrace sinking at an average rate of 2.93 nm s(-1). Calculated intrinsic dissolution values (g s(-1) cm(-2)) for planes (001) and (100) are 1.37 x 10(-7) gs(-1) cm(-2) and 8.36 x 10(-7) gs(-1) cm(-2), respectively. CONCLUSIONS These values indicate that the rate of flux of material from plane (100) is approximately six times greater than that from plane (001), under 0.05M HCl. Interpretation of the data, based upon intrinsic dissolution rates and dissolution rate velocities, correlate with reported variations in the dissolution behavior of commercial aspirin products. These observations illustrate the suitability of the technique for characterizing the dissolution behavior of crystalline drugs.
Collapse
Affiliation(s)
- A Danesh
- School of Pharmaceutical Sciences, The University of Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Yip CM, McLaurin J. Amyloid-beta peptide assembly: a critical step in fibrillogenesis and membrane disruption. Biophys J 2001; 80:1359-71. [PMID: 11222297 PMCID: PMC1301328 DOI: 10.1016/s0006-3495(01)76109-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Identifying the mechanisms responsible for the assembly of proteins into higher-order structures is fundamental to structural biology and understanding specific disease pathways. The amyloid-beta (Abeta) peptide is illustrative in this regard as fibrillar deposits of Abeta are characteristic of Alzheimer's disease. Because Abeta includes portions of the extracellular and transmembrane domains of the amyloid precursor protein, it is crucial to understand how this peptide interacts with cell membranes and specifically the role of membrane structure and composition on Abeta assembly and cytotoxicity. We describe the results of a combined circular dichroism spectroscopy, electron microscopy, and in situ tapping mode atomic force microscopy (TMAFM) study of the interaction of soluble monomeric Abeta with planar bilayers of total brain lipid extract. In situ extended-duration TMAFM provided evidence of membrane disruption via fibril growth of initially monomeric Abeta1-40 peptide within the total brain lipid bilayers. In contrast, the truncated Abeta1-28 peptide, which lacks the anchoring transmembrane domain found in Abeta1-40, self-associates within the lipid headgroups but does not undergo fibrillogenesis. These observations suggest that the fibrillogenic properties of Abeta peptide are in part a consequence of membrane composition, peptide sequence, and mode of assembly within the membrane.
Collapse
Affiliation(s)
- C M Yip
- Institute for Biomaterials and Biomedical Engineering and Centre for Studies in Molecular Imaging, University of Toronto, Toronto, Ontario M5S 3G9 Canada
| | | |
Collapse
|
25
|
McPherson A, Malkin AJ. Atomic force microscopy in the study of macromolecular crystal growth. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:361-410. [PMID: 10940253 DOI: 10.1146/annurev.biophys.29.1.361] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atomic force microscopy (AFM) has been used to study protein, nucleic acid, and virus crystals in situ, in their mother liquors, as they grow. From sequential AFM images taken at brief intervals over many hours, or even days, the mechanisms and kinetics of the growth process can be defined. The appearance of both two- and three-dimensional nuclei on crystal surfaces have been visualized, defect structures of crystals were clearly evident, and defect densities of crystals were also determined. The incorporation of a wide range of impurities, ranging in size from molecules to microns or larger microcrystals, and even foreign particles were visually recorded. From these observations and measurements, a more complex understanding of the detailed character of macromolecular crystals is emerging, one that reveals levels of complexity previously unsuspected. The unique features of these crystals, apparently in AFM images, undoubtedly influence the diffraction properties of the crystals and the quality of the molecular images obtained by X-ray crystallography.
Collapse
Affiliation(s)
- A McPherson
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, USA.
| | | |
Collapse
|
26
|
Yau ST, Thomas BR, Galkin O, Gliko O, Vekilov PG. Molecular mechanisms of microheterogeneity-induced defect formation in ferritin crystallization. Proteins 2001. [DOI: 10.1002/prot.1047] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Yau ST, Petsev DN, Thomas BR, Vekilov PG. Molecular-level thermodynamic and kinetic parameters for the self-assembly of apoferritin molecules into crystals. J Mol Biol 2000; 303:667-78. [PMID: 11061967 DOI: 10.1006/jmbi.2000.4171] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The self-assembly of apoferritin molecules into crystals is a suitable model for protein crystallization and aggregation; these processes underlie several biological and biomedical phenomena, as well as for protein and virus self-assembly. We use the atomic force microscope in situ, during the crystallization of apoferritin to visualize and quantify at the molecular level the processes responsible for crystal growth. To evaluate the governing thermodynamic parameters, we image the configuration of the incorporation sites, "kinks", on the surface of a growing crystal. We show that the kinks are due to thermal fluctuations of the molecules at the crystal-solution interface. This allows evaluation of the free energy of the intermolecular bond phi=3.0 k(B)T=7.3 kJ/mol. The crystallization free energy, extracted from the protein solubility, is -42 kJ/mol. Published determinations of the second virial coefficient and the protein solubility between 0 and 40 degrees C revealed that the enthalpy of crystallization is close to zero. Analyses based on these three values suggest that the main component in the crystallization driving force is the entropy gain of the water molecules bound to the protein molecules in solution and released upon crystallization. Furthermore, monitoring the incorporation of individual molecules in to the kinks, we determine the characteristic frequency of attachment of individual molecules at one set of conditions. This allows a correlation between the mesoscopic kinetic coefficient for growth and the molecular-level thermodynamic and kinetic parameters determined here. We found that step growth velocity, scaled by the molecular size, equals the product of the kink density and attachment frequency, i.e. the latter pair are the molecular-level parameters for self-assembly of the molecules into crystals.
Collapse
Affiliation(s)
- S T Yau
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | | | | | | |
Collapse
|
28
|
Yip CM, Brader ML, Frank BH, DeFelippis MR, Ward MD. Structural studies of a crystalline insulin analog complex with protamine by atomic force microscopy. Biophys J 2000; 78:466-73. [PMID: 10620310 PMCID: PMC1300654 DOI: 10.1016/s0006-3495(00)76609-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Crystallographic studies of insulin-protamine complexes, such as neutral protamine Hagedorn (NPH) insulin, have been hampered by high crystal solvent content, small crystal dimensions, and extensive disorder in the protamine molecules. We report herein in situ tapping mode atomic force microscopy (TMAFM) studies of crystalline neutral protamine Lys(B28)Pro(B29) (NPL), a complex of Lys(B28)Pro(B29) insulin, in which the C-terminal prolyl and lysyl residues of human insulin are inverted, and protamine that is used as an intermediate time-action therapy for treating insulin-dependent diabetes. Tapping mode AFM performed at 6 degrees C on bipyramidally tipped tetragonal rod-shaped NPL crystals revealed large micron-sized islands separated by 44-A tall steps. Lattice images obtained by in situ TMAFM phase and height imaging on these islands were consistent with the arrangement of individual insulin-protamine complexes on the P4(1)2(1)2 (110) crystal plane of NPH, based on a low-resolution x-ray diffraction structure of NPH, arguing that the NPH and NPL insulins are isostructural. Superposition of the height and phase images indicated that tip-sample adhesion was larger in the interstices between NPL complexes in the (110) crystal plane than over the individual complexes. These results demonstrate the utility of low-temperature TMAFM height and phase imaging for the structural characterization of biomolecular complexes.
Collapse
Affiliation(s)
- C M Yip
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | |
Collapse
|
29
|
Richards JP, Stickelmeyer MP, Frank BH, Pye S, Barbeau M, Radziuk J, Smith GD, DeFelippis MR. Preparation of a microcrystalline suspension formulation of Lys(B28)Pro(B29)-human insulin with ultralente properties. J Pharm Sci 1999; 88:861-7. [PMID: 10479347 DOI: 10.1021/js990107o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The monomeric analogue, Lys(B28)Pro(B29)-human insulin (LysPro), has been crystallized using similar conditions employed to prepare extended-acting insulin ultralente formulations. In the presence of zinc ions, sodium acetate and sodium chloride, but without phenolic preservative, LysPro surprisingly forms small rhombohedral crystals with similar morphology to human insulin ultralente crystals with a mean particle size of 20 +/- 1 microm. X-ray powder diffraction studies on the LysPro crystals prior to dilution in ultralente vehicle ([NaCl] = 1.2 M) revealed the presence of T(3)R(3)(f) hexamers. Consistent with human insulin ultralente preparations, LysPro crystals formulated as an ultralente suspension ([NaCl] = 0. 12 M) contain T(6) hexamers indicating that a conformational change occurs in the hexamer units of the crystals upon dilution of the salt concentration. The pharmacological properties of subcutaneously administered ultralente LysPro (ULP) were compared to ultralente human insulin (UHI) using a conscious dog model (n = 5) with glucose levels clamped at basal. There were no statistically significant differences between the kinetic and dynamic responses of ULP compared to UHI [C(max) (ng/mL): 3.58 +/- 0.76, ULP and 3.61 +/- 0. 66, UHI; T(max) (min): 226 +/- 30, ULP and 185 +/- 42, UHI; R(max) (mg/kg min): 11.2 +/- 1.9, ULP and 13.3 +/- 2.0, UHI; and T(Rmax) (min): 336 +/- 11, ULP and 285 +/- 57, UHI]. Although the Pro to Lys sequence inversion destabilizes insulin self-assembly and greatly alters the time action of soluble LysPro preparations, this modification has now been found neither to prevent the formation of ultralente crystals in the absence of phenolics nor to compromise the protracted activity of the insulin analogue suspension.
Collapse
Affiliation(s)
- J P Richards
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | |
Collapse
|