1
|
Kallubai M, Rachamallu A, Yeggoni DP, Subramanyam R. Comparative binding mechanism of lupeol compounds with plasma proteins and its pharmacological importance. MOLECULAR BIOSYSTEMS 2015; 11:1172-83. [DOI: 10.1039/c4mb00635f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding of lupeol compounds with plasma proteins.
Collapse
Affiliation(s)
- Monika Kallubai
- Department of Plant Sciences
- School of Life Sciences
- University of Hyderabad
- Hyderabad 500046
- India
| | - Aparna Rachamallu
- National Institute of Animal Biotechnology
- Axis Clinicals Building
- Hyderabad
- India
| | | | - Rajagopal Subramanyam
- Department of Plant Sciences
- School of Life Sciences
- University of Hyderabad
- Hyderabad 500046
- India
| |
Collapse
|
2
|
Lee JW, Templeton JA, Mandadapu KK, Zimmerman JA. Comparison of Molecular and Primitive Solvent Models for Electrical Double Layers in Nanochannels. J Chem Theory Comput 2013; 9:3051-61. [DOI: 10.1021/ct4002043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Hilder TA, Gordon D, Chung SH. Synthetic cation-selective nanotube: permeant cations chaperoned by anions. J Chem Phys 2011; 134:045103. [PMID: 21280804 DOI: 10.1063/1.3524310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.
Collapse
Affiliation(s)
- Tamsyn A Hilder
- Computational Biophysics Group, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | | | | |
Collapse
|
4
|
Kolombet VA, Frolov AI. Na+/K+ selectivity in the formation of ion pairs in aqueous solutions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2011. [DOI: 10.1134/s1990793110060011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Poynor M, Eckert R, Nussberger S. Dynamics of the preprotein translocation channel of the outer membrane of mitochondria. Biophys J 2008; 95:1511-22. [PMID: 18456827 PMCID: PMC2479589 DOI: 10.1529/biophysj.108.131003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/07/2008] [Indexed: 11/18/2022] Open
Abstract
The protein translocase of the outer mitochondrial membrane (TOM) serves as the main entry site for virtually all mitochondrial proteins. Like many other protein translocases it also has an ion channel activity that can be used to study the dynamical properties of this supramolecular complex. We have purified TOM core complex and Tom40, the main pore forming subunit, from mitochondria of the filamentous fungus Neurospora crassa and incorporated them into planar lipid bilayers. We then examined their single channel properties to provide a detailed description of the conformational dynamics of this channel in the absence of its protein substrate. For isolated TOM core complex we have found at least six conductance states. Transitions between these states were voltage-dependent with a bell-shaped open probability distribution and distinct kinetics depending on the polarity of the applied voltage. The states with the largest conductance followed an Ohmic I/V characteristic consistent with a large cylindrical pore with very little interaction with the permeating ions. For the lower conductance states, however, we have observed inverted S-shaped nonlinear current-voltage curves reminiscent to those of much narrower pores where the permeating ions have to surmount an electrostatic energy barrier. At low voltages (<+/-70 mV), purified Tom40 protein did not show any transitions between its conductance states. Prolonged exposure to higher voltages induced similar gating behavior to what we observed for TOM core complex. This effect was time-dependent and reversible, indicating that Tom40 forms not only the pore but also contains the "gating machinery" of the complex. However, for proper functioning, additional proteins (Tom22, Tom7, Tom6, and Tom5) are required that act as a modulator of the pore dynamics by significantly reducing the energy barrier between different conformational states.
Collapse
Affiliation(s)
- Melissa Poynor
- Abteilung Biophysik, Biologisches Institut, Universität Stuttgart, Stuttgart, Germany
| | | | | |
Collapse
|
6
|
Kaats AJ, Galiana HL, Nadeau JL. Standardizing the atomic description, axis and centre of biological ion channels. J Neurosci Methods 2007; 165:135-43. [PMID: 17624442 DOI: 10.1016/j.jneumeth.2007.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 05/15/2007] [Accepted: 05/17/2007] [Indexed: 12/01/2022]
Abstract
A general representation of the atomic co-ordinates of a biological ion channel is obtained from a definition of channel axis and centre. Through rotation and translation of the channel, its centre becomes the origin of the standard co-ordinate system, and the channel axis becomes the system's z-axis. A method for determining the channel axis and centre based on the concepts of mass centre and mass moment of inertia is presented. The method for determining the channel axis can be directly applied to channels that adhere to two specific conditions regarding their geometry and mass distribution. Specific examples are given for Gramicidin A (GA), and the mammalian potassium channel Kv 1.2. For channels that do not adhere to these conditions, minor modifications of these procedures can be applied in determining the channel axis. Specific examples are given for the outer membrane bacterial porin OmpF, and for the staphylococcal pore-forming toxin alpha-hemolysin (alpha HL). The definitions and procedures presented are made in an effort to establish a standard basis for performing, sharing, and comparing computations in a consistent manner.
Collapse
Affiliation(s)
- Adrian J Kaats
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
7
|
Chen H, Wu Y, Voth GA. Proton transport behavior through the influenza A M2 channel: insights from molecular simulation. Biophys J 2007; 93:3470-9. [PMID: 17693473 PMCID: PMC2072055 DOI: 10.1529/biophysj.107.105742] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural properties of the influenza A virus M2 transmembrane channel in dimyristoylphosphatidylcholine bilayer for each of the four protonation states of the proton-gating His-37 tetrad and their effects on proton transport for this low-pH activated, highly proton-selective channel are studied by classical molecular dynamics with the multistate empirical valence-bond (MS-EVB) methodology. The excess proton permeation free energy profile and maximum ion conductance calculated from the MS-EVB simulation data combined with the Poisson-Nernst-Planck theory indicates that the triply protonated His-37 state is the most likely open state via a significant side-chain conformational change of the His-37 tetrad. This proposed open state of M2 has a calculated proton permeation free energy barrier of 7 kcal/mol and a maximum conductance of 53 pS compared to the experimental value of 6 pS. By contrast, the maximum conductance for Na(+) is calculated to be four orders of magnitude lower, in reasonable agreement with the experimentally observed proton selectivity. The pH value to activate the channel opening is estimated to be 5.5 from dielectric continuum theory, which is also consistent with experimental results. This study further reveals that the Ala-29 residue region is the primary binding site for the antiflu drug amantadine (AMT), probably because that domain is relatively spacious and hydrophobic. The presence of AMT is calculated to reduce the proton conductance by 99.8% due to a significant dehydration penalty of the excess proton in the vicinity of the channel-bound AMT.
Collapse
Affiliation(s)
- Hanning Chen
- Center for Biophysical Modeling and Simulation, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | | | | |
Collapse
|
8
|
Shaitan KV, Li A, Tereshkina KB, Kirpichnikov MP. Acetylcholine receptor pore permeability studied by molecular dynamics simulation. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907030086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Meltzer RH, Vila-Carriles W, Ebalunode JO, Briggs JM, Pedersen SE. Computed pore potentials of the nicotinic acetylcholine receptor. Biophys J 2006; 91:1325-35. [PMID: 16751248 PMCID: PMC1518625 DOI: 10.1529/biophysj.106.081455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrostatic surface potentials in the vestibule of the nicotinic acetylcholine receptor (nAChR) were computed from structural models using the University of Houston Brownian Dynamics program to determine their effect on ion conduction and ionic selectivity. To further determine whether computed potentials accurately reflect the electrostatic environment of the channel, the potentials were used to predict the rate constants for diffusion-enhanced fluorescence energy transfer; the calculated energy transfer rates are directly comparable with those determined experimentally (see companion article by Meltzer et al. in this issue). To include any effects on the local potentials by the bound acceptor fluorophore crystal violet, its binding site was first localized within the pore by fluorescence energy transfer measurements from dansyl-C6-choline bound to the agonist sites and also by simulations of binding using Autodock. To compare the computed potentials with those determined experimentally, we used the predicted energy transfer rates from Tb3+ chelates of varying charge to calculate an expected potential using the Boltzmann relationship. This expected potential (from -20 to -40 mV) overestimates the values determined experimentally (from -10 to -25 mV) by two- to fourfold at similar conditions of ionic strength. Although the results indicate a basic discrepancy between experimental and computed surface potentials, both methods demonstrate that the vestibular potential has a relatively small effect on conduction and selectivity.
Collapse
Affiliation(s)
- Robert H Meltzer
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77035, USA
| | | | | | | | | |
Collapse
|
10
|
Meltzer RH, Lurtz MM, Wensel TG, Pedersen SE. Nicotinic acetylcholine receptor channel electrostatics determined by diffusion-enhanced luminescence energy transfer. Biophys J 2006; 91:1315-24. [PMID: 16751249 PMCID: PMC1518635 DOI: 10.1529/biophysj.106.081448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The electrostatic potentials within the pore of the nicotinic acetylcholine receptor (nAChR) were determined using lanthanide-based diffusion-enhanced fluorescence energy transfer experiments. Freely diffusing Tb3+ -chelates of varying charge constituted a set of energy transfer donors to the acceptor, crystal violet, a noncompetitive antagonist of the nAChR. Energy transfer from a neutral Tb3+ -chelate to nAChR-bound crystal violet was reduced 95% relative to the energy transfer to free crystal violet. This result indicated that crystal violet was strongly shielded from solvent when bound to the nAChR. Comparison of energy transfer from positively and negatively charged chelates indicate negative electrostatic potentials of -25 mV in the channel, measured in low ionic strength, and -10 mV measured in physiological ionic strength. Debye-Hückel analyses of potentials determined at various ionic strengths were consistent with 1-2 negative charges within 8 A of the crystal violet binding site. To complement the energy transfer experiments, the influence of pH and ionic strength on the binding of [3H]phencyclidine were determined. The ionic strength dependence of binding affinity was consistent with -3.3 charges within 8 A of the binding site, according to Debye-Hückel analysis. The pH dependence of binding had an apparent pKa of 7.2, a value indicative of a potential near -170 mV if the titratable residues are constituted of aspartates and glutamates. It is concluded that long-range potentials are small and likely contribute little to selectivity or conductance whereas close interactions are more likely to contribute to electrostatic stabilization of ions and binding of noncompetitive antagonists within the channel.
Collapse
Affiliation(s)
- Robert H Meltzer
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
11
|
Law RJ, Capener C, Baaden M, Bond PJ, Campbell J, Patargias G, Arinaminpathy Y, Sansom MSP. Membrane protein structure quality in molecular dynamics simulation. J Mol Graph Model 2006; 24:157-65. [PMID: 16102990 DOI: 10.1016/j.jmgm.2005.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
Our goal was to assess the relationship between membrane protein quality, output from protein quality checkers and output from molecular dynamics (MD) simulations. Membrane transport proteins are essential for a wide range of cellular processes. Structural features of integral membrane proteins are still under-explored due to experimental limitations in structure determination. Computational techniques can be used to exploit biochemical and medium resolution structural data, as well as sequence homology to known structures, and enable us to explore the structure-function relationships in several transmembrane proteins. The quality of the models produced is vitally important to obtain reliable predictions. An examination of the relationship between model stability in molecular dynamics (MD) simulations derived from RMSD (root mean squared deviation) and structure quality assessment from various protein quality checkers was undertaken. The results were compared to membrane protein structures, solved at various resolution, by either X-ray or electron diffraction techniques. The checking programs could predict the potential success of MD in making functional conclusions. MD stability was shown to be a good indicator for the quality of structures. The quality was also shown to be dependent on the resolution at which the structures were determined.
Collapse
Affiliation(s)
- Richard J Law
- Laboratory of Molecular Biophysics, Department of Biochemistry, The University of Oxford, The Rex Richards Building, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cymes GD, Ni Y, Grosman C. Probing ion-channel pores one proton at a time. Nature 2006; 438:975-80. [PMID: 16355215 PMCID: PMC1384014 DOI: 10.1038/nature04293] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 09/29/2005] [Indexed: 11/08/2022]
Abstract
Although membrane proteins often rely on ionizable residues for structure and function, their ionization states under physiological conditions largely elude experimental estimation. To gain insight into the effect of the local microenvironment on the proton affinity of ionizable residues, we have engineered individual lysines, histidines and arginines along the alpha-helical lining of the transmembrane pore of the nicotinic acetylcholine receptor. We can detect individual proton binding-unbinding reactions electrophysiologically at the level of a single proton on a single side chain as brief blocking-unblocking events of the passing cation current. Kinetic analysis of these fluctuations yields the position-dependent rates of proton transfer, from which the corresponding pK(a) values and shifts in pK(a) can be calculated. Here we present a self-consistent, residue-by-residue description of the microenvironment around the pore-lining transmembrane alpha-helices (M2) in the open-channel conformation, in terms of the excess free energy that is required to keep the engineered basic side chains protonated relative to bulk water. A comparison with closed-channel data leads us to propose that the rotation of M2, which is frequently invoked as a hallmark of the gating mechanism of Cys-loop receptors, is minimal, if any.
Collapse
Affiliation(s)
- Gisela D. Cymes
- Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ying Ni
- Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Claudio Grosman
- Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence and requests for materials should be addressed to C.G. ()
| |
Collapse
|
13
|
Arinaminpathy Y, Sansom MSP, Biggin PC. Binding site flexibility: molecular simulation of partial and full agonists within a glutamate receptor. Mol Pharmacol 2006; 69:11-8. [PMID: 16219907 DOI: 10.1124/mol.105.016691] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ionotropic glutamate receptors mediate fast synaptic transmission in the mammalian central nervous system and play an important role in many different functions, including memory and learning. They have also been implicated in a variety of neuropathologies and as such have generated widespread interest in their structure and function. Molecular Dynamics simulations (5 x 20 ns) of the ligand-binding core of the GluR2 glutamate receptor were performed. Through simulations of both wild type and the L650T mutant, we show that the degree of protein flexibility can be correlated with the extent to which the binding cleft is open. In agreement with recent experiments, the simulations of kainate with the wild-type construct show a slight increase in beta-sheet content that we are able to localize to two specific regions. During one simulation, the protein made a transition from an open-cleft conformation to a closed-cleft conformation. This closed cleft conformation closely resembles the closed-cleft crystal structure, thus indicating a potential pathway for conformational change associated with receptor activation. Analysis of the binding pocket suggests that partial agonists possess a greater degree of flexibility within the pocket that may help to explain why they are less efficient at opening the channel than full agonists. Examination of water molecules surrounding the ligands reveals that mobility in distinct subsites can be a discriminator between full and partial agonism and will be an important consideration in the design of drugs against these receptors.
Collapse
Affiliation(s)
- Yalini Arinaminpathy
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
14
|
Merzlyak PG, Capistrano MFP, Valeva A, Kasianowicz JJ, Krasilnikov OV. Conductance and ion selectivity of a mesoscopic protein nanopore probed with cysteine scanning mutagenesis. Biophys J 2005; 89:3059-70. [PMID: 16085767 PMCID: PMC1366803 DOI: 10.1529/biophysj.105.066472] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanometer-scale proteinaceous pores are the basis of ion and macromolecular transport in cells and organelles. Recent studies suggest that ion channels and synthetic nanopores may prove useful in biotechnological applications. To better understand the structure-function relationship of nanopores, we are studying the ion-conducting properties of channels formed by wild-type and genetically engineered versions of Staphylococcus aureus alpha-hemolysin (alphaHL) reconstituted into planar lipid bilayer membranes. Specifically, we measured the ion selectivities and current-voltage relationships of channels formed with 24 different alphaHL point cysteine mutants before and after derivatizing the cysteines with positively and negatively charged sulfhydryl-specific reagents. Novel negative charges convert the selectivity of the channel from weakly anionic to strongly cationic, and new positive charges increase the anionic selectivity. However, the extent of these changes depends on the channel radius at the position of the novel charge (predominantly affects ion selectivity) or on the location of these charges along the longitudinal axis of the channel (mainly alters the conductance-voltage curve). The results suggest that the net charge of the pore wall is responsible for cation-anion selectivity of the alphaHL channel and that the charge at the pore entrances is the main factor that determines the shape of the conductance-voltage curves.
Collapse
Affiliation(s)
- Petr G Merzlyak
- Laboratory of Membrane Biophysics, Department of Biophysics and Radiobiology, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | | |
Collapse
|
15
|
Law RJ, Henchman RH, McCammon JA. A gating mechanism proposed from a simulation of a human alpha7 nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 2005; 102:6813-8. [PMID: 15857954 PMCID: PMC1100735 DOI: 10.1073/pnas.0407739102] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Indexed: 12/24/2022] Open
Abstract
The nicotinic acetylcholine receptor is a well characterized ligand-gated ion channel, yet a proper description of the mechanisms involved in gating, opening, closing, ligand binding, and desensitization does not exist. Until recently, atomic-resolution structural information on the protein was limited, but with the production of the x-ray crystal structure of the Lymnea stagnalis acetylcholine binding protein and the EM image of the transmembrane domain of the torpedo electric ray nicotinic channel, we were provided with a window to examine the mechanism by which this channel operates. A 15-ns all-atom simulation of a homology model of the homomeric human alpha7 form of the receptor was conducted in a solvated palmitoyl-2-oleoyl-sn-glycerol-phosphatidylcholine bilayer and examined in detail. The receptor was unliganded. The structure undergoes a twist-to-close motion that correlates movements of the C loop in the ligand binding domain, via the beta10-strand that connects the two, with the 10 degrees rotation and inward movement of two nonadjacent subunits. The Cys loop appears to act as a stator around which the alpha-helical transmembrane domain can pivot and rotate relative to the rigid beta-sheet binding domain. The M2-M3 loop may have a role in controlling the extent or kinetics of these relative movements. All of this motion, along with essential dynamics analysis, is suggestive of the direction of larger motions involved in gating of the channel.
Collapse
Affiliation(s)
- Richard J Law
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
16
|
Xue B, Su Y, Wang W. Permeation of particle through a four-helix-bundle model channel. J Chem Phys 2005; 122:104703. [PMID: 15836341 DOI: 10.1063/1.1854620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By using molecular dynamics simulation, the dynamic behaviors of particle permeation through a four-helix-bundle model channel are studied. The interior cavity of the four-helix-bundle provides the "routes" for particle permeation. The main structural properties of the model channel are similar to those that appear in natural four-helix-bundle proteins. It is found that the interior structure of the model channel may greatly influence the permeation process. At the narrow necks of the model channel, the particle would be trapped during the permeation. There is a threshold value for the driving force. When the driving force is larger than this threshold value, the mean first permeation time decreases sharply and tends to be saturated. Increasing the temperature of either the model channel or the particle reservoir can also facilitate the permeation. Enhancing the interaction strength between the particle and monomer on the four-helix-bundle model chain will hinder the permeation. Hence, the electrical current which is induced by the particle permeation is a function of the driving force and temperature. It is found that this current increases monotonically as the strength of the driving force or the temperature increases, but decreases as the interaction strength between the particle and monomer increases. It is also found that the larger the friction coefficient, the slower the permeation is. In addition, the multiparticle (or multi-ion) permeation process is also studied. The permeation of multiparticle is usually quicker than that of the single particle. The permeation of particle through a five-helix-bundle shows similar properties as that through a four-helix-bundle.
Collapse
Affiliation(s)
- Bin Xue
- National Solid State Microstructure Laboratory, Institute of Biophysics and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | |
Collapse
|
17
|
Hung A, Tai K, Sansom MSP. Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions. Biophys J 2005; 88:3321-33. [PMID: 15722430 PMCID: PMC1305480 DOI: 10.1529/biophysj.104.052878] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple nanosecond duration molecular dynamics simulations were performed on the transmembrane region of the Torpedo nicotinic acetylcholine receptor embedded within a bilayer mimetic octane slab. The M2 helices and M2-M3 loop regions were free to move, whereas the outer (M1, M3, M4) helix bundle was backbone restrained. The M2 helices largely retain their hydrogen-bonding pattern throughout the simulation, with some distortions in the helical end and loop regions. All of the M2 helices exhibit bending motions, with the hinge point in the vicinity of the central hydrophobic gate region (corresponding to residues alphaL251 and alphaV255). The bending motions of the M2 helices lead to a degree of dynamic narrowing of the pore in the region of the proposed hydrophobic gate. Calculations of Born energy profiles for various structures along the simulation trajectory suggest that the conformations of the M2 bundle sampled correspond to a closed conformation of the channel. Principal components analyses of each of the M2 helices, and of the five-helix M2 bundle, reveal concerted motions that may be relevant to channel function. Normal mode analyses using the anisotropic network model reveal collective motions similar to those identified by principal components analyses.
Collapse
Affiliation(s)
- Andrew Hung
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
18
|
Keramidas A, Moorhouse AJ, Schofield PR, Barry PH. Ligand-gated ion channels: mechanisms underlying ion selectivity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 86:161-204. [PMID: 15288758 DOI: 10.1016/j.pbiomolbio.2003.09.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anion/cation selectivity is a critical property of ion channels and underpins their physiological function. Recently, there have been numerous mutagenesis studies, which have mapped sites within the ion channel-forming segments of ligand-gated ion channels that are determinants of the ion selectivity. Site-directed mutations to specific amino acids within or flanking the M2 transmembrane segments of the anion-selective glycine, GABA(A) and GABA(C) receptors and the cation-selective nicotinic acetylcholine and serotonin (type 3) receptors have revealed discrete, equivalent regions within the ion channel that form the principal selectivity filter, leading to plausible molecular mechanisms and mathematical models to describe how ions preferentially permeate these channels. In particular, the dominant factor determining anion/cation selectivity seems to be the sign and exposure of charged amino acids lining the selectivity filter region of the open channel. In addition, the minimum pore diameter, which can be influenced by the presence of a local proline residue, also makes a contribution to such ion selectivity in LGICs with smaller diameters increasing anion/cation selectivity and larger ones decreasing it.
Collapse
Affiliation(s)
- Angelo Keramidas
- Department of Physiology and Pharmacology, School of Medical Sciences, The University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
19
|
Law RJ, Sansom MSP. Homology modelling and molecular dynamics simulations: comparative studies of human aquaporin-1. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 33:477-89. [PMID: 15071758 DOI: 10.1007/s00249-004-0398-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 02/10/2004] [Accepted: 02/12/2004] [Indexed: 10/26/2022]
Abstract
The structures of the mammalian water transport protein Aqp1 and of its bacterial homologue GlpF enables us to test whether homology models can be used to explore relationships between structure, dynamics and function in mammalian transport proteins. Molecular dynamics simulations (totalling almost 40 ns) were performed starting from: the X-ray structure of Aqp1; a homology model of Aqp1 based on the GlpF structure; and intermediate resolution structures of Aqp1 derived from electron microscopy. Comparisons of protein RMSDs vs. time suggest that the homology models are of comparable conformational stability to the X-ray structure, whereas the intermediate resolution structures exhibit significant conformation drift. For simulations based on the X-ray structure and on homology models, the flexibility profile vs. residue number correlates well with the crystallographic B-values for each residue. In the simulations based on intermediate resolution structures, mobility of the highly conserved NPA loops is substantially higher than in the simulations based on the X-ray structure or the homology models. Pore radius profiles remained relatively constant in the X-ray and homology model simulations but showed substantial fluctuations (reflecting the higher NPA loop mobility) in the intermediate resolution simulations. The orientation of the dipoles of water molecules within the pore is of key importance in maintaining low proton permeability through Aqp1. This property seems to be quite robust to the starting model used in the simulation. These simulations suggest that homology models based on bacterial homologues may be used to derive functionally relevant information on the structural dynamics of mammalian transport proteins.
Collapse
Affiliation(s)
- Richard J Law
- Laboratory of Molecular Biophysics, Department of Biochemistry, The University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | |
Collapse
|
20
|
Abstract
We study the effect of channel geometry on the potential barrier encountered by ions as they permeate the acetylcholine receptor channel. Among the various channel geometries which have been used to represent the acetylcholine receptor channel include the cylinder and the toroidal catenary. The main reasons for those choices appear to be the facilitation of separation of the Poisson equation, rather than biological considerations. We consider a novel and realistic acetylcholine channel geometry, and calculate the electrostatic potential profiles within it, and compare our results with results from other channel geometries.
Collapse
Affiliation(s)
- Anthony Y Aidoo
- Department of Mathematics and Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA.
| |
Collapse
|
21
|
Arinaminpathy Y, Biggin PC, Shrivastava IH, Sansom MSP. A prokaryotic glutamate receptor: homology modelling and molecular dynamics simulations of GluR0. FEBS Lett 2003; 553:321-7. [PMID: 14572644 DOI: 10.1016/s0014-5793(03)01036-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GluR0 is a prokaryotic homologue of mammalian glutamate receptors that forms glutamate-activated, potassium-selective ion channels. The topology of its transmembrane (TM) domain is similar to that of simple potassium channels such as KcsA. Two plausible alignments of the sequence of the TM domain of GluR0 with KcsA are possible, differing in the region of the P helix. We have constructed homology models based on both alignments and evaluated them using 6 ns duration molecular dynamics simulations in a membrane-mimetic environment. One model, in which an insertion in GluR0 relative to KcsA is located in the loop between the M1 and P helices, is preferred on the basis of lower structural drift and maintenance of the P helix conformation during simulation. This model also exhibits inter-subunit salt bridges that help to stabilise the TM domain tetramer. During the simulation, concerted K(+) ion-water movement along the selectivity filter is observed, as is the case in simulations of KcsA. K(+) ion exit from the central cavity is associated with opening of the hydrophobic gate formed by the C-termini of the M2 helices. In the intact receptor the opening of this gate will be controlled by interactions with the extramembranous ligand-binding domains.
Collapse
Affiliation(s)
- Yalini Arinaminpathy
- Department of Biochemistry, The University of Oxford, The Rex Richards Building, South Parks Road, OX1 3QU Oxford, UK
| | | | | | | |
Collapse
|
22
|
Faraldo-Gómez JD, Smith GR, Sansom MSP. Molecular dynamics simulations of the bacterial outer membrane protein FhuA: a comparative study of the ferrichrome-free and bound states. Biophys J 2003; 85:1406-20. [PMID: 12944258 PMCID: PMC1303317 DOI: 10.1016/s0006-3495(03)74573-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
FhuA is one of the more complex members of the superfamily of bacterial outer membrane proteins. Its primary function is to provide a binding site on the outer membrane surface for siderophores, such as ferrichrome, and subsequently to facilitate their energy-dependent transport across the membrane, presumably powered by the TonB-ExbBD protein complex that resides in the cytoplasmic membrane. Crystal structures of FhuA with and without a bound ferrichrome molecule have provided some clues as to the initial stages of the siderophore transport mechanism. In the current study, we have employed 10-ns duration molecular dynamics simulations of FhuA and of the FhuA-ferrichrome complex, both embedded in a phospholipid bilayer, to probe the short timescale dynamics of this integral membrane protein, and to explore possible mechanistic implications of this dynamic behavior. Analysis of the dynamics of the protein suggests that the extracellular loops move as relatively rigid entities relative to the transmembrane beta-barrel. Comparison of the two simulations (with and without bound ferrichrome) revealed some ligand-induced changes in loop mobility. Specifically, loop L8 appears to be involved in a mechanism whereby the binding site is gated closed upon ligand binding. Analysis of the dynamics of water molecules within the core of the FhuA protein provided no evidence for a water-permeable protopore through which the ferrichrome might pass without a major perturbation of the FhuA protein. Overall, these simulations support the proposal that binding of ferrichrome initiates a signaling mechanism that ultimately leads to the TonB-mediated partial or total removal of the core domain from the beta-barrel, thus opening up a permeable pore. These simulations are among the longest that have been performed on a complex membrane protein. However, a simple analysis of sampling reveals that the description of protein motions is far from complete.
Collapse
Affiliation(s)
- José D Faraldo-Gómez
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
23
|
Pang A, Arinaminpathy Y, Sansom MSP, Biggin PC. Interdomain dynamics and ligand binding: molecular dynamics simulations of glutamine binding protein. FEBS Lett 2003; 550:168-74. [PMID: 12935905 DOI: 10.1016/s0014-5793(03)00866-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Periplasmic binding proteins from Gram-negative bacteria possess a common architecture, comprised of two domains linked by a hinge region, a fold which they share with the neurotransmitter-binding domains of ionotropic glutamate receptors (GluRs). Glutamine-binding protein (GlnBP) is one such protein, whose crystal structure has been solved in both open and closed forms. Multi-nanosecond molecular dynamics simulations have been used to explore motions about the hinge region and how they are altered by ligand binding. Glutamine binding is seen to significantly reduce inter-domain motions about the hinge region. Essential dynamics analysis of inter-domain motion revealed the presence of both hinge-bending and twisting motions, as has been reported for a related sugar-binding protein. Significantly, the influence of the ligand on GlnBP dynamics is similar to that previously observed in simulations of rat glutamate receptor (GluR2) ligand-binding domain. The essential dynamics analysis of GlnBP also revealed a third class of motion which suggests a mechanism for signal transmission in GluRs.
Collapse
Affiliation(s)
- Andrew Pang
- Laboratory of Molecular Biophysics, Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
24
|
Corry B, Kuyucak S, Chung SH. Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels. Biophys J 2003; 84:3594-606. [PMID: 12770869 PMCID: PMC1302945 DOI: 10.1016/s0006-3495(03)75091-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We demonstrated previously that the two continuum theories widely used in modeling biological ion channels give unreliable results when the radius of the conduit is less than two Debye lengths. The reason for this failure is the neglect of surface charges on the protein wall induced by permeating ions. Here we attempt to improve the accuracy of the Poisson-Boltzmann and Poisson-Nernst-Planck theories, when applied to channel-like environments, by including a specific dielectric self-energy term to overcome spurious shielding effects inherent in these theories. By comparing results with Brownian dynamics simulations, we show that the inclusion of an additional term in the equations yields significant qualitative improvements. The modified theories perform well in very wide and very narrow channels, but are less successful at intermediate sizes. The situation is worse in multi-ion channels because of the inability of the continuum theories to handle the ion-to-ion interactions correctly. Thus, further work is required if these continuum theories are to be reliably salvaged for quantitative studies of biological ion channels in all situations.
Collapse
Affiliation(s)
- Ben Corry
- Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, Canberra, Australia.
| | | | | |
Collapse
|
25
|
Capener CE, Proks P, Ashcroft FM, Sansom MSP. Filter flexibility in a mammalian K channel: models and simulations of Kir6.2 mutants. Biophys J 2003; 84:2345-56. [PMID: 12668443 PMCID: PMC1302801 DOI: 10.1016/s0006-3495(03)75040-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The single-channel conductance varies significantly between different members of the inward rectifier (Kir) family of potassium channels. Mutations at three sites in Kir6.2 have been shown to produce channels with reduced single-channel conductance, the largest reduction (to 40% of wild-type) being for V127T. We have used homology modeling (based on a KcsA template) combined with molecular dynamics simulations in a phosphatidycholine bilayer to explore whether changes in structural dynamics of the filter were induced by three such mutations: V127T, M137C, and G135F. Overall, 12 simulations of Kir6.2 models, corresponding to a total simulation time of 27 ns, have been performed. In these simulations we focused on distortions of the selectivity filter, and on the presence/absence of water molecules lying behind the filter, which form interactions with the filter and the remainder of the protein. Relative to the wild-type simulation, the V127T mutant showed significant distortion of the filter such that approximately 50% of the simulation time was spent in a closed conformation. While in this conformation, translocation of K(+) ions between sites S1 and S2 was blocked. The distorted filter conformation resembles that of the bacterial channel KcsA when crystallized in the presence of a low [K(+)]. This suggests filter distortion may be a possible general model for determining the conductance of K channels.
Collapse
Affiliation(s)
- Charlotte E Capener
- Laboratory of Molecular Biophysics, Department of Biochemistry, Rex Richards Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
26
|
Tieleman DP, Borisenko V, Sansom MSP, Woolley GA. Understanding pH-dependent selectivity of alamethicin K18 channels by computer simulation. Biophys J 2003; 84:1464-9. [PMID: 12609853 PMCID: PMC1302720 DOI: 10.1016/s0006-3495(03)74959-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alamethicin K18 is a covalently linked alamethicin dimer in which the glutamine residue at position 18 in each helix has been replaced by a lysine residue. As described in previous work, channels formed by this peptide show pH-dependent selectivity. The maximum anion selectivity of the putative octameric conducting state is obtained at pH 7 or lower. Inasmuch as no change in selectivity is seen between pH 7 and pH 3, and because protons are expected to be in equilibrium with the open state of the channel during a selectivity measurement, the channel is believed to be fully charged (i.e., all eight lysines protonated) at pH 7. In an effort to understand how such a highly charged channel structure is stable in membranes and why it is not more selective for anions, we have performed a number of computer simulations of the system. Molecular dynamics simulations of 10 ns each of the octameric bundle in a lipid bilayer environment are presented, with either zero, four, or eight lysines charged in the absence of salt, and with eight lysines charged in the presence of 0.5 M and 1 M KCl. When no salt is present and all lysines are charged, on average 1.9 Cl(-) ions are inside the channel and the channel significantly deforms. With 0.5 M KCl present, 2.9 Cl(-) ions are inside the channel. With 1 M KCl present, four Cl(-) ions are present and the channel maintains a regular structure. Poisson-Boltzmann calculations on models of the octameric channel also predict an average of 2-4 Cl(-) ions near the lysine residues as a function of ionic strength. These counterions lower the apparent charge of the channel, which may underlie the decrease in selectivity observed experimentally with increasing salt concentrations. We suggest that to increase the selectivity of Alm K18 channels, positive charges could be engineered in a narrower part of the channel.
Collapse
Affiliation(s)
- D Peter Tieleman
- Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada.
| | | | | | | |
Collapse
|
27
|
Taly A, Sebban P, Smith JC, Ullmann GM. The position of QB in the photosynthetic reaction center depends on pH: a theoretical analysis of the proton uptake upon QB reduction. Biophys J 2003; 84:2090-8. [PMID: 12609910 PMCID: PMC1302777 DOI: 10.1016/s0006-3495(03)75016-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Accepted: 09/26/2002] [Indexed: 11/20/2022] Open
Abstract
Electrostatics-based calculations have been performed to examine the proton uptake upon reduction of the terminal electron acceptor Q(B) in the photosynthetic reaction center of Rhodobacter sphaeroides as a function of pH and the associated conformational equilibrium. Two crystal structures of the reaction center were considered: one structure was determined in the dark and the other under illumination. In the two structures, the Q(B) was found in two different positions, proximal or distal to the nonheme iron. Because Q(B) was found mainly in the distal position in the dark and only in the proximal position under illumination, the two positions have been attributed mostly to the oxidized and the reduced forms of Q(B), respectively. We calculated the proton uptake upon Q(B) reduction by four different models. In the first model, Q(B) is allowed to equilibrate between the two positions with either oxidation state. This equilibrium was allowed to vary with pH. In the other three models the distribution of Q(B) between the proximal position and the distal position was pH-independent, with Q(B) occupying only the distal position or only the proximal position or populating the two positions with a fixed ratio. Only the first model, which includes the pH-dependent conformational equilibrium, reproduces both the experimentally measured pH dependence of the proton uptake and the crystallographically observed conformational equilibrium at pH 8. From this model, we find that Q(B) occupies only the distal position below pH 6.5 and only the proximal position above pH 9.0 in both oxidation states. Between these pH values both positions are partially occupied. The reduced Q(B) has a higher occupancy in the proximal position than the oxidized Q(B). In summary, the present results indicate that the conformational equilibrium of Q(B) depends not only on the redox state of Q(B), but also on the pH value of the solution.
Collapse
Affiliation(s)
- Antoine Taly
- Biocomputing Group, IWR, INF 368, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
28
|
Law RJ, Tieleman DP, Sansom MSP. Pores formed by the nicotinic receptor m2delta Peptide: a molecular dynamics simulation study. Biophys J 2003; 84:14-27. [PMID: 12524262 PMCID: PMC1302590 DOI: 10.1016/s0006-3495(03)74829-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The M2delta peptide self-assembles to form a pentameric bundle of transmembrane alpha-helices that is a model of the pore-lining region of the nicotinic acetylcholine receptor. Long (>15 ns) molecular dynamics simulations of a model of the M2delta(5) bundle in a POPC bilayer have been used to explore the conformational dynamics of the channel assembly. On the timescale of the simulation, the bundle remains relatively stable, with the polar pore-lining side chains remaining exposed to the lumen of the channel. Fluctuations at the helix termini, and in the helix curvature, result in closing/opening transitions at both mouths of the channel, on a timescale of approximately 10 ns. On average, water within the pore lumen diffuses approximately 4x more slowly than water outside the channel. Examination of pore water trajectories reveals both single-file and path-crossing regimes to occur at different times within the simulation.
Collapse
Affiliation(s)
- R J Law
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, United Kingdom
| | | | | |
Collapse
|
29
|
Howorka S, Bayley H. Probing distance and electrical potential within a protein pore with tethered DNA. Biophys J 2002; 83:3202-10. [PMID: 12496089 PMCID: PMC1302397 DOI: 10.1016/s0006-3495(02)75322-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
DNA molecules tethered inside a protein pore can be used as a tool to probe distance and electrical potential. The approach and its limitations were tested with alpha-hemolysin, a pore of known structure. A single oligonucleotide was attached to an engineered cysteine to allow the binding of complementary DNA strands inside the wide internal cavity of the extramembranous domain of the pore. The reversible binding of individual oligonucleotides produced transient current blockades in single channel current recordings. To probe the internal structure of the pore, oligonucleotides with 5' overhangs of deoxyadenosines and deoxythymidines up to nine bases in length were used. The characteristics of the blockades produced by the oligonucleotides indicated that single-stranded overhangs of increasing length first approach and then thread into the transmembrane beta-barrel. The distance from the point at which the DNA was attached and the internal entrance to the barrel is 43 A, consistent with the lengths of the DNA probes and the signals produced by them. In addition, the tethered DNAs were used to probe the electrical potential within the protein pore. Binding events of oligonucleotides with an overhang of five bases or more, which threaded into the beta-barrel, exhibited shorter residence times at higher applied potentials. This finding is consistent with the idea that the main potential drop is across the alpha-hemolysin transmembrane beta-barrel, rather than the entire length of the lumen of the pore. It therefore explains why the kinetics and thermodynamics of formation of short duplexes within the extramembranous cavity of the pore are similar to those measured in solution, and bolsters the idea that a "DNA nanopore" provides a useful means for examining duplex formation at the single molecule level.
Collapse
Affiliation(s)
- Stefan Howorka
- Department of Medical Biochemistry and Genetics, The Texas A&M University System Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | |
Collapse
|
30
|
Tieleman DP, Hess B, Sansom MSP. Analysis and evaluation of channel models: simulations of alamethicin. Biophys J 2002; 83:2393-407. [PMID: 12414676 PMCID: PMC1302328 DOI: 10.1016/s0006-3495(02)75253-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alamethicin is an antimicrobial peptide that forms stable channels with well-defined conductance levels. We have used extended molecular dynamics simulations of alamethicin bundles consisting of 4, 5, 6, 7, and 8 helices in a palmitoyl-oleolyl-phosphatidylcholine bilayer to evaluate and analyze channel models and to link the models to the experimentally measured conductance levels. Our results suggest that four helices do not form a stable water-filled channel and might not even form a stable intermediate. The lowest measurable conductance level is likely to correspond to the pentamer. At higher aggregation numbers the bundles become less symmetrical. Water properties inside the different-sized bundles are similar. The hexamer is the most stable model with a stability comparable with simulations based on crystal structures. The simulation was extended from 4 to 20 ns or several times the mean passage time of an ion. Essential dynamics analyses were used to test the hypothesis that correlated motions of the helical bundles account for high-frequency noise observed in open channel measurements. In a 20-ns simulation of a hexameric alamethicin bundle, the main motions are those of individual helices, not of the bundle as a whole. A detailed comparison of simulations using different methods to treat long-range electrostatic interactions (a twin range cutoff, Particle Mesh Ewald, and a twin range cutoff combined with a reaction field correction) shows that water orientation inside the alamethicin channels is sensitive to the algorithms used. In all cases, water ordering due to the protein structure is strong, although the exact profile changes somewhat. Adding an extra 4-nm layer of water only changes the water ordering slightly in the case of particle mesh Ewald, suggesting that periodicity artifacts for this system are not serious.
Collapse
Affiliation(s)
- D Peter Tieleman
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | | | | |
Collapse
|
31
|
Abstract
The bacterial outer membrane protein OmpA is composed of an N-terminal 171-residue beta-barrel domain (OmpA(171)) that spans the bilayer and a periplasmic, C-terminal domain of unknown structure. OmpA has been suggested to primarily serve a structural role, as no continuous pore through the center of the barrel can be discerned in the crystal structure of OmpA(171). However, several groups have recorded ionic conductances for bilayer-reconstituted OmpA(171). To resolve this apparent paradox we have used molecular dynamics (MD) simulations on OmpA(171) to explore the conformational dynamics of the protein, in particular the possibility of transient formation of a central pore. A total of 19 ns of MD simulations of OmpA(171) have been run, and the results were analyzed in terms of 1) comparative behavior of OmpA(171) in different bilayer and bilayer-mimetic environments, 2) solvation states of OmpA(171), and 3) pore characteristics in different MD simulations. Significant mobility was observed for residues and water molecules within the beta-barrel. A simulation in which putative gate region side chains of the barrel interior were held in a non-native conformation led to an open pore, with a predicted conductance similar to experimental measurements. The OmpA(171) pore has been shown to be somewhat more dynamic than suggested by the crystal structure. A gating mechanism is proposed to explain its documented channel properties, involving a flickering isomerization of Arg138, forming alternate salt bridges with Glu52 (closed state) and Glu128 (open state).
Collapse
Affiliation(s)
- Peter J Bond
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
32
|
Mongan NP, Jones AK, Smith GR, Sansom MSP, Sattelle DB. Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci 2002; 11:1162-71. [PMID: 11967372 PMCID: PMC2373549 DOI: 10.1110/ps.3040102] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
We have used reverse-transcription-polymerase chain reaction (RT-PCR) and DNA sequencing techniques to confirm the transcription of seven (six alpha and one non-alpha) novel candidate nicotinic acetylcholine receptor (nAChR) subunit-encoding genes identified in the genome sequence of the nematode Caenorhabditis elegans. Compared to vertebrate nAChR subunits, they most closely resemble the homomer-forming, neuronal alpha7 subunit. Comparison of the predicted amino acid sequences of the new nAChR subunits with those described previously in C. elegans reveals five subunits (four alpha and one non-alpha) which resemble the DEG-3-like group of subunits. To date, this highly divergent nAChR subunit group is unique to C. elegans. ACR-22 is the first non-alpha member of the DEG-3-like group of subunits to be identified. Two new members of the related ACR-16-like nAChR group of subunits have also been shown to be transcribed, making the ACR-16-like subunit group the largest in C. elegans. Residues in the alpha subunit second transmembrane region (M2) which contribute to the channel lining show variations with implications for channel function. For example, in ACR-22, the highly conserved 0' lysine of M2 is replaced by histidine. Restrained molecular dynamics simulations have been used to generate molecular models of homo-pentameric M2 helix bundles for the novel subunits, enabling identification and display of pore-lining and protein interface residues. The number and diversity of genes encoding C. elegans nAChR subunits with similarities to the homomer-forming vertebrate alpha7 subunits and the identification of related non-alpha subunits, only found in C. elegans to date, suggest that at least some of these subunits may contribute to heteromers in vivo.
Collapse
Affiliation(s)
- Nigel P Mongan
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | |
Collapse
|
33
|
Capener CE, Sansom MSP. Molecular Dynamics Simulations of a K Channel Model: Sensitivity to Changes in Ions, Waters, and Membrane Environment. J Phys Chem B 2002. [DOI: 10.1021/jp0129986] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Charlotte E. Capener
- Laboratory of Molecular Biophysics, Department of Biochemistry, Rex Richards Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Mark S. P. Sansom
- Laboratory of Molecular Biophysics, Department of Biochemistry, Rex Richards Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| |
Collapse
|
34
|
Arinaminpathy Y, Sansom MSP, Biggin PC. Molecular dynamics simulations of the ligand-binding domain of the ionotropic glutamate receptor GluR2. Biophys J 2002; 82:676-83. [PMID: 11806910 PMCID: PMC1301877 DOI: 10.1016/s0006-3495(02)75430-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ionotropic glutamate receptors are essential for fast synaptic nerve transmission. Recent x-ray structures for the ligand-binding (S1S2) region of the GluR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive receptor have suggested how differences in protein/ligand interactions may determine whether a ligand will behave as a full agonist. We have used multiple molecular dynamics simulations of 2-5 ns duration to explore the structural dynamics of GluR2 S1S2 in the presence and absence of glutamate and in a complex with kainate. Our studies indicate that not only is the degree of domain closure dependent upon interactions with the ligand, but also that protein/ligand interactions influence the motion of the S2 domain with respect to S1. Differences in domain mobility between the three states (apo-S1S2, glutamate-bound, and kainate-bound) are surprisingly clear-cut. We discuss how these changes in dynamics may provide an explanation relating the mechanism of transmission of the agonist-binding event to channel opening. We also show here how the glutamate may adopt an alternative mode of binding not seen in the x-ray structure, which involves a key threonine (T480) side chain flipping into a new conformation. This new conformation results in an altered pattern of hydrogen bonding at the agonist-binding site.
Collapse
Affiliation(s)
- Yalini Arinaminpathy
- Laboratory of Molecular Biophysics, Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
35
|
Abstract
Neuronal nicotinic acetylcholine receptors are a prototype of ligand-gated channels that mediate transmission in the central and peripheral nervous system. Structure-function studies performed at the amino acid level are now unraveling the determinant residues either for the properties of the ligand-binding domain or the ionic pore. In this work we review, in the light of the latest finding, the structure-function relationship of these receptors and their implication in neurological diseases.
Collapse
Affiliation(s)
- V Itier
- Department of Physiology, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | | |
Collapse
|
36
|
Ranatunga KM, Shrivastava IH, Smith GR, Sansom MS. Side-chain ionization states in a potassium channel. Biophys J 2001; 80:1210-9. [PMID: 11222285 PMCID: PMC1301316 DOI: 10.1016/s0006-3495(01)76097-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
KcsA is a bacterial K+ channel that is gated by pH. Continuum dielectric calculations on the crystal structure of the channel protein embedded in a low dielectric slab suggest that side chains E71 and D80 of each subunit, which lie adjacent to the selectivity filter region of the channel, form a proton-sharing pair in which E71 is neutral (protonated) and D80 is negatively charged at pH 7. When K+ ions are introduced into the system at their crystallographic positions the pattern of proton sharing is altered. The largest perturbation is for a K+ ion at site S3, i.e., interacting with the carbonyls of T75 and V76. The presence of multiple K+ ions in the filter increases the probability of E71 being ionized and of D80 remaining neutral (i.e., protonated). The ionization states of the protein side chains influence the potential energy profile experienced by a K+ ion as it is translated along the pore axis. In particular, the ionization state of the E71-D80 proton-sharing pair modulates the shape of the potential profile in the vicinity of the selectivity filter. Such reciprocal effects of ion occupancy on side-chain ionization states, and of side-chain ionization states on ion potential energy profiles will complicate molecular dynamics simulations and related studies designed to calculate ion permeation energetics.
Collapse
Affiliation(s)
- K M Ranatunga
- Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology, and Medicine, London SW7 2BZ, United Kingdom
| | | | | | | |
Collapse
|
37
|
Unwin N. The Croonian Lecture 2000. Nicotinic acetylcholine receptor and the structural basis of fast synaptic transmission. Philos Trans R Soc Lond B Biol Sci 2000; 355:1813-29. [PMID: 11205343 PMCID: PMC1692909 DOI: 10.1098/rstb.2000.0737] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Communication in the nervous system takes place at chemical and electrical synapses, where neurotransmitter-gated ion channels, such as the nicotinic acetylcholine (ACh) receptor, and gap junction channels control propagation of electrical signals from one cell to the next. Newly developed electron crystallographic methods have revealed the structures of these channels trapped in open as well as closed states, suggesting how they work. The ACh receptor has large vestibules extending from the membrane which shape the ACh-binding pockets and facilitate selective transport of cations across a narrow membrane-spanning pore. When ACh enters the pockets it triggers a concerted conformational change that opens the pore by destabilizing a gate in the middle of the membrane made by a ring of pore-lining alpha-helical segmets. The alternative 'open' configuration of pore-lining segments reshapes the lumen and creates new surfaces, allowing the ions to pass through. The gap junction channel uses a similar structural mechanism, involving coordinated rearrangements of alpha-helical segments in the plane of the membrane, to open its pore.
Collapse
Affiliation(s)
- N Unwin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
38
|
Roux B, Bernèche S, Im W. Ion channels, permeation, and electrostatics: insight into the function of KcsA. Biochemistry 2000; 39:13295-306. [PMID: 11063565 DOI: 10.1021/bi001567v] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B Roux
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | | | |
Collapse
|
39
|
Abstract
nAChRs are pentameric transmembrane proteins into the superfamily of ligand-gated ion channels that includes the 5HT3, glycine, GABAA, and GABAC receptors. Electron microscopy, affinity labeling, and mutagenesis experiments, together with secondary structure predictions and measurements, suggest an all-beta folding of the N-terminal extracellular domain, with the connecting loops contributing to the ACh binding pocket and to the subunit interfaces that mediate the allosteric transitions between conformational states. The ion channel consists of two distinct elements symmetrically organized along the fivefold axis of the molecule: a barrel of five M2 helices, and on the cytoplasmic side five loops contributing to the selectivity filter. The allosteric transitions of the protein underlying the physiological ACh-evoked activation and desensitization possibly involve rigid body motion of the extracellular domain of each subunit, linked to a global reorganization of the transmembrane domain responsible for channel gating.
Collapse
Affiliation(s)
- P J Corringer
- Unité de recherche associée au Centre National de la Recherche Scientifique D1284 Institut Pasteur, Paris, France
| | | | | |
Collapse
|
40
|
Capener CE, Shrivastava IH, Ranatunga KM, Forrest LR, Smith GR, Sansom MS. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys J 2000; 78:2929-42. [PMID: 10827973 PMCID: PMC1300878 DOI: 10.1016/s0006-3495(00)76833-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A homology model has been generated for the pore-forming domain of Kir6.2, a component of an ATP-sensitive K channel, based on the x-ray structure of the bacterial channel KcsA. Analysis of the lipid-exposed and pore-lining surfaces of the model reveals them to be compatible with the known features of membrane proteins and Kir channels, respectively. The Kir6.2 homology model was used as the starting point for nanosecond-duration molecular dynamics simulations in a solvated phospholipid bilayer. The overall drift from the model structure was comparable to that seen for KcsA in previous similar simulations. Preliminary analysis of the interactions of the Kir6.2 channel model with K(+) ions and water molecules during these simulations suggests that concerted single-file motion of K(+) ions and water through the selectivity filter occurs. This is similar to such motion observed in simulations of KcsA. This suggests that a single-filing mechanism is conserved between different K channel structures and may be robust to changes in simulation details. Comparison of Kir6.2 and KcsA suggests some degree of flexibility in the filter, thus complicating models of ion selectivity based upon a rigid filter.
Collapse
Affiliation(s)
- C E Capener
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Moy G, Corry B, Kuyucak S, Chung SH. Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. Biophys J 2000; 78:2349-63. [PMID: 10777732 PMCID: PMC1300825 DOI: 10.1016/s0006-3495(00)76780-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Continuum theories of electrolytes are widely used to describe physical processes in various biological systems. Although these are well-established theories in macroscopic situations, it is not clear from the outset that they should work in small systems whose dimensions are comparable to or smaller than the Debye length. Here, we test the validity of the mean-field approximation in Poisson-Boltzmann theory by comparing its predictions with those of Brownian dynamics simulations. For this purpose we use spherical and cylindrical boundaries and a catenary shape similar to that of the acetylcholine receptor channel. The interior region filled with electrolyte is assumed to have a high dielectric constant, and the exterior region representing protein a low one. Comparisons of the force on a test ion obtained with the two methods show that the shielding effect due to counterions is overestimated in Poisson-Boltzmann theory when the ion is within a Debye length of the boundary. As the ion gets closer to the boundary, the discrepancy in force grows rapidly. The implication for membrane channels, whose radii are typically smaller than the Debye length, is that Poisson-Boltzmann theory cannot be used to obtain reliable estimates of the electrostatic potential energy and force on an ion in the channel environment.
Collapse
Affiliation(s)
- G Moy
- Protein Dynamics Unit, Department of Chemistry, Research School of Physical Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | |
Collapse
|
42
|
Zhorov BS, Bregestovski PD. Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships. Biophys J 2000; 78:1786-803. [PMID: 10733960 PMCID: PMC1300774 DOI: 10.1016/s0006-3495(00)76729-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
GABA and glycine receptors (GlyRs) are pentameric ligand-gated ion channels that respond to the inhibitory neurotransmitters by opening a chloride-selective central pore lined with five M2 segments homologous to those of alpha(1) GlyR/ ARVG(2')LGIT(6')TVLTMTTQSSGSR. The activity of cyanotriphenylborate (CTB) and picrotoxinin (PTX), the best-studied blockers of the Cl(-) pores, depends essentially on the subunit composition of the receptors, in particular, on residues in positions 2' and 6' that form the pore-facing rings R(2') and R(6'). Thus, CTB blocks alpha(1) and alpha(1)/beta, but not alpha(2) GlyRs (Rundström, N., V. Schmieden, H. Betz, J. Bormann, and D. Langosch. 1994. Proc. Natl. Acad. Sci. U.S.A. 91:8950-8954). PTX blocks homomeric receptors (alpha(1) GlyR and rat rho(1) GABAR), but weakly antagonizes heteromeric receptors (alpha(1)/beta GlyR and rho(1)/rho(2) GABAR) (Pribilla, I., T. Takagi, D. Langosch, J. Bormann, and H. Betz. 1992. EMBO J. 11:4305-4311; Zhang D., Z. H. Pan, X. Zhang, A. D. Brideau, and S. A. Lipton. 1995. Proc. Natl. Acad. Sci. U.S.A. 92:11756-11760). Using as a template the kinked-helices model of the nicotinic acetylcholine receptor in the open state (Tikhonov, D. B., and B. S. Zhorov. 1998. Biophys. J. 74:242-255), we have built homology models of GlyRs and GABARs and calculated Monte Carlo-minimized energy profiles for the blockers pulled through the pore. The profiles have shallow minima at the wide extracellular half of the pore, a barrier at ring R(6'), and a deep minimum between rings R(6') and R(2') where the blockers interact with five M2s simultaneously. The star-like CTB swings necessarily on its way through ring R(6') and its activity inversely correlates with the barrier at R(6'): Thr(6')s and Ala(2')s in alpha(2) GlyR confine the swinging by increasing the barrier, while Gly(2')s in alpha(1) GlyR and Phe(6')s in beta GlyR shrink the barrier. PTX has an egg-like shape with an isopropenyl group at the elongated end and the rounded end trimmed by ether and carbonyl oxygens. In the optimal binding mode to alpha(1) GlyR and rho(1) GABAR, the rounded end of PTX accepts several H-bonds from Thr(6')s, while the elongated end enters ring R(2'). The lack of H-bond donors on the side chains of Phe(6')s (beta GlyR) and Met(6')s (rho(2) GABAR) deteriorates the binding. The hydrophilic elongated end of picrotin does not fit the hydrophobic ring of Pro(2')s/Ala(2')s in GABARs, but fit a more hydrophilic ring with Gly(2')s in GlyRs. This analysis provides explanations for structure-activity relationships of noncompetitive agonists and predicts a narrow pore of LGICs in agreement with experimental data on the permeation of organic cations.
Collapse
Affiliation(s)
- B S Zhorov
- INSERM U-261 Neurobiologie Cellulaire, Institut Pasteur, Paris, France.
| | | |
Collapse
|
43
|
Law RJ, Forrest LR, Ranatunga KM, La Rocca P, Tieleman DP, Sansom MS. Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers, and transbilayer bundles. Proteins 2000; 39:47-55. [PMID: 10737926 DOI: 10.1002/(sici)1097-0134(20000401)39:1<47::aid-prot5>3.0.co;2-a] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multiple nanosecond duration molecular dynamics simulations on the pore-lining M2 helix of the nicotinic acetylcholine receptor reveal how its structure and dynamics change as a function of environment. In water, the M2 helix partially unfolds to form a molecular hinge in the vicinity of a central Leu residue that has been implicated in the mechanism of ion channel gating. In a phospholipid bilayer, either as a single transmembrane helix, or as part of a pentameric helix bundle, the M2 helix shows less flexibility, but still exhibits a kink in the vicinity of the central Leu. The single M2 helix tilts relative to the bilayer normal by 12 degrees, in agreement with recent solid state NMR data (Opella et al., Nat Struct Biol 6:374-379, 1999). The pentameric helix bundle, a model for the pore domain of the nicotinic receptor and for channels formed by M2 peptides in a bilayer, is remarkably stable over a 2-ns MD simulation in a bilayer, provided one adjusts the pK(A)s of ionizable residues to their calculated values (when taking their environment into account) before starting the simulation. The resultant transbilayer pore shows fluctuations at either mouth which transiently close the channel. Proteins 2000;39:47-55.
Collapse
Affiliation(s)
- R J Law
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Borisenko V, Sansom MS, Woolley GA. Protonation of lysine residues inverts cation/anion selectivity in a model channel. Biophys J 2000; 78:1335-48. [PMID: 10692320 PMCID: PMC1300733 DOI: 10.1016/s0006-3495(00)76688-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A dimeric alamethicin analog with lysine at position 18 in the sequence (alm-K18) was previously shown to form stable anion-selective channels in membranes at pH 7.0 [Starostin, A. V., R. Butan, V. Borisenko, D. A. James, H. Wenschuh, M. S. Sansom, and G. A. Woolley. 1999. Biochemistry. 38:6144-6150]. To probe the charge state of the conducting channel and how this might influence cation versus anion selectivity, we performed a series of single-channel selectivity measurements at different pH values. At pH 7.0 and below, only anion-selective channels were found with P(K(+))/P(Cl(-)) = 0. 25. From pH 8-10, a mixture of anion-selective, non-selective, and cation-selective channels was found. At pH > 11 only cation-selective channels were found with P(K(+))/P(Cl(-)) = 4. In contrast, native alamethicin-Q18 channels (with Gln in place of Lys at position 18) were cation-selective (P(K(+))/P(Cl(-)) = 4) at all pH values. Continuum electrostatics calculations were then carried out using an octameric model of the alm-K18 channel embedded in a low dielectric slab to simulate a membrane. Although the calculations can account for the apparent pK(a) of the channel, they fail to correctly predict the degree of selectivity. Although a switch from cation- to anion-selectivity as the channel becomes protonated is indicated, the degree of anion-selectivity is severely overestimated, suggesting that the continuum approach does not adequately represent some aspect of the electrostatics of permeation in these channels. Side-chain conformational changes upon protonation, conformational changes, and deprotonation caused by permeating cations and counterion binding by lysine residues upon protonation are considered as possible sources of the overestimation.
Collapse
Affiliation(s)
- V Borisenko
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | | | | |
Collapse
|
45
|
|
46
|
Wilson GG, Pascual JM, Brooijmans N, Murray D, Karlin A. The intrinsic electrostatic potential and the intermediate ring of charge in the acetylcholine receptor channel. J Gen Physiol 2000; 115:93-106. [PMID: 10653890 PMCID: PMC2217203 DOI: 10.1085/jgp.115.2.93] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1999] [Accepted: 12/09/1999] [Indexed: 11/28/2022] Open
Abstract
A ring of aligned glutamate residues named the intermediate ring of charge surrounds the intracellular end of the acetylcholine receptor channel and dominates cation conduction (Imoto et al. 1988). Four of the five subunits in mouse-muscle acetylcholine receptor contribute a glutamate to the ring. These glutamates were mutated to glutamine or lysine, and combinations of mutant and native subunits, yielding net ring charges of -1 to -4, were expressed in Xenopus laevis oocytes. In all complexes, the alpha subunit contained a Cys substituted for alphaThr244, three residues away from the ring glutamate alphaGlu241. The rate constants for the reactions of alphaThr244Cys with the neutral 2-hydroxyethyl-methanethiosulfonate, the positively charged 2-ammonioethyl-methanethiosulfonate, and the doubly positively charged 2-ammonioethyl-2'-ammonioethanethiosulfonate were determined from the rates of irreversible inhibition of the responses to acetylcholine. The reagents were added in the presence and absence of acetylcholine and at various transmembrane potentials, and the rate constants were extrapolated to zero transmembrane potential. The intrinsic electrostatic potential in the channel in the vicinity of the ring of charge was estimated from the ratios of the rate constants of differently charged reagents. In the acetylcholine-induced open state, this potential was -230 mV with four glutamates in the ring and increased linearly towards 0 mV by +57 mV for each negative charge removed from the ring. Thus, the intrinsic electrostatic potential in the narrow, intracellular end of the open channel is almost entirely due to the intermediate ring of charge and is strongly correlated with alkali-metal-ion conductance through the channel. The intrinsic electrostatic potential in the closed state of the channel was more positive than in the open state at all values of the ring charge. These electrostatic properties were simulated by theoretical calculations based on a simplified model of the channel.
Collapse
Affiliation(s)
- Gary G. Wilson
- From the Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Juan M. Pascual
- From the Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, New York 10032
- From the Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Natasja Brooijmans
- From the Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Diana Murray
- From the Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Arthur Karlin
- From the Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, New York 10032
- From the Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
- From the Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032
- From the Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
47
|
Forrest LR, Kukol A, Arkin IT, Tieleman DP, Sansom MS. Exploring models of the influenza A M2 channel: MD simulations in a phospholipid bilayer. Biophys J 2000; 78:55-69. [PMID: 10620273 PMCID: PMC1300617 DOI: 10.1016/s0006-3495(00)76572-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The M2 protein of influenza A virus forms homotetrameric helix bundles, which function as proton-selective channels. The native form of the protein is 97 residues long, although peptides representing the transmembrane section display ion channel activity, which (like the native channel) is blocked by the antiviral drug amantadine. As a small ion channel, M2 may provide useful insights into more complex channel systems. Models of tetrameric bundles of helices containing either 18 or 22 residues have been simulated while embedded in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine bilayer. Several different starting models have been used. These suggest that the simulation results, at least on a nanosecond time scale, are sensitive to the exact starting structure. Electrostatics calculations carried out on a ring of four ionizable aspartate residues at the N-terminal mouth of the channel suggest that at any one time, only one will be in a charged state. Helix bundle models were mostly stable over the duration of the simulation, and their helices remained tilted relative to the bilayer normal. The M2 helix bundles form closed channels that undergo breathing motions, alternating between a tetramer and a dimer-of-dimers structure. Under these conditions either the channel forms a pocket of trapped waters or it contains a column of waters broken predominantly at the C-terminal mouth of the pore. These waters exhibit restricted motion in the pore and are effectively "frozen" in a way similar to those seen in previous simulations of a proton channel formed by a four-helix bundle of a synthetic leucine-serine peptide (, Biophys. J. 77:2400-2410).
Collapse
Affiliation(s)
- L R Forrest
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | | | | | | | | |
Collapse
|
48
|
Schweighofer KJ, Pohorille A. Computer simulation of ion channel gating: the M(2) channel of influenza A virus in a lipid bilayer. Biophys J 2000; 78:150-63. [PMID: 10620282 PMCID: PMC1300626 DOI: 10.1016/s0006-3495(00)76581-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transmembrane fragment of the influenza virus M(2) protein forms a homotetrameric channel that transports protons. In this paper, we use molecular dynamics simulations to help elucidate the mechanism of channel gating by four histidines that occlude the channel lumen in the closed state. We test two competing hypotheses. In the "shuttle" mechanism, the delta nitrogen atom on the extracellular side of one histidine is protonated by the incoming proton, and, subsequently, the proton on the epsilon nitrogen atom is released on the opposite side. In the "water-wire" mechanism, the gate opens because of electrostatic repulsion between four simultaneously biprotonated histidines. This allows for proton transport along the water wire that penetrates the gate. For each system, composed of the channel embedded in a hydrated phospholipid bilayer, a 1.3-ns trajectory was obtained. It is found that the states involved in the shuttle mechanism, which contain either single-protonated histidines or a mixture of single-protonated histidines plus one biprotonated residue, are stable during the simulations. Furthermore, the orientations and dynamics of water molecules near the gate are conducive to proton transfer. In contrast, the fully biprotonated state is not stable. Additional simulations show that if only two histidines are biprotonated, the channel deforms but the gate remains closed. These results support the shuttle mechanism but not the gate-opening mechanism of proton gating in M(2).
Collapse
Affiliation(s)
- K J Schweighofer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
49
|
Sansom MS, Tieleman DP, Berendsen HJ. The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations. NOVARTIS FOUNDATION SYMPOSIUM 1999; 225:128-41; discussion 141-5. [PMID: 10472052 DOI: 10.1002/9780470515716.ch9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Alamethicin is a 20-residue channel-forming peptide that forms a stable amphipathic alpha-helix in membrane and membrane-mimetic environments. This helix contains a kink induced by a central Gly-X-X-Pro sequence motif. Alamethicin channels are activated by a cis positive transbilayer voltage. Channel activation is suggested to correspond to voltage-induced insertion of alamethicin helices in the bilayer. Alamethicin forms multi-conductance channels in lipid bilayers. These channels are formed by parallel bundles of transmembrane helices surrounding a central pore. A change in the number of helices per bundle switches the single channel conductance level. Molecular dynamics simulations of alamethicin in a number of different environments have been used to explore its channel-forming properties. These simulations include: (i) alamethicin in solution in water and in methanol; (ii) a single alamethicin helix at the surface of a phosphatidylcholine bilayer; (iii) single alamethicin helices spanning a phosphatidylcholine bilayer; and (iv) channels formed by bundles of 5, 6, 7 or 8 alamethicin helices spanning a phosphatidylcholine bilayer. The total simulation time is c. 30 ns. Thus, these simulations provide a set of dynamic snapshots of a possible mechanism of channel formation by this peptide.
Collapse
Affiliation(s)
- M S Sansom
- Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
50
|
Woolley GA, Starostin AV, Butan R, James DA, Wenschuh H, Sansom MS. Engineering charge selectivity in alamethicin channels. NOVARTIS FOUNDATION SYMPOSIUM 1999; 225:62-9; discussion 69-73. [PMID: 10472048 DOI: 10.1002/9780470515716.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The peptide alamethicin provides a system for engineering ion channel charge selectivity. To define alamethicin charge selectivity experimentally, we measured single-channel current-voltage relationships in KCl gradients using covalently linked peptide dimers. Two factors were found to contribute to the charge selectivity of these channels: (i) the ionic strength of the surrounding solutions; and (ii) the distribution of fixed charge on the peptide. Native alamethicin channels exhibited either cation selectivity or anion selectivity depending on which end of the channel was at the low salt side of the membrane. When the glutamine residue at position 18 in the sequence was replaced with a lysine residue, an anion-selective channel was obtained regardless of which end of the channel was at the low salt side of the membrane.
Collapse
Affiliation(s)
- G A Woolley
- Department of Chemistry, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|