1
|
Zhai C, Li T, Shi H, Yeo J. Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence. J Mater Chem B 2020; 8:6562-6587. [DOI: 10.1039/d0tb00896f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Establishing the “Materials 4.0” paradigm requires intimate knowledge of the virtual space in materials design.
Collapse
Affiliation(s)
- Chenxi Zhai
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| | - Tianjiao Li
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| | - Haoyuan Shi
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials
- Sibley School of Mechanical and Aerospace Engineering
- Cornell University
- Ithaca
- USA
| |
Collapse
|
2
|
Chakraborty D, Hori N, Thirumalai D. Sequence-Dependent Three Interaction Site Model for Single- and Double-Stranded DNA. J Chem Theory Comput 2018; 14:3763-3779. [PMID: 29870236 PMCID: PMC6423546 DOI: 10.1021/acs.jctc.8b00091] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We develop a robust coarse-grained model for single- and double-stranded DNA by representing each nucleotide by three interaction sites (TIS) located at the centers of mass of sugar, phosphate, and base. The resulting TIS model includes base-stacking, hydrogen bond, and electrostatic interactions as well as bond-stretching and bond angle potentials that account for the polymeric nature of DNA. The choices of force constants for stretching and the bending potentials were guided by a Boltzmann inversion procedure using a large representative set of DNA structures extracted from the Protein Data Bank. Some of the parameters in the stacking interactions were calculated using a learning procedure, which ensured that the experimentally measured melting temperatures of dimers are faithfully reproduced. Without any further adjustments, the calculations based on the TIS model reproduce the experimentally measured salt and sequence-dependence of the size of single-stranded DNA (ssDNA), as well as the persistence lengths of poly(dA) and poly(dT) chains. Interestingly, upon application of mechanical force, the extension of poly(dA) exhibits a plateau, which we trace to the formation of stacked helical domains. In contrast, the force-extension curve (FEC) of poly(dT) is entropic in origin and could be described by a standard polymer model. We also show that the persistence length of double-stranded DNA, formed from two complementary ssDNAs, is consistent with the prediction based on the worm-like chain. The persistence length, which decreases with increasing salt concentration, is in accord with the Odijk-Skolnick-Fixman theory intended for stiff polyelectrolyte chains near the rod limit. Our model predicts the melting temperatures of DNA hairpins with excellent accuracy, and we are able to recover the experimentally known sequence-specific trends. The range of applications, which did not require adjusting any parameter after the initial construction based solely on PDB structures and melting profiles of dimers, attests to the transferability and robustness of the TIS model for ssDNA and dsDNA.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Naoto Hori
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - D. Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Abstract
More than 20 coarse-grained (CG) DNA models have been developed for simulating the behavior of this molecule under various conditions, including those required for nanotechnology. However, none of these models reproduces the DNA polymorphism associated with conformational changes in the ribose rings of the DNA backbone. These changes make an essential contribution to the DNA local deformability and provide the possibility of the transition of the DNA double helix from the B-form to the A-form during interactions with biological molecules. We propose a CG representation of the ribose conformational flexibility. We substantiate the choice of the CG sites (six per nucleotide) needed for the "sugar" GC DNA model, and obtain the potentials of the CG interactions between the sites by the "bottom-up" approach using the all-atom AMBER force field. We show that the representation of the ribose flexibility requires one non-harmonic and one three-particle potential, the forms of both the potentials being different from the ones generally used. The model also includes (i) explicit representation of ions (in an implicit solvent) and (ii) sequence dependence. With these features, the sugar CG DNA model reproduces (with the same parameters) both the B- and A- stable forms under corresponding conditions and demonstrates both the A to B and the B to A phase transitions. Graphical Abstract The proposed coarse-grained DNA model allows to reproduce both the B- and A- DNA forms and the transitions between them under corresponding conditions.
Collapse
|
4
|
Abstract
We study the elasticity of DNA based on local principal axes of bending identified from over 0.9-μs all-atom molecular dynamics simulations of DNA oligos. The calculated order parameters describe motion of DNA as an elastic rod. In 10 possible dinucleotide steps, bending about the two principal axes is anisotropic yet linearly elastic. Twist about the centroid axis is largely decoupled from bending, but DNA tends to overtwist for unbending beyond the typical range of thermal motion, which is consistent with experimentally observed twist-stretch coupling. The calculated elastic stiffness of dinucleotide steps yield sequence-dependent persistence lengths consistent with previous single-molecule experiments, which is further analyzed by performing coarse-grained simulations of DNA. Flexibility maps of oligos constructed from simulation also match with those from the precalculated stiffness of dinucleotide steps. These support the premise that base pair interaction at the dinucleotide-level is mainly responsible for the elasticity of DNA. Furthermore, we analyze 1381 crystal structures of protein-DNA complexes. In most structures, DNAs are mildly deformed and twist takes the highest portion of the total elastic energy. By contrast, in structures with the elastic energy per dinucleotide step greater than about 4.16 kBT (kBT: thermal energy), the major bending becomes dominant. The extensional energy of dinucleotide steps takes at most 35% of the total elastic energy except for structures containing highly deformed DNAs where linear elasticity breaks down. Such partitioning between different deformational modes provides quantitative insights into the conformational dynamics of DNA as well as its interaction with other molecules and surfaces.
Collapse
Affiliation(s)
- Xiaojing Teng
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
- School of Computational Sciences, Korea Institute for Advanced Study , Seoul, Korea 02455
| |
Collapse
|
5
|
Mondal M, Halder S, Chakrabarti J, Bhattacharyya D. Hybrid simulation approach incorporating microscopic interaction along with rigid body degrees of freedom for stacking between base pairs. Biopolymers 2015; 105:212-26. [PMID: 26600167 DOI: 10.1002/bip.22787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/19/2015] [Accepted: 11/17/2015] [Indexed: 11/07/2022]
Abstract
Stacking interaction between the aromatic heterocyclic bases plays an important role in the double helical structures of nucleic acids. Considering the base as rigid body, there are total of 18 degrees of freedom of a dinucleotide step. Some of these parameters show sequence preferences, indicating that the detailed atomic interactions are important in the stacking. Large variants of non-canonical base pairs have been seen in the crystallographic structures of RNA. However, their stacking preferences are not thoroughly deciphered yet from experimental results. The current theoretical approaches use either the rigid body degrees of freedom where the atomic information are lost or computationally expensive all atom simulations. We have used a hybrid simulation approach incorporating Monte-Carlo Metropolis sampling in the hyperspace of 18 stacking parameters where the interaction energies using AMBER-parm99bsc0 and CHARMM-36 force-fields were calculated from atomic positions. We have also performed stacking energy calculations for structures from Monte-Carlo ensemble by Dispersion corrected density functional theory. The available experimental data with Watson-Crick base pairs are compared to establish the validity of the method. Stacking interaction involving A:U and G:C base pairs with non-canonical G:U base pairs also were calculated and showed that these structures were also sequence dependent. This approach could be useful to generate multiscale modeling of nucleic acids in terms of coarse-grained parameters where the atomic interactions are preserved. This method would also be useful to predict structure and dynamics of different base pair steps containing non Watson-Crick base pairs, as found often in the non-coding RNA structures. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 212-226, 2016.
Collapse
Affiliation(s)
- Manas Mondal
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700 064, India
| | - Sukanya Halder
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700 064, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Center for Basic Sciences, Sector III, Salt Lake, Kolkata, 700 098, India
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700 064, India
| |
Collapse
|
6
|
Mazur AK. Comment on "Length scale dependence of DNA mechanical properties". PHYSICAL REVIEW LETTERS 2013; 111:179801. [PMID: 24206521 DOI: 10.1103/physrevlett.111.179801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Indexed: 06/02/2023]
Affiliation(s)
- Alexey K Mazur
- UPR9080 CNRS, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Université Paris Diderot, 13 rue Pierre et Marie Curie, Paris 75005, France
| |
Collapse
|
7
|
Arbona JM, Aimé JP, Elezgaray J. Modeling the mechanical properties of DNA nanostructures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:051912. [PMID: 23214819 DOI: 10.1103/physreve.86.051912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Indexed: 06/01/2023]
Abstract
We discuss generalizations of a previously published coarse-grained description [Mergell et al., Phys. Rev. E 68, 021911 (2003)] of double stranded DNA (dsDNA). The model is defined at the base-pair level and includes the electrostatic repulsion between neighbor helices. We show that the model reproduces mechanical and elastic properties of several DNA nanostructures (DNA origamis). We also show that electrostatic interactions are necessary to reproduce atomic force microscopy measurements on planar DNA origamis.
Collapse
|
8
|
Florescu AM, Joyeux M. Thermal and mechanical denaturation properties of a DNA model with three sites per nucleotide. J Chem Phys 2011; 135:085105. [PMID: 21895223 DOI: 10.1063/1.3626870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we show that the coarse grain model for DNA, which has been proposed recently by Knotts et al. [J. Chem. Phys. 126, 084901 (2007)], can be adapted to describe the thermal and mechanical denaturation of long DNA sequences by adjusting slightly the base pairing contribution. The adjusted model leads to (i) critical temperatures for long homogeneous sequences that are in good agreement with both experimental ones and those obtained from statistical models, (ii) a realistic step-like denaturation behaviour for long inhomogeneous sequences, and (iii) critical forces at ambient temperature of the order of 10 pN, close to measured values. The adjusted model furthermore supports the conclusion that the thermal denaturation of long homogeneous sequences corresponds to a first-order phase transition and yields a critical exponent for the critical force equal to σ = 0.70. This model is both geometrically and energetically realistic, in the sense that the helical structure and the grooves, where most proteins bind, are satisfactorily reproduced, while the energy and the force required to break a base pair lie in the expected range. It therefore represents a promising tool for studying the dynamics of DNA-protein specific interactions at an unprecedented detail level.
Collapse
Affiliation(s)
- Ana-Maria Florescu
- Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Université Joseph Fourier - Grenoble 1, BP 87, 38402 St Martin d'Hères, France
| | | |
Collapse
|
9
|
Kikot IP, Savin AV, Zubova EA, Mazo MA, Gusarova EB, Manevitch LI, Onufriev AV. New coarse-grained DNA model. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911030109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Savin AV, Mazo MA, Kikot IP, Manevitch LI, Onufriev AV. Heat conductivity of DNA double helix. PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS 2011; 83:245406. [PMID: 26207085 PMCID: PMC4508875 DOI: 10.1103/physrevb.83.245406] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Thermal conductivity of isolated single molecule DNA fragments is of importance for nanotechnology, but has not yet been measured experimentally. Theoretical estimates based on simplified (1D) models predict anomalously high thermal conductivity. To investigate thermal properties of single molecule DNA we have developed a 3D coarse-grained (CG) model that retains the realism of the full all-atom description, but is significantly more efficient. Within the proposed model each nucleotide is represented by 6 particles or grains; the grains interact via effective potentials inferred from classical molecular dynamics (MD) trajectories based on a well-established all-atom potential function. Comparisons of 10 ns long MD trajectories between the CG and the corresponding all-atom model show similar root-mean-square deviations from the canonical B-form DNA, and similar structural fluctuations. At the same time, the CG model is 10 to 100 times faster depending on the length of the DNA fragment in the simulation. Analysis of dispersion curves derived from the CG model yields longitudinal sound velocity and torsional stiffness in close agreement with existing experiments. The computational efficiency of the CG model makes it possible to calculate thermal conductivity of a single DNA molecule not yet available experimentally. For a uniform (polyG-polyC) DNA, the estimated conductivity coefficient is 0.3 W/mK which is half the value of thermal conductivity for water. This result is in stark contrast with estimates of thermal conductivity for simplified, effectively 1D chains ("beads on a spring") that predict anomalous (infinite) thermal conductivity. Thus, full 3D character of DNA double-helix retained in the proposed model appears to be essential for describing its thermal properties at a single molecule level.
Collapse
Affiliation(s)
- Alexander V Savin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Mikhail A Mazo
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Irina P Kikot
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Leonid I Manevitch
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V Onufriev
- Departments of Computer Science and Physics, 2160C Torgersen Hall, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Affiliation(s)
- Juan J. de Pablo
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706;
| |
Collapse
|
12
|
Linak MC, Dorfman KD. Analysis of a DNA simulation model through hairpin melting experiments. J Chem Phys 2011; 133:125101. [PMID: 20886965 DOI: 10.1063/1.3480685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We compare the predictions of a two-bead Brownian dynamics simulation model to melting experiments of DNA hairpins with complementary AT or GC stems and noninteracting loops in buffer A. This system emphasizes the role of stacking and hydrogen bonding energies, which are characteristics of DNA, rather than backbone bending, stiffness, and excluded volume interactions, which are generic characteristics of semiflexible polymers. By comparing high throughput data on the open-close transition of various DNA hairpins to the corresponding simulation data, we (1) establish a suitable metric to compare the simulations to experiments, (2) find a conversion between the simulation and experimental temperatures, and (3) point out several limitations of the model, including the lack of G-quartets and cross stacking effects. Our approach and experimental data can be used to validate similar coarse-grained simulation models.
Collapse
Affiliation(s)
- Margaret C Linak
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
13
|
DeMille RC, Cheatham TE, Molinero V. A coarse-grained model of DNA with explicit solvation by water and ions. J Phys Chem B 2011; 115:132-42. [PMID: 21155552 PMCID: PMC3019136 DOI: 10.1021/jp107028n] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Solvation by water and ions has been shown to be vitally important for biological molecules, yet fully atomistic simulations of large biomolecules remain a challenge due to their high computational cost. The effect of solvation is the most pronounced in polyelectrolytes, of which DNA is a paradigmatic example. Coarse-grained (CG) representations have been developed to model the essential physics of the DNA molecule, yet almost without exception, these models replace the water and ions by implicit solvation in order to significantly reduce the computational expense. This work introduces the first coarse-grained model of DNA solvated explicitly with water and ions. To this end, we combined two established CG models; the recently developed mW-ion model [DeMille, R. C.; Molinero, V. J. Chem. Phys. 2009, 131, 034107], which reproduces the structure of aqueous ionic solutions without electrostatic interactions, was coupled to the three-sites-per-nucleotide (3SPN) CG model of DNA [Knotts, T. A., IV; et al. J. Chem. Phys. 2007, 126, 084901]. Using atomistic simulations of d(CGCGAATTCGCG)(2) as a reference, we optimized the coarse-grained interactions between DNA and solvent to reproduce the solvation structure of water and ions around CG DNA. The resulting coarse-grained model of DNA explicitly solvated by ions and water (mW/3SPN-DNA) exhibits base-pair specificity and ion-condensation effects and it is 2 orders of magnitude computationally more efficient than atomistic models. We describe the parametrization strategy and offer insight into how other CG models may be combined with a coarse-grained solvent model such as mW-ion.
Collapse
Affiliation(s)
- Robert C. DeMille
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850
| | - Thomas E. Cheatham
- Departments of Medicinal Chemistry and of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
| | - Valeria Molinero
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850
| |
Collapse
|
14
|
Kenward M, Dorfman KD. Brownian dynamics simulations of single-stranded DNA hairpins. J Chem Phys 2009; 130:095101. [PMID: 19275427 DOI: 10.1063/1.3078795] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a Brownian dynamics model which we use to study the kinetics and thermodynamics of single-stranded DNA hairpins, gaining insights into the role of stem mismatches and the kinetics rates underlying the melting transition. The model is a base-backbone type in which the DNA bases and sugar-phosphate backbone are represented as single units (beads) in the context of the Brownian dynamics simulations. We employ a minimal number of bead-bead interactions, leading to a simple computational scheme. To demonstrate the veracity of our model for DNA hairpins, we show that the model correctly captures the effects of base stacking, hydrogen bonding, and temperature on both the thermodynamics and the kinetics of hairpin formation and melting. When cast in dimensionless form, the thermodynamic results obtained from the present model compare favorably with default predictions of the m-fold server, although the present model is not sufficiently robust to provide dimensional results. The kinetic data at low temperatures indicate frequent but short-lived opening events, consistent with the measured chain end-to-end probability distribution. The model is also used to study the effect of base mismatches in the stem of the hairpin. With the parameters used here, the model overpredicts the relative shift in the melting temperature due to mismatches. The melting transition can be primarily attributed to a rapid increase in the hairpin opening rate rather than an equivalent decrease in the closing rate, in agreement with single-molecule experimental data.
Collapse
Affiliation(s)
- Martin Kenward
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
15
|
Sambriski E, Schwartz D, de Pablo J. A mesoscale model of DNA and its renaturation. Biophys J 2009; 96:1675-90. [PMID: 19254530 PMCID: PMC2717267 DOI: 10.1016/j.bpj.2008.09.061] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/30/2008] [Indexed: 11/26/2022] Open
Abstract
A mesoscale model of DNA is presented (3SPN.1), extending the scheme previously developed by our group. Each nucleotide is mapped onto three interaction sites. Solvent is accounted for implicitly through a medium-effective dielectric constant and electrostatic interactions are treated at the level of Debye-Hückel theory. The force field includes a weak, solvent-induced attraction, which helps mediate the renaturation of DNA. Model parameterization is accomplished through replica exchange molecular dynamics simulations of short oligonucleotide sequences over a range of composition and chain length. The model describes the melting temperature of DNA as a function of composition as well as ionic strength, and is consistent with heat capacity profiles from experiments. The dependence of persistence length on ionic strength is also captured by the force field. The proposed model is used to examine the renaturation of DNA. It is found that a typical renaturation event occurs through a nucleation step, whereby an interplay between repulsive electrostatic interactions and colloidal-like attractions allows the system to undergo a series of rearrangements before complete molecular reassociation occurs.
Collapse
Affiliation(s)
- E.J. Sambriski
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - D.C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory for Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| | - J.J. de Pablo
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
16
|
Mazur AK. Kinetic and Thermodynamic DNA Elasticity at Micro- and Mesoscopic Scales. J Phys Chem B 2009; 113:2077-89. [DOI: 10.1021/jp8098945] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alexey K. Mazur
- CNRS UPR9080, Institut de Biologie Physico-Chimique 13, rue Pierre et Marie Curie, Paris 75005, France
| |
Collapse
|
17
|
McCullagh M, Prytkova T, Tonzani S, Winter ND, Schatz GC. Modeling Self-Assembly Processes Driven by Nonbonded Interactions in Soft Materials. J Phys Chem B 2008; 112:10388-98. [DOI: 10.1021/jp803192u] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Martin McCullagh
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Tatiana Prytkova
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Stefano Tonzani
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Nicolas D. Winter
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
18
|
Gaeta G, Venier L. Solitary waves in twist-opening models of DNA dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:011901. [PMID: 18763976 DOI: 10.1103/physreve.78.011901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/30/2008] [Indexed: 05/26/2023]
Abstract
We analyze traveling solitary wave solutions in the Barbi-Cocco-Peyrard twist-opening model of nonlinear DNA dynamics. We identify conditions, involving an interplay of physical parameters and asymptotic behavior, for such solutions to exist, and provide first-order ordinary differential equations whose solutions give the required solitary waves; these are not solvable in analytical terms, but are easily integrated numerically. The conditions for existence of solitary waves are not satisfied for trivial asymptotic behavior and physical values of the parameters, i.e., the Barbi-Cocco-Peyrard model admits only solitary wave solutions that entail a global modification of the molecule; this is compared with the situation met in another recently formulated class of DNA models with two degrees of freedom per site.
Collapse
Affiliation(s)
- Giuseppe Gaeta
- Dipartimento di Matematica, Università di Milano, via Saldini 50, Milano, Italy.
| | | |
Collapse
|
19
|
Mazur AK. Statistics of Time-Limited Ensembles of Bent DNA Conformations. J Phys Chem B 2008; 112:4975-82. [DOI: 10.1021/jp711815x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexey K. Mazur
- CNRS UPR9080, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris, 75005, France
| |
Collapse
|
20
|
Abstract
Understanding the behavior of DNA at the molecular level is of considerable fundamental and engineering importance. While adequate representations of DNA exist at the atomic and continuum level, there is a relative lack of models capable of describing the behavior of DNA at mesoscopic length scales. We present a mesoscale model of DNA that reduces the complexity of a nucleotide to three interactions sites, one each for the phosphate, sugar, and base, thereby rendering the investigation of DNA up to a few microns in length computationally tractable. The charges on these sites are considered explicitly. The model is parametrized using thermal denaturation experimental data at a fixed salt concentration. The validity of the model is established by its ability to predict several aspects of DNA behavior, including salt-dependent melting, bubble formation and rehybridization, and the mechanical properties of the molecule as a function of salt concentration.
Collapse
Affiliation(s)
- Thomas A Knotts
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
This article provides an overview of the use of theory and computation to describe the structural, thermodynamic, mechanical, and optical properties of nanoscale materials. Nanoscience provides important opportunities for theory and computation to lead in the discovery process because the experimental tools often provide an incomplete picture of the structure and/or function of nanomaterials, and theory can often fill in missing features crucial to understanding what is being measured. However, there are important challenges to using theory as well, as the systems of interest are usually too large, and the time scales too long, for a purely atomistic level theory to be useful. At the same time, continuum theories that are appropriate for describing larger-scale (micrometer) phenomena are often not accurate for describing the nanoscale. Despite these challenges, there has been important progress in a number of areas, and there are exciting opportunities that we can look forward to as the capabilities of computational facilities continue to expand. Some specific applications that are discussed in this paper include: self-assembly of supramolecular structures, the thermal properties of nanoscale molecular systems (DNA melting and nanoscale water meniscus formation), the mechanical properties of carbon nanotubes and diamond crystals, and the optical properties of silver and gold nanoparticles.
Collapse
Affiliation(s)
- George C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA.
| |
Collapse
|
22
|
Ayton GS, Noid WG, Voth GA. Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Struct Biol 2007; 17:192-8. [PMID: 17383173 DOI: 10.1016/j.sbi.2007.03.004] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 02/21/2007] [Accepted: 03/13/2007] [Indexed: 02/07/2023]
Abstract
Considerable progress has been recently achieved in the multiscale modeling of complex biological processes. Multiscale models have now investigated the structure and dynamics of lipid membranes, proteins, peptides and DNA over length and time scales ranging from the atomic to the macroscopic. Serial multiscale methods that parameterize low-resolution coarse-grained models with data from high-resolution models have studied long time or length scale phenomena that cannot be investigated with atomically detailed models. Parallel multiscale methods that directly couple high- and low-resolution models have efficiently explored slow structural transitions and the importance of long-wavelength fluctuations for biological molecules. The success of such models relies upon new theories and methods for constructing accurate multiscale bridges that transfer information between models with different resolutions.
Collapse
Affiliation(s)
- Gary S Ayton
- Center for Biological Modeling and Simulation, University of Utah, Salt Lake City, UT 84112-0850, USA
| | | | | |
Collapse
|
23
|
Cadoni M, De Leo R, Gaeta G. Composite model for DNA torsion dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:021919. [PMID: 17358379 DOI: 10.1103/physreve.75.021919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Indexed: 05/14/2023]
Abstract
DNA torsion dynamics is essential in the transcription process; a simple model for it, in reasonable agreement with experimental observations, has been proposed by Yakushevich (Y) and developed by several authors; in this, the nucleotides (the DNA subunits made of a sugar-phosphate group and the attached nitrogen base) are described by a single degree of freedom. In this paper we propose and investigate, both analytically and numerically, a "composite" version of the Y model, in which the sugar-phosphate group and the base are described by separate degrees of freedom. The model proposed here contains as a particular case the Y model and shares with it many features and results, but represents an improvement from both the conceptual and the phenomenological point of view. It provides a more realistic description of DNA and possibly a justification for the use of models which consider the DNA chain as uniform. It shows that the existence of solitons is a generic feature of the underlying nonlinear dynamics and is to a large extent independent of the detailed modeling of DNA. The model we consider supports solitonic solutions, qualitatively and quantitatively very similar to the Y solitons, in a fully realistic range of all the physical parameters characterizing the DNA.
Collapse
Affiliation(s)
- Mariano Cadoni
- Dipartimento di Fisica, Università di Cagliari and INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| | | | | |
Collapse
|
24
|
Abstract
A number of intriguing aspects in dynamics of double-helical DNA is related to the coupling between its macroscopic and microscopic states. A link between the elastic properties of long DNA chains and their atom-level dynamics can be established by comparing the worm-like chain model of polymer DNA with the conformational ensembles produced by molecular dynamics simulations. This problem is complicated by the complexity of the DNA structure, the small size of DNA fragments, and relatively short trajectory durations accessible in computer simulations of microscopic DNA dynamics. A careful study of all these aspects has been performed by using longer DNA fragments and increased durations of MD trajectories as compared to earlier such investigations. Special attention is paid to the necessary conditions and criteria of time convergence, and the possibility to increase the sampling by using constrained DNA models and simplified simulation conditions. It is found that dynamics of 25-mer duplexes with regular sequences agrees well with the worm-like chain theory and that accurate evaluation of DNA elastic parameters requires at least two turns of the double helix and approximately 20-ns duration of trajectories. Bond length and bond-angle constraints affect the estimates within numerical errors. In contrast, simplified treatment of solvation can strongly change the observed elastic parameters of DNA. The elastic parameters evaluated for AT- and GC-alternating duplexes reasonably agree with experimental data and suggest that, in different basepair sequences, the torsional and stretching elasticities vary stronger than the bending stiffness.
Collapse
Affiliation(s)
- Alexey K Mazur
- Centre National de la Recherche Scientifique, UPR9080, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
25
|
Thiyagarajan S, Rajan SS, Gautham N. Effect of DNA structural flexibility on promoter strength--molecular dynamics studies of E. coli promoter sequences. Biochem Biophys Res Commun 2006; 341:557-66. [PMID: 16427605 DOI: 10.1016/j.bbrc.2005.12.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Accepted: 12/30/2005] [Indexed: 05/06/2023]
Abstract
To study possible correlations between promoter activity and the structural flexibility of the DNA helix, we have carried out unrestrained molecular dynamics simulations of the -10 consensus region sequence and five variants forming the -10 region of various Escherichia coli promoter sequences. Analyses of the trajectories obtained from the simulations show that the consensus sequence has a pattern of two structurally flexible nucleotide steps sandwiched between two stiff steps. In the other sequences, this pattern varies in consonance with the change in the sequence. The variations in the patterns show correlation with the promoter strength.
Collapse
Affiliation(s)
- S Thiyagarajan
- Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India
| | | | | |
Collapse
|
26
|
Shih CC, Georghiou S. Large-amplitude fast motions in double-stranded DNA driven by solvent thermal fluctuations. Biopolymers 2006; 81:450-63. [PMID: 16419073 DOI: 10.1002/bip.20444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nature of the internal dynamics of double-stranded DNA in aqueous environment remains to be established. We consider the motions to stem from thermal fluctuations/dissipations of the harmonic modes of beads (bases and sugars) in a cylindrical geometry that are tracked through the stochastic Langevin trajectories; these are characterized by parameters obtained from published data. The present approach has allowed a comparative study of the dynamics for DNA lengths in the range of 20-600 base pairs. For this range, we find that rotational motions about directions parallel to the helix axis (opening, twist) and perpendicular to it (propeller-twist, roll) contribute significantly to the dynamics. For a 20-mer at a solvent viscosity of 1 cP, the calculated fluorescence anisotropy profile exhibits a fast decay in the subnanosecond range due to large-amplitude fluctuations at the mesoscopic level. This feature reproduces the experimental behavior well, and suggests a possible way for the initiation of biological processes: they may be suddenly triggered on this scale through the occurrence of favorable thermal fluctuations. This analysis also reveals that, as is the case for a 20-mer, the dynamics of longer N-mers are dominated by internal motions, and are modulated by the viscosity of the solvent, in agreement with our previous experimental observations. Moreover, the model indicates that occurrence of partially concerted rotations of the bases due to thermal fluctuations can possibly be sustained over a DNA length of the order of 100 A at 1 ns, suggesting a possible mechanism for action-at-a-distance in transcription.
Collapse
Affiliation(s)
- Chia C Shih
- Department of Physics, University of Tennessee, Knoxville, TN 37996-1200, USA.
| | | |
Collapse
|
27
|
Bashford JD. Salerno's model of DNA re-analysed: could breather solitons have biological significance? J Biol Phys 2006; 32:27-47. [PMID: 19669433 DOI: 10.1007/s10867-006-2719-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We investigate the sequence-dependent behaviour of localised excitations in a toy, nonlinear model of DNA base-pair opening originally proposed by Salerno. Specifically we ask whether "breather" solitons could play a role in the facilitated location of promoters by RNA polymerase (RNAP). In an effective potential formalism, we find excellent correlation between potential minima and Escherichia coli promoter recognition sites in the T7 bacteriophage genome. Evidence for a similar relationship between phage promoters and downstream coding regions is found and alternative reasons for links between AT richness and transcriptionally-significant sites are discussed. Consideration of the soliton energy of translocation provides a novel dynamical picture of sliding: steep potential gradients correspond to deterministic motion, while "flat" regions, corresponding to homogeneous AT or GC content, are governed by random, thermal motion. Finally we demonstrate an interesting equivalence between planar, breather solitons and the helical motion of a sliding protein "particle" about a bent DNA axis.
Collapse
Affiliation(s)
- J D Bashford
- School of Mathematics and Physics, University of Tasmania, Hobart 7001, Tasmania, Australia.
| |
Collapse
|
28
|
Chapter 13 Principal Components Analysis: A Review of its Application on Molecular Dynamics Data. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2006. [DOI: 10.1016/s1574-1400(06)02013-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
29
|
Sales-Pardo M, Guimerà R, Moreira AA, Widom J, Amaral LAN. Mesoscopic modeling for nucleic acid chain dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:051902. [PMID: 16089566 PMCID: PMC2128761 DOI: 10.1103/physreve.71.051902] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 11/08/2004] [Indexed: 05/03/2023]
Abstract
To gain a deeper insight into cellular processes such as transcription and translation, one needs to uncover the mechanisms controlling the configurational changes of nucleic acids. As a step toward this aim, we present here a mesoscopic-level computational model that provides a new window into nucleic acid dynamics. We model a single-stranded nucleic as a polymer chain whose monomers are the nucleosides. Each monomer comprises a bead representing the sugar molecule and a pin representing the base. The bead-pin complex can rotate about the backbone of the chain. We consider pairwise stacking and hydrogen-bonding interactions. We use a modified Monte Carlo dynamics that splits the dynamics into translational bead motion and rotational pin motion. By performing a number of tests, we first show that our model is physically sound. We then focus on a study of the kinetics of a DNA hairpin--a single-stranded molecule comprising two complementary segments joined by a noncomplementary loop--studied experimentally. We find that results from our simulations agree with experimental observations, demonstrating that our model is a suitable tool for the investigation of the hybridization of single strands.
Collapse
Affiliation(s)
- M Sales-Pardo
- Department Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
30
|
Lankas F, Sponer J, Langowski J, Cheatham TE. DNA basepair step deformability inferred from molecular dynamics simulations. Biophys J 2004; 85:2872-83. [PMID: 14581192 PMCID: PMC1303568 DOI: 10.1016/s0006-3495(03)74710-9] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The sequence-dependent DNA deformability at the basepair step level was investigated using large-scale atomic resolution molecular dynamics simulation of two 18-bp DNA oligomers: d(GCCTATAAACGCCTATAA) and d(CTAGGTGGATGACTCATT). From an analysis of the structural fluctuations, the harmonic potential energy functions for all 10 unique steps with respect to the six step parameters have been evaluated. In the case of roll, three distinct groups of steps have been identified: the flexible pyrimidine-purine (YR) steps, intermediate purine-purine (RR), and stiff purine-pyrimidine (RY). The YR steps appear to be the most flexible in tilt and partially in twist. Increasing stiffness from YR through RR to RY was observed for rise, whereas shift and slide lack simple trends. A proposed measure of the relative importance of couplings identifies the slide-rise, twist-roll, and twist-slide couplings to play a major role. The force constants obtained are of similar magnitudes to those based on a crystallographic ensemble. However, the current data have a less complicated and less pronounced sequence dependence. A correlation analysis reveals concerted motions of neighboring steps and thus exposes limitations in the dinucleotide model. The comparison of DNA deformability from this and other studies with recent quantum-chemical stacking energy calculations suggests poor correlation between the stacking and flexibility.
Collapse
Affiliation(s)
- Filip Lankas
- German Cancer Research Centre, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
31
|
Sfyrakis K, Provata A, Povey DC, Howlin BJ. Local sequential minimization of double stranded B-DNA using Monte Carlo annealing. J Mol Model 2004; 10:185-97. [PMID: 15042433 DOI: 10.1007/s00894-004-0182-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 12/15/2003] [Indexed: 11/28/2022]
Abstract
A software algorithm has been developed to investigate the folding process in B-DNA structures in vacuum under a simple and accurate force field. This algorithm models linear double stranded B-DNA sequences based on a local, sequential minimization procedure. The original B-DNA structures were modeled using initial nucleotide structures taken from the Brookhaven database. The models contain information at the atomic level allowing one to investigate as accurately as possible the structure and characteristics of the resulting DNA structures. A variety of DNA sequences and sizes were investigated containing coding and non-coding, random and real, homogeneous or heterogeneous sequences in the range of 2 to 40 base pairs. The force field contains terms such as angle bend, Lennard-Jones, electrostatic interactions and hydrogen bonding which are set up using the Dreiding II force field and defined to account for the helical parameters such as twist, tilt and rise. A close comparison was made between this local minimization algorithm and a global one (previously published) in order to find out advantages and disadvantages of the different methods. From the comparison, this algorithm gives better and faster results than the previous method, allowing one to minimize larger DNA segments. DNA segments with a length of 40 bases need approximately 4 h, while 2.5 weeks are needed with the previous method. After each minimization the angles between phosphate-oxygen-carbon A1, the oxygen-phosphate-oxygen A2 and the average helical twists were calculated. From the generated fragments it was found that the bond angles are A1=150 degrees +/-2 degrees and A2=130 degrees +/-10 degrees, while the helical twist is 36.6 degrees +/-2 degrees in the A strand and A1=150 degrees +/-6 degrees and A2=130+/-6 degrees with helical twist 39.6 degrees +/-2 degrees in the B strand for the DNA segment with the same sequence as the Dickerson dodecamer.
Collapse
Affiliation(s)
- Konstantinos Sfyrakis
- School of Biomedical and Life Sciences, Chemistry, University of Surrey, GU2 7XH, Guildford, UK
| | | | | | | |
Collapse
|
32
|
Abstract
The article reviews some recent developments in studying DNA sequence-dependent deformability, with emphasis on computer modeling. After a brief outline of available experimental techniques, we proceed to computational methods and focus on atomic-resolution molecular dynamics (MD) simulations. A sequence-dependent local (base-pair step) force field inferred from MD is compared with force fields obtained by other techniques. Various methods for establishing global (flexible-rod) DNA elastic constants are reviewed, including an approach based on atomic resolution MD. The problem of defining the global deformation variables, as well as the question of anisotropy and nonlocal effects, are discussed. As an example, both local and global deformability calculations from atomic-resolution MD of EcoRI dodecamer are presented.
Collapse
Affiliation(s)
- Filip Lankas
- German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Wriggers W, Chacón P, A. Kovacs J, Tama F, Birmanns S. Topology representing neural networks reconcile biomolecular shape, structure, and dynamics. Neurocomputing 2004. [DOI: 10.1016/j.neucom.2003.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Mergell B, Ejtehadi MR, Everaers R. Modeling DNA structure, elasticity, and deformations at the base-pair level. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2003; 68:021911. [PMID: 14525010 DOI: 10.1103/physreve.68.021911] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Indexed: 05/24/2023]
Abstract
We present a generic model for DNA at the base-pair level. We use a variant of the Gay-Berne potential to represent the stacking energy between the neighboring base pairs. The sugar-phosphate backbones are taken into account by semirigid harmonic springs with a nonzero spring length. The competition between these two interactions and the introduction of a simple geometrical constraint lead to a stacked right-handed B-DNA-like conformation. The mapping of the presented model to the Marko-Siggia and the stack-of-plates model enables us to optimize the free model parameters so as to reproduce the experimentally known observables such as persistence lengths, mean and mean-squared base-pair step parameters. For the optimized model parameters, we measured the critical force where the transition from B- to S-DNA occurs to be approximately 140 pN. We observe an overstretched S-DNA conformation with highly inclined bases which partially preserves the stacking of successive base pairs.
Collapse
Affiliation(s)
- Boris Mergell
- Max-Planck-Institut für Polymerforschung, Postfach 3148, D-55021 Mainz, Germany.
| | | | | |
Collapse
|
35
|
Orozco M, Pérez A, Noy A, Luque FJ. Theoretical methods for the simulation of nucleic acids. Chem Soc Rev 2003; 32:350-64. [PMID: 14671790 DOI: 10.1039/b207226m] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Different theoretical methods for the description of nucleic acid structures are reviewed. Firstly, we introduce the concept of classical force-field in the context of nucleic acid structures, discussing their accuracy. We then examine theoretical approaches to the description of nucleic acids based on: i) a rigid or quasi-rigid description of the molecule, ii) molecular mechanics optimization, and iii) molecular dynamics. Special emphasis is made ion current state of the art molecular dynamics simulations of nucleic acids structures.
Collapse
Affiliation(s)
- Modesto Orozco
- Institut de Recerca Biomèdica, Parc Científic de Barcelona, Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Barcelona E-08028, Spain
| | | | | | | |
Collapse
|
36
|
Lankas F, Cheatham TE, Spacková N, Hobza P, Langowski J, Sponer J. Critical effect of the N2 amino group on structure, dynamics, and elasticity of DNA polypurine tracts. Biophys J 2002; 82:2592-609. [PMID: 11964246 PMCID: PMC1302048 DOI: 10.1016/s0006-3495(02)75601-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Unrestrained 5-20-ns explicit-solvent molecular dynamics simulations using the Cornell et al. force field have been carried out for d[GCG(N)11GCG]2 (N, purine base) considering guanine*cytosine (G*C), adenine*thymine (A*T), inosine*5-methyl-cytosine (I*mC), and 2-amino-adenine*thymine (D*T) basepairs. The simulations unambiguously show that the structure and elasticity of N-tracts is primarily determined by the presence of the amino group in the minor groove. Simulated A-, I-, and AI-tracts show almost identical structures, with high propeller twist and minor groove narrowing. G- and D-tracts have small propeller twisting and are partly shifted toward the A-form. The elastic properties also differ between the two groups. The sequence-dependent electrostatic component of base stacking seems to play a minor role. Our conclusions are entirely consistent with available experimental data. Nevertheless, the propeller twist and helical twist in the simulated A-tract appear to be underestimated compared to crystallographic studies. To obtain further insight into the possible force field deficiencies, additional multiple simulations have been made for d(A)10, systematically comparing four major force fields currently used in DNA simulations and utilizing B and A-DNA forms as the starting structure. This comparison shows that the conclusions of the present work are not influenced by the force field choice.
Collapse
Affiliation(s)
- Filip Lankas
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, and Center for Complex Molecular Systems and Biomolecules, 182 23 Praha 8, Czech Republic.
| | | | | | | | | | | |
Collapse
|
37
|
Fausti S, La Penna G, Paoletti J, Genest D, Lancelot G, Perico A. Modeling the dynamics of a mutated stem-loop in the SL1 domain of HIV-1Lai genomic RNA by 1H-NOESY spectra. JOURNAL OF BIOMOLECULAR NMR 2001; 20:333-349. [PMID: 11563557 DOI: 10.1023/a:1011251308365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The cross-peaks of 1H-NOESY spectra at different time delays are compared to a mode-coupling diffusion (MCD) calculation, including the evaluation of the full 1H relaxation matrix, in the case of a 23 nucleotide fragment of the stem-loop SL1 domain of HIV-1Lai genomic RNA mutated in a single position. The MCD theory gives significant agreement with 1H relaxation experiments enabling a thorough understanding of the differential local dynamics along the sequence and particularly of the dynamics of nucleotides in the stem and in the loop. The differential dynamics of this hairpin structure is important in directing the dimerization of the retroviral genome, a fundamental step in the infectious process. The demonstration of a reliable use of time dependent NOE cross-peaks, largely available from NMR solution structure determination, coupled to MCD analysis, to probe the local dynamics of biological macromolecules, is a result of general interest of this paper.
Collapse
Affiliation(s)
- S Fausti
- Istituto di Studi Chimico fisici di macromolecole Sintetiche e Naturali, National Research Council (CNR), Genova, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Larsen OF, van Stokkum IH, Gobets B, van Grondelle R, van Amerongen H. Probing the structure and dynamics of a DNA hairpin by ultrafast quenching and fluorescence depolarization. Biophys J 2001; 81:1115-26. [PMID: 11463652 PMCID: PMC1301580 DOI: 10.1016/s0006-3495(01)75768-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA hairpins have been investigated in which individual adenines were replaced by their fluorescent analog 2-aminopurine (2AP). The temperature dependence of the time evolution of polarized emission spectra was monitored with picosecond time resolution. Four isotropic decay components for each oligonucleotide indicated the coexistence of at least four conformations. The fluorescence for three of these was significantly quenched, which is explained by hole transfer from 2AP to guanine(s). An approximately 8-ps component is ascribed to direct hole transfer, the approximately 50-ps and approximately 500-ps components are ascribed to structural reorganization, preceding hole transfer. At room temperature, a fraction remains unquenched on a 10-ns timescale, in contrast to higher temperatures, where the flexibility increases. Besides quenching due to base stacking, a second quenching process was needed to describe the data. Evidence for both intrastrand and interstrand hole transfer was found. The extracted probability for stacking between neighboring bases in double-stranded regions was estimated to be approximately 75% at room temperature and approximately 25% at 80 degrees C, demonstrating structural disorder of the DNA. Fluorescence depolarization revealed both local dynamics of the DNA and overall dynamics of the entire oligonucleotide. Upon raising the temperature, the C-N terminus of the hairpin appears to melt first; the rest of the hairpin denatures above the average melting temperature.
Collapse
Affiliation(s)
- O F Larsen
- Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Abstract
We review molecular dynamics simulations of nucleic acids, including those completed from 1995 to 2000, with a focus on the applications and results rather than the methods. After the introduction, which discusses recent advances in the simulation of nucleic acids in solution, we describe force fields for nucleic acids and then provide a detailed summary of the published literature. We emphasize simulations of small nucleic acids ( approximately 6 to 24 mer) in explicit solvent with counterions, using reliable force fields and modern simulation protocols that properly represent the long-range electrostatic interactions. We also provide some limited discussion of simulation in the absence of explicit solvent. Absent from this discussion are results from simulations of protein-nucleic acid complexes and modified DNA analogs. Highlights from the molecular dynamics simulation are the spontaneous observation of A B transitions in duplex DNA in response to the environment, specific ion binding and hydration, and reliable representation of protein-nucleic acid interactions. We close by examining major issues and the future promise for these methods.
Collapse
Affiliation(s)
- T E Cheatham
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112-5820, USA.
| | | |
Collapse
|
40
|
Abstract
Harmonic elastic constants of 3-11 bp duplex DNA fragments were evaluated using four 5 ns unrestrained molecular dynamics simulation trajectories of 17 bp duplexes with explicit inclusion of solvent and counterions. All simulations were carried out with the Cornell et al. force-field and particle mesh Ewald method for long-range electrostatic interactions. The elastic constants including anisotropic bending and all coupling terms were derived by analyzing the correlations of fluctuations of structural properties along the trajectories. The following sequences have been considered: homopolymer d(ApA)(n) and d(GpG)(n), and alternating d(GPC)(n) and d(APT)(n). The calculated values of elastic constants are in very good overall agreement with experimental values for random sequences. The atomic-resolution molecular dynamics approach, however, reveals a pronounced sequence-dependence of the stretching and torsional rigidity of DNA, while sequence-dependence of the bending rigidity is smaller for the sequences considered. The earlier predicted twist-bend coupling emerged as the most important cross-term for fragments shorter than one helical turn. The calculated hydrodynamic relaxation times suggest that damping of bending motions may play a role in molecular dynamics simulations of long DNA fragments. A comparison of elasticity calculations using global and local helicoidal analyses is reported. The calculations reveal the importance of the fragment length definition. The present work shows that large-scale molecular dynamics simulations represent a unique source of data to study various aspects of DNA elasticity including its sequence-dependence.
Collapse
Affiliation(s)
- F Lankas
- J.Heyrovský Institute of Physical Chemistry, Dolejskova 3, Praha 8, 18200, Czech Republic.
| | | | | | | |
Collapse
|