1
|
Olesen MA, Quintanilla RA. Pathological Impact of Tau Proteolytical Process on Neuronal and Mitochondrial Function: a Crucial Role in Alzheimer's Disease. Mol Neurobiol 2023; 60:5691-5707. [PMID: 37332018 DOI: 10.1007/s12035-023-03434-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Tau protein plays a pivotal role in the central nervous system (CNS), participating in microtubule stability, axonal transport, and synaptic communication. Research interest has focused on studying the role of post-translational tau modifications in mitochondrial failure, oxidative damage, and synaptic impairment in Alzheimer's disease (AD). Soluble tau forms produced by its pathological cleaved induced by caspases could lead to neuronal injury contributing to oxidative damage and cognitive decline in AD. For example, the presence of tau cleaved by caspase-3 has been suggested as a relevant factor in AD and is considered a previous event before neurofibrillary tangles (NFTs) formation.Interestingly, we and others have shown that caspase-cleaved tau in N- or C- terminal sites induce mitochondrial bioenergetics defects, axonal transport impairment, neuronal injury, and cognitive decline in neuronal cells and murine models. All these abnormalities are considered relevant in the early neurodegenerative manifestations such as memory and cognitive failure reported in AD. Therefore, in this review, we will discuss for the first time the importance of truncated tau by caspases activation in the pathogenesis of AD and how its negative actions could impact neuronal function.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel, 8910060, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, 5to Piso, San Miguel, 8910060, Santiago, Chile.
| |
Collapse
|
2
|
Sood P, Singh V, Shri R. Morus alba fruit diet ameliorates cognitive deficit in mouse model of streptozotocin-induced memory impairment. Metab Brain Dis 2023; 38:1657-1669. [PMID: 36947332 DOI: 10.1007/s11011-023-01199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Mounting evidence shows that dietary intake of fruits with polyphenols is beneficial to improve impaired memory functions. This study explored the preventive as well as therapeutic effects of diet enriched with Morus alba fruits extract (DEMA) in streptozotocin (STZ) induced mouse model of memory impairment. The study consisted of two facets: one aspect consisted of pretreatment of animals with DEMA for two weeks followed by STZ (i.c.v) intervention and the second phase involved induction of dementia with STZ (i.c.v) followed by treatment with DEMA for 14 days. Cognitive functions of animals were measured by Morris Water Maze test and to delineate the associated mechanism of action, brain biochemical estimations (acetyl-cholinesterase activity, myeloperoxidase activity, thiobarbituric acid reactive species, superoxide dismutase activity, reduced glutathione and nitrite/nitrate) and histopathological studies (haematoxylin and eosin staining) were performed. Pre- and post- treatment with DEMA significantly prevented and attenuated, respectively, the detrimental effects of STZ on mice brain. The results demonstrated that dietary modification, by incorporation of M. alba fruits, reduces the incidence and aids in treatment of memory disorder in mice by reducing central cholinergic activity, decreasing oxidative stress and preventing neurodegeneration.
Collapse
Affiliation(s)
- Parul Sood
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India.
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
3
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
4
|
Luo A, Xie Z, Wang Y, Wang X, Li S, Yan J, Zhan G, Zhou Z, Zhao Y, Li S. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies. Neurosci Biobehav Rev 2022; 137:104642. [PMID: 35367221 DOI: 10.1016/j.neubiorev.2022.104642] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes (T2D) and its target organ injuries cause distressing impacts on personal health and put an enormous burden on the healthcare system, and increasing attention has been paid to T2D-associated cognitive dysfunction (TDACD). TDACD is characterized by cognitive dysfunction, delayed executive ability, and impeded information-processing speed. Brain imaging data suggest that extensive brain regions are affected in patients with T2D. Based on current findings, a wide spectrum of non-specific neurodegenerative mechanisms that partially overlap with the mechanisms of neurodegenerative diseases is hypothesized to be associated with TDACD. However, it remains unclear whether TDACD is a consequence of T2D or a complication that co-occurs with T2D. Theoretically, anti-diabetes methods are promising neuromodulatory approaches to reduce brain injury in patients with T2D. In this review, we summarize potential mechanisms underlying TDACD and promising neurotropic effects of anti-diabetes methods and some neuroprotective natural compounds. Constructing screening or diagnostic tools and developing targeted treatment and preventive strategies would be expected to reduce the burden of TDACD.
Collapse
Affiliation(s)
- Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
5
|
Tunali S, Bal-Demirci T, Ulkuseven B, Yanardag R. Protective effects of N(1)-2,4-dihydroxybenzylidene-N(4)-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium (IV) on oxidative brain injury in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 2022; 36:e22991. [PMID: 35235223 DOI: 10.1002/jbt.22991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/26/2021] [Accepted: 01/21/2022] [Indexed: 01/24/2023]
Abstract
Diabetes is usually accompanied by increased production of free radicals or impaired antioxidant defenses. The brain is a target tissue of the oxidative attacks caused by diabetes, and there are observed changes in the biochemical parameters of this tissue in the hyperglycemic state. In this study, we aimed to show the effect of N(1)-2,4-dihydroxybenzylidene-N(4)-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium (IV) (VOL) compound on diabetic damaged brain tissue, induced by streptozotocin (STZ) on 3.0-3.5-month-old male rats. Single dose of STZ at 65 mg/kg was used to make rats diabetic. Four groups were created randomly. Group (i): control (intact) animals; Group (ii): VOL given control animals; Group (iii): STZ-induced diabetic animals; and Group (iv): orally VOL administered STZ-induced diabetic rats. VOL (0.2 mM/kg/day) administration to control and diabetic animals was performed for a period of 12 days. At the end of day 12, the brain tissues were taken and homogenized. The clear supernatants were used for the determination of glutathione (GSH), lipid peroxidation (LPO), nonenzymatic glycosylation (NEG), and protein levels. Alanine and aspartate transaminases and acetylcholinesterase (AChE), myeloperoxidase (MPO), xanthine oxidase (XO), and oxidative stress marker enzymes activities were also estimated from the homogenates. According to the obtained results, there is found significant elevation of MDA and NEG levels and activities of transaminases, MPO and XO; whereas the GSH content and the activities of AChE and antioxidant enzymes were strongly decreased in the STZ-induced diabetic brain tissues in comparison to control group animals. Twelve days of administration of VOL complex to the diabetic animals reversed all biochemical parameters significantly in diabetic brain tissues. Our findings suggest that the VOL complex may be an ideal candidate to be used as an anti diabetic agent to improve oxidative injury and protect the brain tissue against damage caused by diabetes. This healing effect of the VOL complex may be due to its antioxidant activity and the insulin-mimetic effects of vanadium.
Collapse
Affiliation(s)
- Sevim Tunali
- Department of Chemistry, Biochemistry Division, Istanbul University-Cerrahpasa, Istanbul, Avcilar, Turkey
| | - Tulay Bal-Demirci
- Department of Chemistry, Inorganic Chemistry Division, Istanbul University-Cerrahpasa, Istanbul, Avcilar, Turkey
| | - Bahri Ulkuseven
- Department of Chemistry, Inorganic Chemistry Division, Istanbul University-Cerrahpasa, Istanbul, Avcilar, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Biochemistry Division, Istanbul University-Cerrahpasa, Istanbul, Avcilar, Turkey
| |
Collapse
|
6
|
Alqudah MA, Al-Nosairy A, Alzoubi KH, Kahbour OF, Alazzam SI. Edaravone prevents memory impairment in diabetic rats: Role of oxidative stress. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
7
|
Peng W, Tan C, Mo L, Jiang J, Zhou W, Du J, Zhou X, Liu X, Chen L. Glucose transporter 3 in neuronal glucose metabolism: Health and diseases. Metabolism 2021; 123:154869. [PMID: 34425073 DOI: 10.1016/j.metabol.2021.154869] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Neurons obtain glucose from extracellular environment for energy production mainly depending on glucose transporter 3 (GLUT3). GLUT3 uptakes glucose with high affinity and great transport capacity, and is important for neuronal energy metabolism. This review summarized the role of neuronal GLUT3 in brain metabolism, function and development under both physiological conditions and in diseases, aiming to provide insights into neuronal glucose metabolism and its effect on brain. GLUT3 stabilizes neuronal glucose uptake and utilization, influences brain development and function, and ameliorates aging-related manifestations. Neuronal GLUT3 is regulated by synaptic activity, hormones, nutrition, insulin and insulin-like growth factor 1 in physiological conditions, and is also upregulated by hypoxia-ischemia. GLUT3-related neuronal glucose and energy metabolism is possibly involved in the pathogenesis, pathophysiological mechanism, progression or prognosis of brain diseases, including Alzheimer's disease, Huntington's disease, attention-deficit/hyperactivity disorder and epilepsy. GLUT3 may be a promising therapeutic target of these diseases. This review also briefly discussed the role of other glucose transporters in neuronal glucose metabolism, which work together with GLUT3 to sustain and stabilize glucose and energy supply for neurons. Deficiency in these glucose transporters may also participate in brain diseases, especially GLUT1 and GLUT4.
Collapse
Affiliation(s)
- Wuxue Peng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncong Du
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Khan T, Khan S, Akhtar M, Ali J, Najmi AK. Empagliflozin nanoparticles attenuates type2 diabetes induced cognitive impairment via oxidative stress and inflammatory pathway in high fructose diet induced hyperglycemic mice. Neurochem Int 2021; 150:105158. [PMID: 34391818 DOI: 10.1016/j.neuint.2021.105158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023]
Abstract
There is snowballing evidence that type 2 diabetes (T2D) predisposes to neuropathophysiological alterations including oxidative stress and triggered inflammatory responses in brain that eventually culminates into cognitive impairment.Accumulating evidences suggest that SGLT2 inhibitor can be a promising intervention for cognitive decline in T2DM. In the present paper, the potential effects of Empagliflozin (EMPA), a SGLT2 inhibitor, against T2D induced cognitive dysfunction have been explored. The effect of EMPA on array of inflammatory mediators including Interleukin-6(IL-6), Interleukin -1β (IL-1β), and Tumour necrosis factor-α(TNF-α)), neuronal proteins including glycogen synthase kinase-3β (GSK- 3β), Phosphorylated tau (p-tau), amyloid beta (Aβ) (1-40, 1-42) and altered oxidative parameters including SOD, catalase, TBARS was determined in the high fructose diet induced hyperglycaemic mice. The obtained results were compared with EMPA nanoparticles (Nps) formulated in our laboratory and found that EMPA Nps significantly showed reduced levels of inflammatory mediators and oxidative stress. Further, decrease in levels of p-tau, Aβ (1-40) and Aβ (1-42) were also observed with EMPA nanoparticles.Thus, the study has demonstrated that EMPA Nps could be a promising therapy to alleviate the progression of cognitive decline in T2D.
Collapse
Affiliation(s)
- Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India.
| |
Collapse
|
9
|
Garcia SM, Hirschberg PR, Sarkar P, Siegel DM, Teegala SB, Vail GM, Routh VH. Insulin actions on hypothalamic glucose-sensing neurones. J Neuroendocrinol 2021; 33:e12937. [PMID: 33507001 PMCID: PMC10561189 DOI: 10.1111/jne.12937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Subsequent to the discovery of insulin 100 years ago, great strides have been made in understanding its function, especially in the brain. It is now clear that insulin is a critical regulator of the neuronal circuitry controlling energy balance and glucose homeostasis. This review focuses on the effects of insulin and diabetes on the activity and glucose sensitivity of hypothalamic glucose-sensing neurones. We highlight the role of electrophysiological data in understanding how insulin regulates glucose-sensing neurones. A brief introduction describing the benefits and limitations of the major electrophysiological techniques used to investigate glucose-sensing neurones is provided. The mechanisms by which hypothalamic neurones sense glucose are discussed with an emphasis on those glucose-sensing neurones already shown to be modulated by insulin. Next, the literature pertaining to how insulin alters the activity and glucose sensitivity of these hypothalamic glucose-sensing neurones is described. In addition, the effects of impaired insulin signalling during diabetes and the ramifications of insulin-induced hypoglycaemia on hypothalamic glucose-sensing neurones are covered. To the extent that it is known, we present hypotheses concerning the mechanisms underlying the effects of these insulin-related pathologies. To conclude, electrophysiological data from the hippocampus are evaluated aiming to provide clues regarding how insulin might influence neuronal plasticity in glucose-sensing neurones. Although much has been accomplished subsequent to the discovery of insulin, the work described in our review suggests that the regulation of central glucose sensing by this hormone is both important and understudied.
Collapse
Affiliation(s)
- Stephanie M Garcia
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Dashiel M Siegel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Gwyndolin M Vail
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
10
|
Heidarianpour A, Mohammadi F, Keshvari M, Mirazi N. Ameliorative effects of endurance training and Matricaria chamomilla flowers hydroethanolic extract on cognitive deficit in type 2 diabetes rats. Biomed Pharmacother 2021; 135:111230. [PMID: 33434853 DOI: 10.1016/j.biopha.2021.111230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is mainly associated with degeneration of the central nervous system, which eventually leads to cognitive deficit. Although some studies suggest that exercise can improve the cognitive decline associated with diabetes, the potential effects of endurance training (ET) accompanied by Matricaria chamomilla (M.ch) flowers extract on cognitive impairment in type 2 diabetes has been poorly understood. Forty male Wistar rats were randomized into 5 equal groups of 8: healthy-sedentary (H-sed), diabetes-sedentary (D-sed), diabetes-endurance training (D-ET), diabetes-Matricaria chamomilla. (D-M.ch), and diabetes-endurance training-Matricaria chamomilla. (D-ET-M.ch). Nicotinamide (110 mg/kg, i.p.) and Streptozotocin (65 mg/kg, i.p.) were utilized to initiate type 2 diabetes. Then, ET (5 days/week) and M.ch (200 mg/kg body weight/daily) were administered for 12 weeks. After 12 weeks of the experiment, cognitive functions were assessed using the Morris Water Maze (MWM) test and a passive avoidance paradigm using a shuttle box device. Subsequently, using crystal violet staining, neuron necrosis was examined in the CA3 area of the hippocampus. Diabetic rats showed cognitive impairment following an increase in the number of necrotic cells in region CA3 of the hippocampal tissue. Also, diabetes increased serum levels of lipid peroxidation and decreased total antioxidant capacity in serum and hippocampal tissue. ET + M.ch treatment prevented the necrosis of neurons in the hippocampal tissue. Following positive changes in hippocampal tissue and serum antioxidant enzyme levels, an improvement was observed in the cognitive impairment of the diabetic rats receiving ET + M.ch. Therefore the results showed that treatment with ET + M.ch could ameliorate memory and inactive avoidance in diabetic rats. Hence, the use of ET + M.ch interventions is proposed as a new therapeutic perspective on the death of hippocampal neurons and cognitive deficit caused by diabetes.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/pathology
- Cognition/drug effects
- Cognitive Dysfunction/metabolism
- Cognitive Dysfunction/pathology
- Cognitive Dysfunction/prevention & control
- Cognitive Dysfunction/psychology
- Combined Modality Therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/psychology
- Diabetes Mellitus, Type 2/therapy
- Endurance Training
- Flowers
- Lipid Peroxidation
- Male
- Matricaria/chemistry
- Morris Water Maze Test/drug effects
- Necrosis
- Oxidative Stress/drug effects
- Physical Conditioning, Animal
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Rats, Wistar
- Rats
Collapse
Affiliation(s)
- Ali Heidarianpour
- Department of Exercise Physiology, Faculty of Sport Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Fereshteh Mohammadi
- Department of Exercise Physiology, Faculty of Sport Science, Bu-Ali Sina University, Hamedan, Iran
| | - Maryam Keshvari
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Sciences, Bu- Ali Sina University, Hamedan, Iran
| |
Collapse
|
11
|
O’Brien J, Wendell SG. Electrophile Modulation of Inflammation: A Two-Hit Approach. Metabolites 2020; 10:metabo10110453. [PMID: 33182676 PMCID: PMC7696920 DOI: 10.3390/metabo10110453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Electrophilic small molecules have gained significant attention over the last decade in the field of covalent drug discovery. Long recognized as mediators of the inflammatory process, recent evidence suggests that electrophiles may modulate the immune response through the regulation of metabolic networks. These molecules function as pleiotropic signaling mediators capable of reversibly reacting with nucleophilic biomolecules, most notably at reactive cysteines. More specifically, electrophiles target critical cysteines in redox regulatory proteins to activate protective pathways such as the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1) antioxidant signaling pathway while also inhibiting Nuclear Factor κB (NF-κB). During inflammatory states, reactive species broadly alter cell signaling through the oxidation of lipids, amino acids, and nucleic acids, effectively propagating the inflammatory sequence. Subsequent changes in metabolic signaling inform immune cell maturation and effector function. Therapeutic strategies targeting inflammatory pathologies leverage electrophilic drug compounds, in part, because of their documented effect on the redox balance of the cell. With mounting evidence demonstrating the link between redox signaling and metabolism, electrophiles represent ideal therapeutic candidates for the treatment of inflammatory conditions. Through their pleiotropic signaling activity, electrophiles may be used strategically to both directly and indirectly target immune cell metabolism.
Collapse
|
12
|
Akalin Y, Bulut S, Kuloglu T, Demir CF, Tasci I. An investigation of the effects of thiamine in the experimental diabetic rat brain tissue. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.19.04147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Zhu X, Liu H, Liu Y, Chen Y, Liu Y, Yin X. The Antidepressant-Like Effects of Hesperidin in Streptozotocin-Induced Diabetic Rats by Activating Nrf2/ARE/Glyoxalase 1 Pathway. Front Pharmacol 2020; 11:1325. [PMID: 32982741 PMCID: PMC7485173 DOI: 10.3389/fphar.2020.01325] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/10/2020] [Indexed: 01/16/2023] Open
Abstract
The co-occurrence of diabetes and depression is a challenging and underrecognized clinical problem. Alpha-carbonyl aldehydes and their detoxifying enzyme glyoxalase 1 (Glo-1) play vital roles in the pathogenesis of diabetic complications, including depression. Hesperidin, a naturally occurring flavanone glycoside, possesses numerous pharmacological properties, but neuroprotection by hesperidin in depression-like behaviors in diabetes was not observed. This study aimed to investigate the mechanisms and signaling pathways by which hesperidin regulates depression-like behaviors in diabetic rats and to identify potential targets of hesperidin. Rats with streptozotocin-induced diabetes were treated orally with hesperidin (50 and 150 mg/kg) or the nuclear factor erythroid 2-related factor 2 (Nrf2) inducer tert-butylhydroquinone (TBHQ, 25 mg/kg) for 10 weeks. After behavioral test, the brains were collected to evaluate the effects of hesperidin on Glo-1, Nrf2, protein glycation, and oxidative stress. Hesperidin showed antidepressant and anxiolytic effects in diabetic rats, as evidenced by the decreased immobility time in the forced swimming test, increased time spent in the center area of the open field test, and increased percentage of open-arm entries and time spent in the open arms in the elevated plus maze, as well as by the enhancement of Glo-1 and the inhibition of the AGEs/RAGE axis and oxidative stress in the brain. In addition, hesperidin caused significant increases in the Nrf2 levels and upregulated γ-glutamylcysteine synthetase, a well-known target gene of Nrf2/ARE signaling. In vitro, the effects of hesperidin on N2a cell injury caused by high glucose (HG) was assessed by MTT and LDH, and the effects on Nrf2 signaling were also assessed. We found that the Nrf2 inhibitor ML385 reversed the protective effects of hesperidin on the cell injury induced by HG. Hesperidin prevented the HG-induced reduction in the Nrf2 and Glo-1 levels, and ML385 reversed the effects of hesperidin on the expression of the proteins mentioned above, indicating that Nrf2 signaling is involved in the hesperidin-induced neuroprotective effects. Our findings indicate that the effects of hesperidin on ameliorating the depression- and anxiety-like behaviors of diabetic rats, which are mediated by the enhancement of Glo-1, may be due to the activation of the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haiyan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yajing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yaowu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
Griffith CM, Macklin LN, Cai Y, Sharp AA, Yan XX, Reagan LP, Strader AD, Rose GM, Patrylo PR. Impaired Glucose Tolerance and Reduced Plasma Insulin Precede Decreased AKT Phosphorylation and GLUT3 Translocation in the Hippocampus of Old 3xTg-AD Mice. J Alzheimers Dis 2020; 68:809-837. [PMID: 30775979 DOI: 10.3233/jad-180707] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several studies have demonstrated that mouse models of Alzheimer's disease (AD) can exhibit impaired peripheral glucose tolerance. Further, in the APP/PS1 mouse model, this is observed prior to the appearance of AD-related neuropathology (e.g., amyloid-β plaques; Aβ) or cognitive impairment. In the current study, we examined whether impaired glucose tolerance also preceded AD-like changes in the triple transgenic model of AD (3xTg-AD). Glucose tolerance testing (GTT), insulin ELISAs, and insulin tolerance testing (ITT) were performed at ages prior to (1-3 months and 6-8 months old) and post-pathology (16-18 months old). Additionally, we examined for altered insulin signaling in the hippocampus. Western blots were used to evaluate the two-primary insulin signaling pathways: PI3K/AKT and MAPK/ERK. Since the PI3K/AKT pathway affects several downstream targets associated with metabolism (e.g., GSK3, glucose transporters), western blots were used to examine possible alterations in the expression, translocation, or activation of these targets. We found that 3xTg-AD mice display impaired glucose tolerance as early as 1 month of age, concomitant with a decrease in plasma insulin levels well prior to the detection of plaques (∼14 months old), aggregates of hyperphosphorylated tau (∼18 months old), and cognitive decline (≥18 months old). These alterations in peripheral metabolism were seen at all time points examined. In comparison, PI3K/AKT, but not MAPK/ERK, signaling was altered in the hippocampus only in 18-20-month-old 3xTg-AD mice, a time point at which there was a reduction in GLUT3 translocation to the plasma membrane. Taken together, our results provide further evidence that disruptions in energy metabolism may represent a foundational step in the development of AD.
Collapse
Affiliation(s)
- Chelsea M Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Lauren N Macklin
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Andrew A Sharp
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, Columbia, SC, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - April D Strader
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Gregory M Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Peter R Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
15
|
Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Popa GJ, Mendenhall MD, Reagan LP, Craven RJ, Thibault O. Elevating Insulin Signaling Using a Constitutively Active Insulin Receptor Increases Glucose Metabolism and Expression of GLUT3 in Hippocampal Neurons. Front Neurosci 2020; 14:668. [PMID: 32733189 PMCID: PMC7358706 DOI: 10.3389/fnins.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Insulin signaling is an integral component of healthy brain function, with evidence of positive insulin-mediated alterations in synaptic integrity, cerebral blood flow, inflammation, and memory. However, the specific pathways targeted by this peptide remain unclear. Previously, our lab used a molecular approach to characterize the impact of insulin signaling on voltage-gated calcium channels and has also shown that acute insulin administration reduces calcium-induced calcium release in hippocampal neurons. Here, we explore the relationship between insulin receptor signaling and glucose metabolism using similar methods. Mixed, primary hippocampal cultures were infected with either a control lentivirus or one containing a constitutively active human insulin receptor (IRβ). 2-NBDG imaging was used to obtain indirect measures of glucose uptake and utilization. Other outcome measures include Western immunoblots of GLUT3 and GLUT4 on total membrane and cytosolic subcellular fractions. Glucose imaging data indicate that neurons expressing IRβ show significant elevations in uptake and rates of utilization compared to controls. As expected, astrocytes did not respond to the IRβ treatment. Quantification of Western immunoblots show that IRβ is associated with significant elevations in GLUT3 expression, particularly in the total membrane subcellular fraction, but did not alter GLUT4 expression in either fraction. Our work suggests that insulin plays a significant role in mediating neuronal glucose metabolism, potentially through an upregulation in the expression of GLUT3. This provides further evidence for a potential therapeutic mechanism underlying the beneficial impact of intranasal insulin in the clinic.
Collapse
Affiliation(s)
- Hilaree N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Adam O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Ruei-Lung Lin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Gabriel J Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Michael D Mendenhall
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
16
|
Rabenau M, Unger M, Drewe J, Culmsee C. Metabolic switch induced by Cimicifuga racemosa extract prevents mitochondrial damage and oxidative cell death. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:107-116. [PMID: 30599889 DOI: 10.1016/j.phymed.2018.09.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cimicifuga racemosa extract is a well-established therapy for menopausal symptoms. The mechanisms underlying the multiple therapeutic effects of Cimicifuga extract, e.g. reducing hot flushes and profuse sweating are not well defined. Recent studies revealed pronounced effects of Ze 450, a Cimicifuga racemosa extract that was produced by a standardized procedure, on energy metabolism through activation of AMP-activated protein kinase in vitro and beneficial anti-diabetic effects in vivo. PURPOSE The aim of the study was to investigate the effects of Ze 450 on energy metabolism. Since mitochondria are the key regulators of cellular energy homeostasis, we wanted to elucidate whether Ze 450 affects mitochondrial resilience and can provide protection against oxidative damage in neuronal and liver cells. METHODS/STUDY DESIGN In this study, we investigated the effects of Ze 450 (1-200 µg/ml) on mitochondrial integrity and function, and cell viability in models of oxidative stress induced by erastin and RSL-3 in neuronal and liver cells. The effects of Ze 450 in control conditions and after induction of oxidative stress were analyzed using FACS for detecting lipid peroxidation (BODIPY), mitochondrial ROS formation (MitoSOX), mitochondrial membrane potential (TMRE) and cell death (AnnexinV/PI staining). Furthermore, we determined metabolic activity (MTT assay), ATP levels and mitochondrial respiration and glycolysis (oxygen consumption rates, extracellular acidification rates; Seahorse). RESULTS Ze 450 preserved mitochondrial integrity and ATP levels, and prevented mitochondrial ROS formation, loss of mitochondrial membrane potential and cell death. Notably, Cimicifuga racemosa extract alone did not alter mitochondrial ROS levels, and subtle inhibitory effects on cell proliferation were reversed after withdrawal of the extract. In addition, Ze 450 did not exert toxic effects to liver cells, but rather protected these from the oxidative challenge. Further analysis of the mitochondrial oxygen consumption rate and the extracellular acidification rate revealed that Ze 450 mediated a switch from mitochondrial respiration to glycolysis, and this metabolic shift was a prerequisite for the protective effects against oxidative damage. CONCLUSION In conclusion, the bioenergetic shift induced by Ze 450 exerted protective effects in different cell types, and offers promising therapeutic potential in age related diseases involving oxidative stress and mitochondrial damage.
Collapse
Affiliation(s)
- Malena Rabenau
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany; Center for Mind Brain and Behavior, Marburg 35032, Germany
| | - Matthias Unger
- Preclinical Research, Max Zeller Soehne AG, Romanshorn, Switzerland
| | - Jürgen Drewe
- Preclinical Research, Max Zeller Soehne AG, Romanshorn, Switzerland
| | - Carsten Culmsee
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany; Center for Mind Brain and Behavior, Marburg 35032, Germany.
| |
Collapse
|
17
|
Whole-Body 12C Irradiation Transiently Decreases Mouse Hippocampal Dentate Gyrus Proliferation and Immature Neuron Number, but Does Not Change New Neuron Survival Rate. Int J Mol Sci 2018; 19:ijms19103078. [PMID: 30304778 PMCID: PMC6213859 DOI: 10.3390/ijms19103078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis in the hippocampus—a brain structure important in memory—prior work suggests that 12C does not. However, much about 12C’s influence on neurogenesis remains unknown, including the time course of its impact on neurogenesis. To address this knowledge gap, male mice (9–11 weeks of age) were exposed to whole-body 12C irradiation 100 cGy (IRR; 1000 MeV/n; 8 kEV/µm) or Sham treatment. To birthdate dividing cells, mice received BrdU i.p. 22 h post-irradiation and brains were harvested 2 h (Short-Term) or three months (Long-Term) later for stereological analysis indices of dentate gyrus neurogenesis. For the Short-Term time point, IRR mice had fewer Ki67, BrdU, and doublecortin (DCX) immunoreactive (+) cells versus Sham mice, indicating decreased proliferation (Ki67, BrdU) and immature neurons (DCX). For the Long-Term time point, IRR and Sham mice had similar Ki67+ and DCX+ cell numbers, suggesting restoration of proliferation and immature neurons 3 months post-12C irradiation. IRR mice had fewer surviving BrdU+ cells versus Sham mice, suggesting decreased cell survival, but there was no difference in BrdU+ cell survival rate when compared within treatment and across time point. These data underscore the ability of neurogenesis in the mouse brain to recover from the detrimental effect of 12C exposure.
Collapse
|
18
|
Zhu X, Cheng YQ, Lu Q, Du L, Yin XX, Liu YW. Enhancement of glyoxalase 1, a polyfunctional defense enzyme, by quercetin in the brain in streptozotocin-induced diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1237-1245. [DOI: 10.1007/s00210-018-1543-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
|
19
|
Stress exposure alters brain mRNA expression of the genes involved in insulin signalling, an effect modified by a high fat/high fructose diet and cinnamon supplement. PLoS One 2018; 13:e0197094. [PMID: 29813096 PMCID: PMC5973592 DOI: 10.1371/journal.pone.0197094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022] Open
Abstract
In occidental societies, high fat and high sugar diets often coincide with episodes of stress. The association is likely to modify brain energy control. Brain insulin signalling is rarely studied in stressed individuals consuming high fat diets. Furthermore the effects of cinnamon supplement are not known in these conditions. Therefore, we exposed rats, over a 12-week period, to a control (C) or a high fat/high fructose (HF/HFr) diet that induces peripheral insulin resistance. A cinnamon supplement (C+CN and HF/HFr +CN) was added or not. After diet exposure, one group of rats was exposed to a 30-min restraint followed by a 10-min open-field test, their combination featuring a moderate stressor, the other rats staying unstressed in their home cages. The insulin signalling in hippocampus and frontal cortex was studied through the mRNA expression of the following genes: insulin receptor (Ir), insulin receptor substrate (Irs1), glucose transporters (Glut1 and Glut3), glycogen synthase (Gys1) and their modulators, Akt1 and Pten. In C rats, stress enhanced the expression of Ir, Irs1, Glut1, Gys1 and Akt1 mRNA. In C+CN rats, stress induced an increase in Pten but a decrease in Gys1 mRNA expression. In HF/HFr rats, stress was associated with an increase in Pten mRNA expression. In HF/HFr+CN rats, stress increased Pten mRNA expression but also decreased Gys1 mRNA expression. This suggests that a single moderate stress favours energy refilling mechanisms, an effect blunted by a previous HF/HFr diet and cinnamon supplement.
Collapse
|
20
|
Etchegoyen M, Nobile MH, Baez F, Posesorski B, González J, Lago N, Milei J, Otero-Losada M. Metabolic Syndrome and Neuroprotection. Front Neurosci 2018; 12:196. [PMID: 29731703 PMCID: PMC5919958 DOI: 10.3389/fnins.2018.00196] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction: Over the years the prevalence of metabolic syndrome (MetS) has drastically increased in developing countries as a major byproduct of industrialization. Many factors, such as the consumption of high-calorie diets and a sedentary lifestyle, bolster the spread of this disorder. Undoubtedly, the massive and still increasing incidence of MetS places this epidemic as an important public health issue. Hereon we revisit another outlook of MetS beyond its classical association with cardiovascular disease (CVD) and Diabetes Mellitus Type 2 (DM2), for MetS also poses a risk factor for the nervous tissue and threatens neuronal function. First, we revise a few essential concepts of MetS pathophysiology. Second, we explore some neuroprotective approaches in MetS pertaining brain hypoxia. The articles chosen for this review range from the years 1989 until 2017; the selection criteria was based on those providing data and exploratory information on MetS as well as those that studied innovative therapeutic approaches. Pathophysiology: The characteristically impaired metabolic pathways of MetS lead to hyperglycemia, insulin resistance (IR), inflammation, and hypoxia, all closely associated with an overall pro-oxidative status. Oxidative stress is well-known to cause the wreckage of cellular structures and tissue architecture. Alteration of the redox homeostasis and oxidative stress alter the macromolecular array of DNA, lipids, and proteins, in turn disrupting the biochemical pathways necessary for normal cell function. Neuroprotection: Different neuroprotective strategies are discussed involving lifestyle changes, medication aimed to mitigate MetS cardinal symptoms, and treatments targeted toward reducing oxidative stress. It is well-known that the routine practice of physical exercise, aerobic activity in particular, and a complete and well-balanced nutrition are key factors to prevent MetS. Nevertheless, pharmacological control of MetS as a whole and pertaining hypertension, dyslipidemia, and endothelial injury contribute to neuronal health improvement. Conclusion: The development of MetS has risen as a risk factor for neurological disorders. The therapeutic strategies include multidisciplinary approaches directed to address different pathological pathways all in concert.
Collapse
Affiliation(s)
- Melisa Etchegoyen
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mariana H Nobile
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Francisco Baez
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Barbara Posesorski
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julian González
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Néstor Lago
- Institute of Cardiovascular Pathophysiology, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - José Milei
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
McEwen BS. Redefining neuroendocrinology: Epigenetics of brain-body communication over the life course. Front Neuroendocrinol 2018; 49:8-30. [PMID: 29132949 DOI: 10.1016/j.yfrne.2017.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Abstract
The brain is the central organ of stress and adaptation to stress that perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor, and it does so somewhat differently in males and females. The expression of steroid hormone receptors throughout the brain has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the entire brain and body via hormonal and neural pathways. Mediated in part via systemic hormonal influences, the adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neuronal replacement, dendritic remodeling, and synapse turnover. This article is both an account of an emerging field elucidating brain-body interactions at multiple levels, from molecules to social organization, as well as a personal account of my laboratory's role and, most importantly, the roles of trainees and colleagues, along with my involvement in interdisciplinary groups working on this topic.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA. http://www.rockefeller.edu/labheads/mcewen/mcewen-lab.php
| |
Collapse
|
22
|
Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2525967. [PMID: 28785371 PMCID: PMC5529664 DOI: 10.1155/2017/2525967] [Citation(s) in RCA: 504] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Increasing numbers of individuals, particularly the elderly, suffer from neurodegenerative disorders. These diseases are normally characterized by progressive loss of neuron cells and compromised motor or cognitive function. Previous studies have proposed that the overproduction of reactive oxygen species (ROS) may have complex roles in promoting the disease development. Research has shown that neuron cells are particularly vulnerable to oxidative damage due to their high polyunsaturated fatty acid content in membranes, high oxygen consumption, and weak antioxidant defense. However, the exact molecular pathogenesis of neurodegeneration related to the disturbance of redox balance remains unclear. Novel antioxidants have shown great potential in mediating disease phenotypes and could be an area of interest for further research. In this review, we provide an updated discussion on the roles of ROS in the pathological mechanisms of Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia, as well as a highlight on the antioxidant-based therapies for alleviating disease severity.
Collapse
|
23
|
Griffith CM, Xie MX, Qiu WY, Sharp AA, Ma C, Pan A, Yan XX, Patrylo PR. Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer’s disease. Neuroscience 2016; 336:81-101. [DOI: 10.1016/j.neuroscience.2016.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/15/2016] [Accepted: 08/20/2016] [Indexed: 12/21/2022]
|
24
|
Cai M, Wang H, Li JJ, Zhang YL, Xin L, Li F, Lou SJ. The signaling mechanisms of hippocampal endoplasmic reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise. Brain Behav Immun 2016; 57:347-359. [PMID: 27189035 DOI: 10.1016/j.bbi.2016.05.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/24/2022] Open
Abstract
High fat diet (HFD)-induced obesity has been shown to reduce the levels of neuronal plasticity-related proteins, specifically brain-derived neurotrophic factor (BDNF) and synaptophysin (SYN), in the hippocampus. However, the underlying mechanisms are not fully clear. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating gene expression and protein production by affecting stress signaling pathways and ER functions of protein folding and post-translational modification in peripheral tissues of obese rodent models. Additionally, HFD that is associated with hyperglycemia could induce hippocampal ERS, thus impairing insulin signaling and cognitive health in HFD mice. One goal of this study was to determine whether hyperglycemia and hyperlipidemia could cause hippocampal ERS in HFD-induced obese SD rats, and explore the potential mechanisms of ERS regulating hippocampal BDNF and SYN proteins production. Additionally, although regular aerobic exercise could reduce central inflammation and elevate hippocampal BDNF and SYN levels in obese rats, the regulated mechanisms are poorly understood. Nrf2-HO-1 pathways play roles in anti-ERS, anti-inflammation and anti-apoptosis in peripheral tissues. Therefore, the other goal of this study was to determine whether aerobic exercise could activate Nrf2-HO-1 in hippocampus to alleviate obesity-induced hippocampal ERS, which would lead to increased BDNF and SYN levels. Male SD rats were fed on HFD for 8weeks to establish the obese model. Then, 8weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that HFD-induced obesity caused hyperglycemia and hyperlipidemia, and significantly promoted hippocampal glucose transporter 3 (GLUT3) and fatty acid transport protein 1 (FATP1) protein expression. These results were associated with the activation of hippocampal ERS and ERS-mediated apoptosis. At the same time, we found that excessive hippocampal ERS not only significantly decreased proBDNF-the precursor of mature BDNF, but also attenuated p38/ERK-CREB signaling pathways and activated NLRP3-IL-1β pathways in obese rats. These results were associated with reduced BDNF and SYN protein production. However, these adverse changes were obviously reversed by aerobic exercise intervention through activating the Nrf2-HO-1 pathways. These results suggest that dietary obesity could induce hippocampal ERS in male SD rats, and excessive hippocampal ERS plays a critical role in decreasing the levels of BDNF and SYN. Moreover, aerobic exercise could activate hippocampal Nrf2 and HO-1 to relieve ERS and heighten BDNF and SYN production in obese rats.
Collapse
Affiliation(s)
- Ming Cai
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Hong Wang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China; College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jing-Jing Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yun-Li Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lei Xin
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Feng Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shu-Jie Lou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
25
|
Rodríguez V, Limón-Pacheco J, Del Razo L, Giordano M. Effects of inorganic arsenic exposure on glucose transporters and insulin receptor in the hippocampus of C57BL/6 male mice. Neurotoxicol Teratol 2016; 54:68-77. [DOI: 10.1016/j.ntt.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 01/06/2023]
|
26
|
Targeting AGEs Signaling Ameliorates Central Nervous System Diabetic Complications in Rats. Adv Pharmacol Sci 2015; 2015:346259. [PMID: 26491434 PMCID: PMC4603311 DOI: 10.1155/2015/346259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs) is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE), AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE) and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS) complications in STZ-induced (50 mg/kg, IP) diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze), neuronal degeneration (Fluoro-Jade staining), AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde). These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications.
Collapse
|
27
|
Castillo-Gómez E, Coviello S, Perez-Rando M, Curto Y, Carceller H, Salvador A, Nacher J. Streptozotocin diabetic mice display depressive-like behavior and alterations in the structure, neurotransmission and plasticity of medial prefrontal cortex interneurons. Brain Res Bull 2015; 116:45-56. [DOI: 10.1016/j.brainresbull.2015.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
|
28
|
Leza JC, García-Bueno B, Bioque M, Arango C, Parellada M, Do K, O'Donnell P, Bernardo M. Inflammation in schizophrenia: A question of balance. Neurosci Biobehav Rev 2015; 55:612-26. [PMID: 26092265 DOI: 10.1016/j.neubiorev.2015.05.014] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/22/2015] [Accepted: 05/18/2015] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been renewed interest in immune/inflammatory changes and their associated oxidative/nitrosative consequences as key pathophysiological mechanisms in schizophrenia and related disorders. Both brain cell components (microglia, astrocytes, and neurons) and peripheral immune cells have been implicated in inflammation and the resulting oxidative/nitrosative stress (O&NS) in schizophrenia. Furthermore, down-regulation of endogenous antioxidant and anti-inflammatory mechanisms has been identified in biological samples from patients, although the degree and progression of the inflammatory process and the nature of its self-regulatory mechanisms vary from early onset to full-blown disease. This review focuses on the interactions between inflammation and O&NS, their damaging consequences for brain cells in schizophrenia, the possible origins of inflammation and increased O&NS in the disorder, and current pharmacological strategies to deal with these processes (mainly treatments with anti-inflammatory or antioxidant drugs as add-ons to antipsychotics).
Collapse
Affiliation(s)
- Juan C Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain; Instituto de Investigación Sanitaria (IIS) Hospital 12 de Octubre (i+12), Madrid, Spain.
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Complutense University, Madrid, Spain; Instituto de Investigación Sanitaria (IIS) Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miquel Bioque
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Barcelona Clínic Schizophrenia Unit, Hospital Clínic Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Celso Arango
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Psychiatry, Faculty of Medicine, Complutense University, Madrid, Spain; Child and Adolescent Psychiatry Department, IIS Hospital Gregorio Marañón (IISGM), Madrid, Spain
| | - Mara Parellada
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Department of Psychiatry, Faculty of Medicine, Complutense University, Madrid, Spain; Child and Adolescent Psychiatry Department, IIS Hospital Gregorio Marañón (IISGM), Madrid, Spain
| | - Kim Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Miguel Bernardo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Complutense University, Madrid, Spain; Barcelona Clínic Schizophrenia Unit, Hospital Clínic Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
29
|
Diabetes and the brain: oxidative stress, inflammation, and autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:102158. [PMID: 25215171 PMCID: PMC4158559 DOI: 10.1155/2014/102158] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB), a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation.
Collapse
|
30
|
Harrell CS, Burgado J, Kelly SD, Neigh GN. Ovarian steroids influence cerebral glucose transporter expression in a region- and isoform-specific pattern. J Neuroendocrinol 2014; 26:217-25. [PMID: 24612045 PMCID: PMC5688845 DOI: 10.1111/jne.12139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/15/2014] [Accepted: 02/22/2014] [Indexed: 02/05/2023]
Abstract
Cerebral glucose uptake is mediated by several members of the family of facilitated glucose transporters (protein nomenclature GLUT; gene nomenclature solute carrier family 2 Slc2a). Glucose uptake differs between the sexes and also varies with menstrual status in women and across the rodent oestrous cycle. The present study demonstrates the extent to which hormonal variation across the four stages of the rat oestrous cycle affects the mRNA abundance of four members of the GLUT family, including the most well characterised cerebral transporters Slc2a1 and Slc2a3, as well as the insulin-sensitive transporters Slc2a4 and Slc2a8 in the hypothalamus, hippocampus and prefrontal cortex. Slc2a1 varied significantly across the cycle in the hippocampus and prefrontal cortex, and Slc2a3 and Slc2a4 also showed significant fluctuation in the hippocampus. Transporter expression significantly increased during pro-oestrus in both the hippocampus and prefrontal cortex. Furthermore, ovarian hormones are critical for normal expression of GLUT mRNA, as demonstrated by reduced expression of Slc2a1, Slc2a3 and Sl2a8 in the hippocampus after ovariectomy. Collectively, the data reported in the present study demonstrate that glucose transporters are highly sensitive to hormonal variation and that this sensitivity is regionally distinct; thereby fluctuations likely have specific phenotypic implications.
Collapse
Affiliation(s)
- C S Harrell
- Department of Physiology, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
31
|
Kelly SD, Harrell CS, Neigh GN. Chronic stress modulates regional cerebral glucose transporter expression in an age-specific and sexually-dimorphic manner. Physiol Behav 2013; 126:39-49. [PMID: 24382486 DOI: 10.1016/j.physbeh.2013.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/08/2013] [Accepted: 12/12/2013] [Indexed: 11/26/2022]
Abstract
Facilitative glucose transporters (GLUT) mediate glucose uptake across the blood-brain-barrier into neurons and glia. Deficits in specific cerebral GLUT isoforms are linked to developmental and neurological dysfunction, but less is known about the range of variation in cerebral GLUT expression in normal conditions and the effects of environmental influences on cerebral GLUT expression. Knowing that puberty is a time of increased cerebral plasticity, metabolic demand, and shifts in hormonal balance for males and females, we first assessed gene expression of five GLUT subtypes in four brain regions in male and female adolescent and adult Wistar rats. The data indicated that sex differences in GLUT expression were most profound in the hypothalamus, and the transition from adolescence to adulthood had the most profound effect on GLUT expression in the hippocampus. Next, given the substantial energetic demands during adolescence and prior demonstrations of the adverse effects of adolescent stress, we determined the extent to which chronic stress altered GLUT expression in males and females in both adolescence and adulthood. Chronic stress significantly altered cerebral GLUT expression in males and females throughout both developmental stages but in a sexually dimorphic and brain region-specific manner. Collectively, our data demonstrate that cerebral GLUTs are expressed differentially based on brain region, sex, age, and stress exposure. These results suggest that developmental and environmental factors influence GLUT expression in multiple brain regions. Given the importance of appropriate metabolic balance within the brain, further assessment of the functional implications of life stage and environmentally-induced changes in GLUTs are warranted.
Collapse
Affiliation(s)
- Sean D Kelly
- Department of Physiology, Emory University, Atlanta, GA 30322, United States
| | - Constance S Harrell
- Department of Physiology, Emory University, Atlanta, GA 30322, United States
| | - Gretchen N Neigh
- Department of Physiology, Emory University, Atlanta, GA 30322, United States; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
32
|
Zárate J, Goicoechea E, Pascual J, Echevarría E, Guillén MD. A study of the toxic effect of oxidized sunflower oil containing 4-hydroperoxy-2-nonenal and 4-hydroxy-2-nonenal on cortical TrkA receptor expression in rats. Nutr Neurosci 2013; 12:249-59. [DOI: 10.1179/147683009x423391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Hamidi G, Arabpour Z, Shabrang M, Rashidi B, Alaei H, Sharifi MR, Salami M, Reisi P. Erythropoietin improves spatial learning and memory in streptozotocin model of dementia. PATHOPHYSIOLOGY 2013; 20:153-8. [DOI: 10.1016/j.pathophys.2013.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/20/2013] [Indexed: 12/12/2022] Open
|
34
|
Yamashima T. Reconsider Alzheimer's disease by the 'calpain-cathepsin hypothesis'--a perspective review. Prog Neurobiol 2013; 105:1-23. [PMID: 23499711 DOI: 10.1016/j.pneurobio.2013.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is characterized by slowly progressive neuronal death, but its molecular cascade remains elusive for over 100 years. Since accumulation of autophagic vacuoles (also called granulo-vacuolar degenerations) represents one of the pathologic hallmarks of degenerating neurons in AD, a causative connection between autophagy failure and neuronal death should be present. The aim of this perspective review is at considering such underlying mechanism of AD that age-dependent oxidative stresses may affect the autophagic-lysosomal system via carbonylation and cleavage of heat-shock protein 70.1 (Hsp70.1). AD brains exhibit gradual but continual ischemic insults that cause perturbed Ca(2+) homeostasis, calpain activation, amyloid β deposition, and oxidative stresses. Membrane lipids such as linoleic and arachidonic acids are vulnerable to the cumulative oxidative stresses, generating a toxic peroxidation product 'hydroxynonenal' that can carbonylate Hsp70.1. Recent data advocate for dual roles of Hsp70.1 as a molecular chaperone for damaged proteins and a guardian of lysosomal integrity. Accordingly, impairments of lysosomal autophagy and stabilization may be driven by the calpain-mediated cleavage of carbonylated Hsp70.1, and this causes lysosomal permeabilization and/or rupture with the resultant release of the cell degradation enzyme, cathepsins (calpain-cathepsin hypothesis). Here, the author discusses three topics; (1) how age-related decrease in lysosomal and autophagic activities has a causal connection to programmed neuronal necrosis in sporadic AD, (2) how genetic factors such as apolipoprotein E and presenilin 1 can facilitate lysosomal destabilization in the sequential molecular events, and (3) whether a single cascade can simultaneously account for implications of all players previously reported. In conclusion, Alzheimer neuronal death conceivably occurs by the similar 'calpain-hydroxynonenal-Hsp70.1-cathepsin cascade' with ischemic neuronal death. Blockade of calpain and/or extra-lysosomal cathepsins as well as scavenging of hydroxynonenal would become effective AD therapeutic approaches.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
35
|
Piroli GG, Reznikov LR, Grillo CA, Hagar JM, Fadel JR, Reagan LP. Tianeptine modulates amygdalar glutamate neurochemistry and synaptic proteins in rats subjected to repeated stress. Exp Neurol 2012; 241:184-93. [PMID: 23262120 DOI: 10.1016/j.expneurol.2012.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/20/2012] [Accepted: 12/06/2012] [Indexed: 11/25/2022]
Abstract
Stress is a common environmental factor associated with depressive illness and the amygdala is thought to be integral for this association. For example, repeated stress impairs amygdalar neuroplasticity in rodents and these defects parallel amygdalar deficits in depressive illness patients. Because the excitatory neurotransmitter glutamate is important in neuroplasticity, we hypothesized that alterations in amygdalar glutamatergic systems may serve as key players in depressive illness. Moreover, restoration of amygdalar glutamatergic systems may serve as important therapeutic targets in the successful management of multiple stress-related mood disorders. To address these hypotheses, we measured glutamate efflux in the basolateral and central amygdalar complexes via in vivo microdialysis, as well as the expression of synaptic proteins that regulate vesicular glutamate packaging and release, in rats subjected to repeated stress and treated daily with saline or the antidepressant tianeptine. Glutamate efflux was significantly reduced in the central amygdalar complex of animals subjected to repeated stress. In addition, repeated stress nearly eliminated amygdalar vGLUT2 expression, thereby proving a potential mechanism through which repeated stress impairs amygdalar glutamate neurochemistry. These stress-induced changes in glutamate efflux and vGLUT2 expression were inhibited by daily tianeptine administration. Moreover, tianeptine administration increased the vesicular localization of SNAP-25, which could account for the ability of tianeptine to modify glutamatergic tone in non-stressed control rats. Collectively, these results demonstrate that repeated stress differentially affects amygdalar glutamate systems and further supports our previous studies indicating that tianeptine's antidepressant efficacy may involve targeting amygdalar glutatamatergic systems.
Collapse
Affiliation(s)
- Gerardo G Piroli
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Stress is a potent risk factor for depression, yet the underlying mechanism is not clearly understood. In the present study, we explored the mechanism of development and maintenance of depression in a stress-induced animal model. Mice restrained for 2 h daily for 14 d showed distinct depressive behavior, and the altered behavior persisted for >3 months in the absence of intervention. Acute restraint induced a surge of oxidative stress in the brain, and stress-induced oxidative stress progressively increased with repetition of stress. In vitro, the stress hormone glucocorticoid generated superoxide via upregulation of NADPH oxidase. Consistently, repeated restraints increased the expression of the key subunits of NADPH oxidase, p47phox and p67phox, in the brain. Moreover, stressed brains markedly upregulated the expression of p47phox to weak restress evoked in the poststress period, and this molecular response was reminiscent of amplified ROS surge to restress. Pharmacological inhibition of NADPH oxidase by the NADPH oxidase inhibitor apocynin during the stress or poststress period completely blocked depressive behavior. Consistently, heterozygous p47phox knock-out mice (p47phox(+/-)) or molecular inhibition of p47phox with Lenti shRNA-p47phox in the hippocampus suppressed depressive behavior. These results suggest that repeated stress promotes depressive behavior through the upregulation of NADPH oxidase and the resultant metabolic oxidative stress, and that the inhibition of NADPH oxidase provides beneficial antidepression effects.
Collapse
|
37
|
Huang X, Wang F, Chen W, Chen Y, Wang N, von Maltzan K. Possible link between the cognitive dysfunction associated with diabetes mellitus and the neurotoxicity of methylglyoxal. Brain Res 2012; 1469:82-91. [PMID: 22750288 DOI: 10.1016/j.brainres.2012.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 05/27/2012] [Accepted: 06/07/2012] [Indexed: 11/24/2022]
Abstract
This study was designed to describe the relationship between methylglyoxal (MG) and the cognitive abilities of streptozotocin (STZ)-induced diabetic rats. Animal study revealed that the diabetic rats had significantly higher escape latency, a shorter average swimming time in the target quadrant and a longer average distance traveled to the platform in the Morris water maze compared with control group. The serum levels of MG in STZ rats were higher than in the control group and were positively correlated with the levels of serum glucose in the blood. In the STZ group, TUNEL-staining levels and the expression of cleaved Caspase-3 and Bax were significantly increased, whereas Bcl-2 expression was significantly decreased. Cell culture study showed that MG significantly increased the percentage of apoptotic hippocampal neurons. After the exposure to MG for 24h, cleaved Caspase-3 and Bax expression increased, whereas Bcl-2 expression decreased. These data suggest a possible link between the cognitive dysfunction associated with diabetes mellitus and the neurotoxicity of MG, which may alter the expression levels of cleaved Caspase-3, Bcl-2 and Bax in the hippocampus.
Collapse
Affiliation(s)
- Xiaobo Huang
- Chinese Medicine Department, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | | | | | | | | | | |
Collapse
|
38
|
Reagan LP. Diabetes as a chronic metabolic stressor: causes, consequences and clinical complications. Exp Neurol 2012; 233:68-78. [PMID: 21320489 PMCID: PMC3110581 DOI: 10.1016/j.expneurol.2011.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 01/04/2011] [Accepted: 02/06/2011] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus is an endocrine disorder resulting from inadequate insulin release and/or reduced insulin sensitivity. The complications of diabetes are well characterized in peripheral tissues, but there is a growing appreciation that the complications of diabetes extend to the central nervous system (CNS). One of the potential neurological complications of diabetes is cognitive deficits. Interestingly, the structural, electrophysiological, neurochemical and anatomical underpinnings responsible for cognitive deficits in diabetes are strikingly similar to those observed in animals subjected to chronic stress, as well as in patients with stress-related psychiatric illnesses such as major depressive disorder. Since diabetes is a chronic metabolic stressor, this has led to the suggestion that common mechanistic mediators are responsible for neuroplasticity deficits in both diabetes and depression. Moreover, these common mechanistic mediators may be responsible for the increase in the risk of depressive illness in diabetes patients. In view of these observations, the aims of this review are (1) to describe the neuroplasticity deficits observed in diabetic rodents and patients; (2) to summarize the similarities in the clinical and preclinical studies of depression and diabetes; and (3) to highlight the diabetes-induced neuroplasticity deficits in those brain regions that have been implicated as important pathological centers in depressive illness, namely, the hippocampus, the amygdala and the prefrontal cortex.
Collapse
Affiliation(s)
- Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|
39
|
Schopfer FJ, Cipollina C, Freeman BA. Formation and signaling actions of electrophilic lipids. Chem Rev 2011; 111:5997-6021. [PMID: 21928855 PMCID: PMC3294277 DOI: 10.1021/cr200131e] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francisco J. Schopfer
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Chiara Cipollina
- Fondazione Ri.MED, Piazza Sett’Angeli 10, 90134 Palermo, Italy
- Institute of Biomedicine and Molecular Immunology, Italian National Research Council, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Bruce A. Freeman
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
40
|
Dalla Y, Singh N, Jaggi AS, Singh D. Memory restorative role of statins in experimental dementia: an evidence of their cholesterol dependent and independent actions. Pharmacol Rep 2011; 62:784-96. [PMID: 21098862 DOI: 10.1016/s1734-1140(10)70339-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 03/09/2010] [Indexed: 12/30/2022]
Abstract
The study was aimed at investigating the effects of pitavastatin, simvastatin (lipophilic statins) and fluvastatin (hydrophilic statin) on memory deficits associated with Alzheimer's type dementia in mice. Dementia was induced with chronic administration of a high fat diet (HFD) or intracebroventricular streptozotocin (icv STZ, two doses of 3 mg/kg) in separate groups of animals. Memory of the animals was assessed by the Morris water maze (MWM) test. Brain thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH) levels were measured to assess total oxidative stress. Brain acetylcholinesterase (AChE) activity and total serum cholesterol levels were also measured. Icv STZ or HFD produced a significant impairment of learning and memory. Higher levels of brain AChE activity and TBARS and lower levels of GSH were observed in icv STZ- as well as HFD-treated animals. HFD-treated mice also showed a significant increase in total serum cholesterol levels. Pitavastatin and simvastatin each significantly attenuated STZ-induced memory deficits and biochemical changes; however, fluvastatin produced no significant effect on icv STZ-induced dementia or biochemical levels. Administration of any one of the three statins not only lowered HFD-induced rise in total serum cholesterol level but also attenuated HFD-induced memory deficits. Further pitavastatin and simvastatin administration also reversed HFD-induced changes in biochemicals level, while fluvastatin failed to produce any significant effect. This study demonstrates the potential of statins in memory dysfunctions associated with experimental dementia and provides evidence of their cholesterol-dependent and -independent actions.
Collapse
Affiliation(s)
- Yogita Dalla
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala (Punjab), PIN-147002, India
| | | | | | | |
Collapse
|
41
|
Hoffman WH, Siedlak SL, Wang Y, Castellani RJ, Smith MA. Oxidative damage is present in the fatal brain edema of diabetic ketoacidosis. Brain Res 2011; 1369:194-202. [PMID: 21040714 PMCID: PMC3056460 DOI: 10.1016/j.brainres.2010.10.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 12/16/2022]
Abstract
Oxidative stress is implicated as a pathogenic factor in a spectrum of chronic diseases, notably, neurodegenerative disease. Noteworthy in this regard is that type 1 diabetes mellitus (T1DM) results in oxidative stress, leading to systemic complications of T1DM. We hypothesized that oxidative stress associated with diabetic ketoacidosis (DKA) of T1DM might have measurable brain sequelae. Consistent with this hypothesis are neurohistology and neuroradiologic studies of T1DM that suggest oxidative insults are involved in the chronic complications of diabetic encephalopathy. To further address the role of oxidative stress in an acute setting, specifically in fatal brain edema (BE) associated with DKA, we studied neuronal localization and levels of oxidative stress markers reported to be increased in other neurodegenerative conditions. We demonstrated increased levels of 8-hydroxyguanosine (8OHG), 4-hydroxynonenal (HNE), and heme oxygenase-1 (HO-1) in the pyramidal neurons of the hippocampus of DKA BE in comparison to controls. However, in the cerebellum, only 8OHG was increased in the Purkinje cells and other cells of the molecular layer. These results indicate a role for oxidative stress in the pathogenesis of T1DM encephalopathy.
Collapse
Affiliation(s)
- William H Hoffman
- Department of Pediatrics, Section of Pediatric Endocrinology, Medical College of Georgia, 1120 15th Street BG-1007Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
42
|
Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G, Mann GE, Pamplona R, Poli G, Portero-Otin M, Riahi Y, Salvayre R, Sasson S, Serrano J, Shamni O, Siems W, Siow RCM, Wiswedel I, Zarkovic K, Zarkovic N. Pathological aspects of lipid peroxidation. Free Radic Res 2010; 44:1125-71. [PMID: 20836660 DOI: 10.3109/10715762.2010.498478] [Citation(s) in RCA: 492] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lipid peroxidation (LPO) product accumulation in human tissues is a major cause of tissular and cellular dysfunction that plays a major role in ageing and most age-related and oxidative stress-related diseases. The current evidence for the implication of LPO in pathological processes is discussed in this review. New data and literature review are provided evaluating the role of LPO in the pathophysiology of ageing and classically oxidative stress-linked diseases, such as neurodegenerative diseases, diabetes and atherosclerosis (the main cause of cardiovascular complications). Striking evidences implicating LPO in foetal vascular dysfunction occurring in pre-eclampsia, in renal and liver diseases, as well as their role as cause and consequence to cancer development are addressed.
Collapse
|
43
|
Abstract
The peroxidation of n-3 and n-6 polyunsaturated fatty acids (PUFAs) and of their hydroperoxy metabolites is a complex process. It is initiated by free oxygen radical-induced abstraction of a hydrogen atom from the lipid molecule followed by a series of nonenzymatic reactions that ultimately generate the reactive aldehyde species 4-hydroxyalkenals. The molecule 4-hydroxy-2E-hexenal (4-HHE) is generated by peroxidation of n-3 PUFAs, such as linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. The aldehyde product 4-hydroxy-2E-nonenal (4-HNE) is the peroxidation product of n-6 PUFAs, such as arachidonic and linoleic acids and their 15-lipoxygenase metabolites, namely 15-hydroperoxyeicosatetraenoic acid (15-HpETE) and 13-hydroperoxyoctadecadienoic acid (13-HpODE). Another reactive peroxidation product is 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), which is derived from 12-hydroperoxyeicosatetraenoic acid (12-HpETE), the 12-lipoxygenase metabolite of arachidonic acid. Hydroxyalkenals, notably 4-HNE, have been implicated in various pathophysiological interactions due to their chemical reactivity and the formation of covalent adducts with macromolecules. The progressive accumulation of these adducts alters normal cell functions that can lead to cell death. The lipophilicity of these aldehydes positively correlates to their chemical reactivity. Nonetheless, at low and noncytotoxic concentrations, these molecules may function as signaling molecules in cells. This has been shown mostly for 4-HNE and to some extent for 4-HHE. The capacity of 4-HDDE to generate such "mixed signals" in cells has received less attention. This review addresses the origin and cellular functions of 4-hydroxyalkernals.
Collapse
Affiliation(s)
- Yael Riahi
- Dept. of Pharmacology, The Hebrew Univ. Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
44
|
Kumar R, Jaggi AS, Singh N. Effects of erythropoietin on memory deficits and brain oxidative stress in the mouse models of dementia. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:345-52. [PMID: 21165335 PMCID: PMC2997422 DOI: 10.4196/kjpp.2010.14.5.345] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/20/2010] [Accepted: 08/24/2010] [Indexed: 01/29/2023]
Abstract
The present study was undertaken to explore the potential of erythropoietin in memory deficits of mice. Memory impairment was produced by scopolamine (0.5 mg/kg, i.p.) and intracerebroventricular streptozotocin (i.c.v STZ, 3 mg/kg, 10 µl, 1(st) and 3(rd) day) in separate groups of animals. Morris water-maze test was employed to assess learning and memory. The levels of brain thio-barbituric acid reactive species (TBARS) and reduced glutathione (GSH) were estimated to assess degree of oxidative stress. Brain acetylcholinesterase enzyme (AChE) activity was also measured. Scopolamine/streptozotocin administration induced significant impairment of learning and memory in mice as indicated by marked decrease in Morris water-maze performance. Scopolamine/streptozotocin administration also produced a significant enhancement of brain AChE activity and brain oxidative stress (an increase in TBARS and a decrease in GSH) levels. Treatment of erythropoietin (500 and 1,000 IU/Kg i.p.) significantly reversed scopolamine- as well as streptozotocin-induced learning and memory deficits along with attenuation of those-induced rise in brain AChE activity and brain oxidative stress levels. It may be concluded that erythropoietin exerts a beneficial effect in memory deficits of mice possibly through its multiple actions including potential anti-oxidative effect.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala (Punjab), PIN-147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala (Punjab), PIN-147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala (Punjab), PIN-147002, India
| |
Collapse
|
45
|
Involvement of PPAR-gamma in curcumin-mediated beneficial effects in experimental dementia. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:529-39. [PMID: 20369229 DOI: 10.1007/s00210-010-0511-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 03/06/2010] [Indexed: 12/24/2022]
Abstract
The present study was undertaken to investigate the possible mechanism of curcumin-mediated beneficial effects in memory deficits associated with experimental dementia. Dementia was induced in Swiss albino mice by administering streptozotocin (3 mg kg(-1)) intracerebroventricularly on first and third day. Morris water maze test was employed to assess learning and memory of the animals. Biochemical analysis of brain homogenate was performed to assess brain acetyl cholinesterase (AChE) activity and total oxidative stress. Streptozotocin (STZ) produced a significant decrease in water maze performance of mice indicative of impairment in spatial reference memory. Curcumin (20 mg/kg p.o. daily for 14 days) successfully attenuated STZ-induced memory deficits. Higher levels of brain AChE activity and oxidative stress were observed in STZ-treated animals, which were significantly attenuated by curcumin. Furthermore, the noted beneficial effect of curcumin on STZ-induced dementia was significantly abolished by pretreatment with PPAR-gamma receptor antagonist bisphenol-A-diglycidyl ether, i.e., BADGE (30 mg/kg intraperitoneally (i.p.)). It may be concluded that the beneficial effects of curcumin are mediated through the activation of PPAR-gamma receptors.
Collapse
|
46
|
Insulin-Mediated Neuroplasticity in the Central Nervous System. DIABETES, INSULIN AND ALZHEIMER'S DISEASE 2010. [DOI: 10.1007/978-3-642-04300-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Dalla Y, Singh N, Jaggi AS, Singh D, Ghulati P. Potential of ezetimibe in memory deficits associated with dementia of Alzheimer's type in mice. Indian J Pharmacol 2009; 41:262-7. [PMID: 20407557 PMCID: PMC2846500 DOI: 10.4103/0253-7613.59925] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/12/2009] [Accepted: 12/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High cholesterol levels have been positively correlated with a higher incidence of memory impairment and dementia. AIM The study was undertaken to investigate the potential of the lipid-lowering drug, ezetimibe, in memory deficits associated with dementia of Alzheimer's (AD) type in mice. METHODS Dementia was induced with chronic administration of a high-fat diet (HFD) or intracebroventricular streptozotocin (ICV STZ, two doses of 3 mg/kg) in separate groups of animals. The memory of the animals was assessed by employing a Morris water maze. Brain thio barbituric acid-reactive species and reduced glutathione levels were measured to assess the total oxidative stress. Brain acetyl cholinesterase (AChE) activity and total serum cholesterol levels were also measured. RESULTS STZ/HFD produced a significant impairment of memory along with an increase in brain AChE activity and oxidative stress. HFD mice also showed an increase in cholesterol levels. Ezetimibe (10 mg/kg, orally for 15 days) significantly attenuated STZ/HFD-induced memory deficits and biochemical changes. It also prevented HFD-induced rise in the cholesterol level. CONCLUSIONS The memory-restorative effect of ezetimibe can be attributed to its cholesterol-dependent as well as cholesterol-independent effects. The study highlights the potential of ezetimibe in memory dysfunctions associated with dementia of AD.
Collapse
Affiliation(s)
- Yogita Dalla
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab - 147 002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab - 147 002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab - 147 002, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab - 147 002, India
| | - Pooja Ghulati
- Department of Swami Vivekanand College of Pharmacy, SVIET, Chandigarh Highway, Rajpura, India
| |
Collapse
|
48
|
Grillo CA, Piroli GG, Hendry RM, Reagan LP. Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent. Brain Res 2009; 1296:35-45. [PMID: 19679110 PMCID: PMC2997526 DOI: 10.1016/j.brainres.2009.08.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 11/18/2022]
Abstract
In the central nervous system (CNS) insulin mediates a variety of effects including feeding, metabolism and cognition. The cognitive enhancing effects of insulin are proposed to be mediated through activation of insulin receptors in the hippocampus, an important integration center for learning and memory in the mammalian brain. Since less is known regarding insulin signaling events in the hippocampus, the aim of the current study was to determine whether insulin stimulates similar signaling cascades and GLUT4 translocation in the rat hippocampus as has been described in peripheral tissues. Intracerebroventricular administration of insulin increases hippocampal insulin levels and also stimulates the phosphorylation of Akt in a time-dependent manner. Insulin also stimulates the translocation of GLUT4 to hippocampal plasma membranes in a time course that mirrors the increases in glucose uptake observed during the performance of hippocampal-dependent tasks. Insulin stimulated phosphorylation of Akt and translocation of GLUT4 were blocked by pretreatment with the PI3-kinase inhibitor LY294002. Confocal immunofluorescence determined that insulin stimulated phosphorylation of Akt was localized to neurons and colocalized with the insulin receptor and GLUT4 in the rat hippocampus, thereby identifying the functional anatomical substrates of insulin signaling in the hippocampus. These results demonstrate that insulin-stimulated translocation of GLUT4 to the plasma membrane in the rat hippocampus occurs via similar mechanisms as described in peripheral tissues and suggests that insulin-mediated translocation of GLUT4 may provide a mechanism through which hippocampal neurons rapidly increase glucose utilization during increases in neuronal activity associated with hippocampal-dependent learning.
Collapse
Affiliation(s)
- C A Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garner's Ferry Road, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
49
|
Kaur B, Singh N, Jaggi AS. Exploring mechanism of pioglitazone-induced memory restorative effect in experimental dementia. Fundam Clin Pharmacol 2009; 23:557-66. [PMID: 19656209 DOI: 10.1111/j.1472-8206.2009.00708.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study was undertaken to investigate possible mechanism of pioglitazone-induced beneficial effect in memory deficits associated with experimental dementia. Dementia was induced in Swiss albino mice by administration of streptozotocin (STZ; 3 mg/kg administered intracerebroventricularly on 1st & 3rd day). Morris Water-Maze test was employed to assess learning and memory of the animals. Brain acetylcholinesterase (AChE) activity was measured by Ell Mann's method. Brain thiobarbituric acid reactive species (TBARS) levels and reduced glutathione (GSH) levels were measured by Ohokawa's and Beutler's method respectively to assess total oxidative stress. Blood glucose level was also measured. Streptozotocin (STZ) produced a significant decrease in water-maze performance of mice hence reflecting loss of learning and memory. Pioglitazone (20 mg/kg p.o. daily for 14 days) successfully attenuated STZ-induced memory deficits, without any significant per se effect on blood glucose levels. Higher levels of brain AChE activity, TBARS and lower levels of GSH were observed in STZ treated animals, which were significantly attenuated by pioglitazone. Further, the noted beneficial effect of pioglitazone on STZ-induced dementia was significantly abolished by pre-treatment of nitric oxide (NO) synthase inhibitor L-NAME (3 mg/kg i.p.) manifested in the terms of decrease in water-maze performance and increase in brain AChE activity as well as oxidative stress. It is concluded that anti-dementic effect of pioglitazone may involve central cholinergic, oxidative and NO pathways.
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab PIN-147002, India
| | | | | |
Collapse
|
50
|
Rackova L, Snirc V, Jung T, Stefek M, Karasu C, Grune T. Metabolism-induced oxidative stress is a mediator of glucose toxicity in HT22 neuronal cells. Free Radic Res 2009; 43:876-86. [PMID: 19634041 DOI: 10.1080/10715760903104374] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress has been widely considered as a key player in the adverse effects of hyperglycaemia to various tissues, including neuronal cells. This study examined the participation of oxidative stress in injurious effects of high glucose on HT22 cells along with the activity of proteasome, a proteolytic system responsible for degradation of oxidized proteins. Although 10-fold glucose concentration caused non-significant viability changes, a significant reduction of cell proliferation was found. Moreover, the cell morphology was also altered. These changes were followed by an enhancement of intracellular ROS generation, however without any significant boost of the carbonyl group concentration in proteins. Correspondingly, only a slight decline in the 20S proteasome activity was found in high-glucose-treated cells. On the other hand, substances affecting glucose metabolism or antioxidants partially preserved the oxidative stress in high glucose treated cells. In summary, these results highlight the role of metabolic oxidative stress in hyperglycaemia affecting neurons.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|