1
|
Holschneider DP, Guo Y, Wang Z, Vidal M, Scremin OU. Positive Allosteric Modulation of Cholinergic Receptors Improves Spatial Learning after Cortical Contusion Injury in Mice. J Neurotrauma 2019; 36:2233-2245. [PMID: 30688147 DOI: 10.1089/neu.2018.6036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We examined benzyl quinolone carboxylic acid (BQCA), a novel M1 muscarinic-positive allosteric modulator, for improving memory and motor dysfunction after cerebral cortical contusion injury (CCI). Adult mice received unilateral motorsensory cortical CCI or sham injury. Benzyl quinolone carboxylic acid (BQCA; 5, 10, and 20 mg/kg, intraperitoneally [i.p.] × 2/day × 3-4 weeks) or vehicle (Veh) were administered, and weekly evaluations were undertaken using a battery of motor tests, as well as the Morris water maze. Thereafter, cerebral metabolic activation was investigated in awake animals during walking with [14C]-2-deoxygIucose autoradiography, comparing CCI mice previously treated with BQCA (20 mg/kg) or vehicle. Relative changes in local cerebral glucose uptake (rCGU) were evaluated in three-dimensional-reconstructed brains using statistical parametric mapping. CCI resulted in mild hyperactivity in the open field, and modest significant motor deficits, as well as significantly decreased spatial learning at 3 weeks. BQCA in CCI mice resulted in significantly improved spatial recall during the third week, with minimal effects on motor outcomes. CCI significantly decreased rCGU in the ipsilesional basal ganglia-thalamocortical circuit and in somatosensory regions, with relative increases noted contralaterally, as well as in the cerebellum. Significant decreases in rCGU were noted in subregions of the ipsilesional hippocampal formation, with significant increases noted contralesionally. BQCA compared to vehicle-treated mice showed modest, though significantly increased, rCGU in motor regions, as well as a partial reversal of lesion-related rCGU findings in subregions of the hippocampal formation. rCGU in ipsilesional posterior CA1 demonstrated a significant inverse correlation with latency to find the submerged platform. BQCA at 20 mg/kg had no significant effect on general motor activity, body weight, or acute motor, secretory, or respiratory symptoms. Results suggest that BQCA is a candidate compound to improve learning and memory function after brain trauma and may not suffer the associated central nervous system side effects typically associated with even modest doses of other cholinergic enhancers.
Collapse
Affiliation(s)
- Daniel P Holschneider
- 1 Department of Psychiatry and the Behavioral Sciences and Biomedical Engineering, University of Southern California, Los Angeles, California.,2 Department of Neurology, Biomedical Engineering, University of Southern California, Los Angeles, California.,3 Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Yumei Guo
- 1 Department of Psychiatry and the Behavioral Sciences and Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Zhuo Wang
- 1 Department of Psychiatry and the Behavioral Sciences and Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Milagros Vidal
- 1 Department of Psychiatry and the Behavioral Sciences and Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Oscar U Scremin
- 3 Greater Los Angeles VA Healthcare System, Los Angeles, California
| |
Collapse
|
2
|
Wang M, Li ZY, Xu WD, Hua XY, Xu JG, Gu YD. Sensory restoration in cortical level after a contralateral C7 nerve transfer to an injured arm in rats. Neurosurgery 2010; 67:136-43; discussion 143. [PMID: 20559101 PMCID: PMC7717385 DOI: 10.1227/01.neu.0000370603.45342.6b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The restoration of sensory and motor function in brachial plexus root avulsion patients is a difficult challenge. The central nervous system plays an important role in sensory recovery after peripheral nerve injury and repair. OBJECTIVE To investigate the sensory restoration process after surgery at the cortical level in rodent models with a contralateral C7 nerve transfer. METHODS Thirty-five male Sprague-Dawley rats were used in this experiment, and both behavioral tests and somatosensory evoked potentials were used to investigate the sensory function recovery of the injured forepaws and the cortical reorganization in the rats postoperatively. RESULTS The results demonstrated a dynamic change in the ipsilateral somatosensory cortex, both in the shape and location, where overlapping sensory cortical representations of the healthy and injured forepaws were observed consistently. Behavioral tests show that the sensation first occurred only in the healthy forepaw and later in both when stimulating the injured one, which suggested a tendency of the sensation function to recover in the injured forepaws of the rats as time progressed. CONCLUSION The cortical reorganization occurred only in the ipsilateral hemisphere, which is different from the motor cortex reorganization using the same model as that described in a previous study. This reorganization pattern offers an interpretation of the unique sensory recovery process after the transfer of the C7 nerve to the contralateral median nerve, but also provides the basis for further sensory restoration in clinical practice.
Collapse
Affiliation(s)
- Meng Wang
- Department of Hand Surgery, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
3
|
Scremin OU, Li MG, Scremin AME. Cortical contusion induces trans-hemispheric reorganization of blood flow maps. Brain Res 2007; 1141:235-41. [PMID: 17275796 DOI: 10.1016/j.brainres.2007.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 12/31/2006] [Accepted: 01/03/2007] [Indexed: 01/20/2023]
Abstract
Cerebral blood flow (CBF), a surrogate of neural activity in the identification of brain regions involved in specific functions, has been used in this report to trace the compensatory enhancement of activity in non-traumatized areas of the brain following a focal lesion. We have previously shown activation of CBF in the cortex contralateral to a focal contusion, 24 h after the event. The present report extends the characterization of this trans-hemispheric cortical blood flow activation by studying its time course and regional distribution from 4 days to 4 weeks post-trauma. Adult male Sprague-Dawley rats received a cortical impact through a 6.3 mm craniotomy under halothane anesthesia. CBF was measured with the quantitative autoradiographic (14)C-Iodoantipyrine technique, in conscious animals, 4 days, 2 weeks and 4 weeks post-trauma. CBF was severely decreased at the site of impact where necrosis developed later, and it remained depressed in the surrounding areas throughout the observation period. Trans-hemispheric CBF enhancement was maximal at 4 days and it returned to control levels 28 days post-trauma. This phenomenon was present in all cortical regions symmetrical to the impact zone, but also in auditory, visual, entorhinal and insular cortex. These results suggest that the participation of the contralateral cortex in the recovery from unilateral brain trauma is not limited to the regions homologous to those that received the impact. The time course of CBF changes was found to be consistent with the recovery of motor function in this model.
Collapse
Affiliation(s)
- O U Scremin
- VA Greater Los Angeles Healthcare System, USA.
| | | | | |
Collapse
|
4
|
Lou L, Shou T, Li Z, Li W, Gu Y. Transhemispheric functional reorganization of the motor cortex induced by the peripheral contralateral nerve transfer to the injured arm. Neuroscience 2006; 138:1225-31. [PMID: 16426770 DOI: 10.1016/j.neuroscience.2005.11.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 11/08/2005] [Accepted: 11/29/2005] [Indexed: 11/26/2022]
Abstract
Peripheral nerve injury in a limb usually causes functional reorganization of the contralateral motor cortex. However, a dynamic process of the novel transhemispheric functional reorganization in the motor cortex was found in adult rats after transferring the seventh cervical nerve root from the contralateral healthy side to the injured limb. Initially the ipsilateral motor cortex activated the injured forepaw for 5 months after the operation. Then, both hemispheres of the cortex activated the injured forepaw, and finally the contralateral cortex exclusively controlled the injured forepaw. It is concluded an extensive functional shift occurred between two hemispheres based on neural plasticity in the CNS. The experimental results of the later lesions of the ipsilateral cortex suggest that maintaining transhemispheric functional reorganization does not depend on the corpus callosum, but depends on mechanisms involving central axonal sprouting. Possible mechanisms underlying the alternative changes in cortical functions were discussed in rats and in patients having similar operations.
Collapse
Affiliation(s)
- L Lou
- Vision Research Laboratory, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
5
|
Komaki A, Esteky H. Effects of neonatal C-fiber depletion on neocortical long-term potentiation and depression. Brain Res 2005; 1054:135-42. [PMID: 16081053 DOI: 10.1016/j.brainres.2005.06.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 06/20/2005] [Accepted: 06/25/2005] [Indexed: 11/23/2022]
Abstract
Capsaicin (Cap)-induced depletion of C-fiber afferents results in plasticity of somatosensory system which is manifested as a functional alteration at different levels of the somatosensory pathway. In the present study we examined the effect of Cap-induced neonatal depletion of C-fibers on the induction of long-term potentiation (LTP) and long-term depression (LTD) in the neocortex of freely moving rats. A stimulating electrode was implanted into corpus callosum and a recording electrode was implanted in the somatosensory cortex of control (Con: normal, without electrical stimulation), trained (normal, with electrical stimulation) and Cap-treated (C-fiber depleted, with electrical stimulation) adult rats. Two weeks after the surgery, evoked field potential responses were recorded before, during (12 days) and after (1 month) the induction period of LTP and LTD. The LTP and LTD response characteristics during the time course of recording were compared between different groups. In the train group, LTP and LTD appeared after 3 days of stimulation. LTP magnitude peaked after about 6 days while LTD magnitude peaked in about 12 days. C-fiber depletion postponed the development of LTP and LTD making the highest differential levels of LTP about 6 days after the initiation of LTP induction. The impact of C-fiber depletion on slowing the time course of LTD induction was more prolonged and lasted until day 12 of the initiation of LTD induction. These results suggest that intact C-fibers are necessary for normal plasticity and long-term synaptic modification of the somatosensory system.
Collapse
Affiliation(s)
- Alireza Komaki
- Research Center for Brain and Cognitive Sciences, Shaheed Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
6
|
Murakami H, Kamatani D, Hishida R, Takao T, Kudoh M, Kawaguchi T, Tanaka R, Shibuki K. Short-term plasticity visualized with flavoprotein autofluorescence in the somatosensory cortex of anaesthetized rats. Eur J Neurosci 2004; 19:1352-60. [PMID: 15016093 DOI: 10.1111/j.1460-9568.2004.03237.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present study, short-term plasticity of somatosensory neural responses was investigated using flavoprotein autofluorescence imaging in rats anaesthetized with urethane (1.5 g/kg, i.p.) Somatosensory neural activity was elicited by vibratory skin stimulation (50 Hz for 1 s) applied on the surface of the left plantar hindpaw. Changes in green autofluorescence (lambda = 500-550 nm) in blue light (lambda = 450-490 nm) were elicited in the right somatosensory cortex. The normalised maximal fluorescence responses (deltaF/F) was 2.0 +/- 0.1% (n = 40). After tetanic cortical stimulation (TS), applied at a depth of 1.5-2.0 mm from the cortical surface, the responses elicited by peripheral stimulation were significantly potentiated in both peak amplitude and size of the responsive area (both P < 0.02; Wilcoxon signed rank test). This potentiation was clearly observed in the recording session started 5 min after the cessation of TS, and returned to the control level within 30 min. However, depression of the responses was observed after TS applied at a depth of 0.5 mm. TS-induced changes in supragranular field potentials in cortical slices showed a similar dependence on the depth of the stimulated sites. When TS was applied on the ipsilateral somatosensory cortex, marked potentiation of the ipsilateral responses and slight potentiation of the contralateral responses to peripheral stimulation were observed after TS, suggesting the involvement of commissural fibers in the changes in the somatosensory brain maps. The present study clearly demonstrates that functional brain imaging using flavoprotein autofluorescence is a useful technique for investigating neural plasticity in vivo.
Collapse
Affiliation(s)
- Hiroatsu Murakami
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Niigata 951-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zarei M, Stephenson JD. Effects of DSP4 and dizolcipine on connectivity of solid E19 cortical grafts to ablated SmI region of adult rats; an in vivo electrophysiological study. Brain Res 2002; 947:182-90. [PMID: 12176159 DOI: 10.1016/s0006-8993(02)02921-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The functional connectivity of an embryonic graft implanted into the lesioned somatosensory cortex and the effect of DSP4 (a selective noradrenergic neurotoxin to noradrenergic terminals) and dizolcipine (a non-competitive NMDA receptor antagonist), was studied electrophysiologically. The forepaw representational area of the rat primary somatosensory cortex was lesioned unilaterally and, 3-4 weeks later, tissue from the same region of E19 rat embryos was implanted into the cavity. At 7-9 months later, the rats were anaesthetized and single unit activity was recorded from the grafts in response to contralateral forepaw, ipsilateral hindpaw and contralateral hindpaw stimulation and compared with that obtained in control rats, in rats pretreated with dizolcipine immediately after lesioning and in rats given DSP4 24 h before transplantation. Neurones within the graft were integrated into the host brain and developed a pattern of representation similar to that of intact rats, but with a reduced proportion of neurones exhibiting short-latency response to contralateral forepaw stimulation and an increased proportion responding to stimulation of more than one paw. Pretreatment with dizolcipine did not increase short-latency responses to stimulation of contralateral forepaw stimulation however pretreatment with DSP4 reduced such responses and increased proportion of inhibitory responses. It was concluded that the noradrenergic system plays an important role in establishing host-graft connectivity. The importance of further pharmacological studies on host-graft connectivity and the relation of such connections to neural plasticity were discussed.
Collapse
Affiliation(s)
- Mojtaba Zarei
- Institute of Psychiatry, King's College London, Department of Neuroscience, De Crespigny Park, London SE5 8AF, UK.
| | | |
Collapse
|
8
|
Al-Adawi S, Dawe GS, Bonner A, Stephenson JD, Zarei M. Central noradrenergic blockade prevents autotomy in rat: implication for pharmacological prevention of postdenervation pain syndrome. Brain Res Bull 2002; 57:581-6. [PMID: 11927359 DOI: 10.1016/s0361-9230(01)00747-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following transection of peripheral nerve, rats exhibit autotomy, which is considered to be the animal model of postdenervation pain syndrome. It has been suggested that phantom limb pain is a result of peripheral denervation leading to reorganization of somatosensory pathways, particularly in the cerebral cortex, which is shown to depend upon central noradrenergic activity. In this study, sciatic and saphenous nerves were sectioned in the left hindpaw of 30 adult rats resulting in complete loss of pain sensation in the hindpaw. A group of rats received normal saline, compared to another group which received N-(2-) Chloroethyl-N-ethyl-2-bromobenzylamine (DSP4) injection 24 h prior to transection. The latter group was also compared to a third group whose central noradrenergic system were also blocked by bilateral injection of 6-OHDA into the ascending noradrenergic bundle 1 week prior to transection. A fourth group received contralateral cortical ablation in addition to peripheral nerve transection and was compared to the first group whose cortex remained intact. The animals were observed daily for 60 days and autotomy was scored in accordance to the system of Wall et al. After 1 week, control animals began to exhibit autotomy. In contrast, autotomy was absent in rats treated with DSP4, similar to rats which received 6-OHDA. Rats which had contralateral cortical ablation showed a considerably delayed onset of autotomy and a reduction in final autotomy scores. We conclude that autotomy, as a model of postdenervation pain syndrome, can be prevented by blockade of noradrenergically mediated cortical reorganization. The clinical implications of this finding are discussed.
Collapse
Affiliation(s)
- Samir Al-Adawi
- Department of Neuroscience, Institute of Psychiatry, London, UK
| | | | | | | | | |
Collapse
|
9
|
Zarei M, Raevsky VV, Dawe GS, Stephenson JD. Changes in sensitivity of cholinoceptors and adrenoceptors during transhemispheric cortical reorganisation in rat SmI. Brain Res 2001; 888:267-274. [PMID: 11150484 DOI: 10.1016/s0006-8993(00)03078-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The reorganisation of primary somatosensory cortex that occurs after lesioning the corresponding cortex of the contralateral hemisphere in rat has been termed, 'transhemispheric cortical reorganisation'. Cholinergic and noradrenergic innervations are hypothesized to be involved in cortical plasticity. The present study investigated the change in responses of somatosensory neurones in the hindpaw representation area to muscarinic cholinoceptor and beta-adrenoceptor receptor stimulation, by iontophoretic application of acetylcholine, noradrenaline, propranolol and atropine, during the process of transhemispheric cortical reorganization at 3-4 days and at 20-21 days after lesioning the corresponding area in the contralateral hemisphere. Most neurones in control rats showed excitatory atropine-sensitive responses to acetylcholine, and inhibitory propranolol-sensitive responses to noradrenaline. A marked reduction in neurones exhibiting muscarinic responses (from 69% to 22%) and beta-noradrenoceptor-mediated responses (from 62% to 24%) were seen in rats 3-4 days post lesion. The proportion of neurones responding had recovered by 3 weeks but the direction of the responses had changed with muscarinic response becoming predominantly inhibitory and beta-noradrenoceptor responses predominantly excitatory. It is concluded that transhemispheric cortical reorganization involves both receptor types and that the reciprocal changes at different stages after injury maintain cortical plasticity.
Collapse
Affiliation(s)
- M Zarei
- Department of Neuroscience, Institute of Psychiatry, De Crespigny Park, SE5 8AF, London, UK.
| | | | | | | |
Collapse
|
10
|
Hulshoff Pol HE, van der Flier WM, Schnack HG, Tulleken CA, Ramos LM, van Ree JM, Kahn RS. Frontal lobe damage and thalamic volume changes. Neuroreport 2000; 11:3039-41. [PMID: 11006990 DOI: 10.1097/00001756-200009110-00042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate whether frontal lobe damage affects thalamic volume in humans. Ipsilateral and contralateral thalamic areas were measured in 0.5T T1-weighted sagittal magnetic resonance images in 12 patients, first at the time of their surgery for relief of a unilateral frontal lobe brain tumor and at follow-up approximately 2 years later. A 5% decrease in ipsilateral and 4.5% increase in contralateral thalamic area was found over time (F(1,11) = 6.15, p < 0.05). We conclude that unilateral frontal lobe damage results in a decrease in the ipsilateral thalamus and an increase in the contralateral thalamus in humans in vivo. The findings may have implications for the interpretation of the reported changes in thalamic volume in neuropsychiatric diseases.
Collapse
Affiliation(s)
- H E Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|