1
|
Ang R, Marina N. Low-Frequency Oscillations in Cardiac Sympathetic Neuronal Activity. Front Physiol 2020; 11:236. [PMID: 32256390 PMCID: PMC7093552 DOI: 10.3389/fphys.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
Sudden cardiac death caused by ventricular arrhythmias is among the leading causes of mortality, with approximately half of all deaths attributed to heart disease worldwide. Periodic repolarization dynamics (PRD) is a novel marker of repolarization instability and strong predictor of death in patients post-myocardial infarction that is believed to occur in association with low-frequency oscillations in sympathetic nerve activity. However, this hypothesis is based on associations of PRD with indices of sympathetic activity that are not directly linked to cardiac function, such as muscle vasoconstrictor activity and the variability of cardiovascular autospectra. In this review article, we critically evaluate existing scientific evidence obtained primarily in experimental animal models, with the aim of identifying the neuronal networks responsible for the generation of low-frequency sympathetic rhythms along the neurocardiac axis. We discuss the functional significance of rhythmic sympathetic activity on neurotransmission efficacy and explore its role in the pathogenesis of ventricular repolarization instability. Most importantly, we discuss important gaps in our knowledge that require further investigation in order to confirm the hypothesis that low frequency cardiac sympathetic oscillations play a causative role in the generation of PRD.
Collapse
Affiliation(s)
- Richard Ang
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.,Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
2
|
Sourioux M, Bertrand SS, Cazalets JR. Cholinergic-mediated coordination of rhythmic sympathetic and motor activities in the newborn rat spinal cord. PLoS Biol 2018; 16:e2005460. [PMID: 29985914 PMCID: PMC6053244 DOI: 10.1371/journal.pbio.2005460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/19/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Here, we investigated intrinsic spinal cord mechanisms underlying the physiological requirement for autonomic and somatic motor system coupling. Using an in vitro spinal cord preparation from newborn rat, we demonstrate that the specific activation of muscarinic cholinergic receptors (mAchRs) (with oxotremorine) triggers a slow burst rhythm in thoracic spinal segments, thereby revealing a rhythmogenic capability in this cord region. Whereas axial motoneurons (MNs) were rhythmically activated during both locomotor activity and oxotremorine-induced bursting, intermediolateral sympathetic preganglionic neurons (IML SPNs) exhibited rhythmicity solely in the presence of oxotremorine. This somato-sympathetic synaptic drive shared by MNs and IML SPNs could both merge with and modulate the locomotor synaptic drive produced by the lumbar motor networks. This study thus sheds new light on the coupling between somatic and sympathetic systems and suggests that an intraspinal network that may be conditionally activated under propriospinal cholinergic control constitutes at least part of the synchronizing mechanism.
Collapse
Affiliation(s)
| | | | - Jean-René Cazalets
- Université de Bordeaux, CNRS UMR 5287, Bordeaux, France
- * E-mail: (JRC); (SSB)
| |
Collapse
|
3
|
Su CK, Chen YY, Ho CM. Nitric Oxide Orchestrates a Power-Law Modulation of Sympathetic Firing Behaviors in Neonatal Rat Spinal Cords. Front Physiol 2018; 9:163. [PMID: 29559921 PMCID: PMC5845561 DOI: 10.3389/fphys.2018.00163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) is a diffusible gas and has multifarious effects on both pre- and postsynaptic events. As a consequence of complex excitatory and inhibitory integrations, NO effects on neuronal activities are heterogeneous. Using in vitro preparations of neonatal rats that retain the splanchnic sympathetic nerves and the thoracic spinal cord as an experimental model, we report here that either enhancement or attenuation of NO production in the neonatal rat spinal cords could increase, decrease, or not change the spontaneous firing behaviors recorded from splanchnic sympathetic single fibers. To elucidate the mathematical features of NO-mediated heterogeneous responses, the ratios of changes in firing were plotted against their original firing rates. In log-log plots, a linear data distribution demonstrated that NO-mediated heterogeneity in sympathetic firing responses was well described by a power function. Selective antagonists were applied to test if glycinergic, GABAergic, glutamatergic, and cholinergic neurotransmission in the spinal cord are involved in NO-mediated power-law firing modulations (plFM). NO-mediated plFM diminished in the presence of mecamylamine (an open-channel blocker of nicotinic cholinergic receptors), indicating that endogenous nicotinic receptor activities were essential for plFM. Applications of strychnine (a glycine receptor blocker), gabazine (a GABAA receptor blocker), or kynurenate (a broad-spectrum ionotropic glutamate receptor blocker) also caused plFM. However, strychnine- or kynurenate-induced plFM was diminished by L-NAME (an NO synthase inhibitor) pretreatments, indicating that the involvements of glycine or ionotropic glutamate receptor activities in plFM were secondary to NO signaling. To recapitulate the arithmetic natures of the plFM, the plFM were simulated by firing changes in two components: a step increment and a fractional reduction of their basal firing activities. Ionotropic glutamate receptor activities were found to participate in plFM by both components. In contrast, GABAA receptor activities are involved in the component of fractional reduction only. These findings suggest that NO orchestrates a repertoire of excitatory and inhibitory neurotransmissions, incurs a shunting effect on postsynaptic membrane properties, and thus, alters sympathetic firing in a manner of plFM. We propose that the plFM mediated by NO forms a basic scheme of differential controls for heterogeneous sympathetic regulation of visceral functions.
Collapse
Affiliation(s)
- Chun-Kuei Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Yin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
4
|
Su CK. Modulation of synchronous sympathetic firing behaviors by endogenous GABA(A) and glycine receptor-mediated activities in the neonatal rat spinal cord in vitro. Neuroscience 2016; 312:227-46. [PMID: 26598070 DOI: 10.1016/j.neuroscience.2015.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 11/28/2022]
Abstract
Delivering effective commands in the nervous systems require a temporal integration of neural activities such as synchronous firing. Although sympathetic nerve discharges are characterized by synchronous firing, its temporal structures and how it is modulated are largely unknown. This study used a collagenase-dissociated splanchnic sympathetic nerve-thoracic spinal cord preparation of neonatal rats in vitro as an experimental model. Several single-fiber activities were recorded simultaneously and verified by rigorous computational algorithms. Among 3763 fiber pairs that had spontaneous fiber activities, 382 fiber pairs had firing positively correlated. Their temporal relationship was quantitatively evaluated by cross-correlogram. On average, correlated firing in a fiber pair occurred in scales of ∼40ms lasting for ∼11ms. The relative frequency distribution curves of correlogram parametrical values pertinent to the temporal features were best described by trimodal Gaussians, suggesting a correlated firing originated from three or less sources. Applications of bicuculline or gabazine (noncompetitive or competitive GABA(A) receptor antagonist) and/or strychnine (noncompetitive glycine receptor antagonist) increased, decreased, or did not change individual fiber activities. Antagonist-induced enhancement and attenuation of correlated firing were demonstrated by a respective increase and decrease of the peak probability of the cross-correlograms. Heterogeneity in antagonistic responses suggests that the inhibitory neurotransmission mediated by GABA(A) and glycine receptors is not essential for but can serve as a neural substrate to modulate synchronous firing behaviors. Plausible neural mechanisms were proposed to explain the temporal structures of correlated firing between sympathetic fibers.
Collapse
Affiliation(s)
- C-K Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Ho CM, Chiang CH, Lee CM, Fan YP, Su CK. Glutamatergic activities in neonatal rat spinal cord heterogeneously regulate single-fiber splanchnic nerve discharge. Auton Neurosci 2013; 177:175-80. [PMID: 23665166 DOI: 10.1016/j.autneu.2013.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/22/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Kynurenic acid (KYN) is a metabolite of tryptophan and is involved in various neurological disorders. Using whole-bundle nerve recording techniques, we previously observed that applications of KYN to block endogenous ionotropic glutamate receptor activities in neonatal rat spinal cords in vitro cause a reversible fluctuation of splanchnic sympathetic nerve discharge (SND). We hypothesized that the SND fluctuation was due to a heterogeneous single-fiber response. To detail individual fiber activities, we used the so-called 'oligofiber recordings'. Spontaneous single-fiber activities were recorded from the collagenase-dissociated splanchnic nerve fascicles. Applications of KYN increased, decreased or did not change firing rates. The heterogeneous responses in spontaneous spiking activities were confirmed by applications of APV or CNQX, suggesting an effect mediated by endogenous NMDA- or non-NMDA receptor activities. In addition to changes in firing rates, apparent drug-induced changes in firing patterns were also observed in some fiber activities. Using the oligofiber recording techniques, we confirmed a differential role of endogenous ionotropic glutamate receptor activities in regulating sympathetic outflows from the spinal cord of neonatal rats. Fine-tuning of ionotropic glutamate receptor activities in the spinal cord may serve as a simple way for heterogeneous regulation of various sympathetic-targeting tissues.
Collapse
Affiliation(s)
- Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
6
|
Supraspinal contribution to splanchnic sympathetic activity in neonatal mouse and rat brainstem–spinal cord in vitro. Auton Neurosci 2010; 156:51-9. [DOI: 10.1016/j.autneu.2010.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 03/06/2010] [Accepted: 03/10/2010] [Indexed: 02/08/2023]
|
7
|
Su CK, Ho CM, Kuo HH, Wen YC, Chai CY. Sympathetic-correlated c-Fos expression in the neonatal rat spinal cord in vitro. J Biomed Sci 2009; 16:44. [PMID: 19409080 PMCID: PMC2687431 DOI: 10.1186/1423-0127-16-44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 05/01/2009] [Indexed: 02/07/2023] Open
Abstract
An isolated thoracic spinal cord of the neonatal rat in vitro spontaneously generates sympathetic nerve discharge (SND) at ~25 degrees C, but it fails in SND genesis at < or = 10 degrees C. Basal levels of the c-Fos expression in the spinal cords incubated at < or = 10 degrees C and ~25 degrees C were compared to determine the anatomical substrates that might participate in SND genesis. Cells that exhibited c-Fos immunoreactivity were virtually absent in the spinal cords incubated at < or = 10 degrees C. However, in the spinal cords incubated at ~25 degrees C, c-Fos-positive cells were found in the dorsal laminae, the white matter, lamina X, and the intermediolateral cell column (IML). Cell identities were verified by double labeling of c-Fos with neuron-specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), or choline acetyltransferase (ChAT). The c-Fos-positive cells distributed in the white matter and lamina X were NeuN-negative or GFAP-positive and were glial cells. Endogenously active neurons showing c-Fos and NeuN double labeling were scattered in the dorsal laminae and concentrated in the IML. Double labeling of c-Fos and ChAT confirmed the presence of active sympathetic preganglionic neurons (SPNs) in the IML. Suppression of SND genesis by tetrodotoxin (TTX) or mecamylamine (MECA, nicotinic receptor blocker) almost abolished c-Fos expression in dorsal laminae, but only mildly affected c-Fos expression in the SPNs. Therefore, c-Fos expression in some SPNs does not require synaptic activation. Our results suggest that spinal SND genesis is initiated from some spontaneously active SPNs, which are capable of TTX- or MECA-resistant c-Fos expression.
Collapse
Affiliation(s)
- Chun-Kuei Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | - Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | - Hsiao-Hui Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan, Republic of China
| | - Yu-Chuan Wen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | - Chok-Yung Chai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| |
Collapse
|
8
|
Ho CM, Tarng GW, Su CK. Comparison of effects of propofol and midazolam at sedative concentrations on sympathetic tone generation in the isolated spinal cord of neonatal rats. Acta Anaesthesiol Scand 2007; 51:708-13. [PMID: 17567271 DOI: 10.1111/j.1399-6576.2007.01333.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Propofol and midazolam are common sedatives for critically ill patients. Little is known about the effects of propofol and midazolam on central sympathetic activity when drug concentrations in extracellular milieu are under precise control. Previous work using an in vitro neonatal rat splanchnic nerve-spinal cord preparation has demonstrated that tonic sympathetic activity is generated spontaneously in the thoracic spinal cord. The aim of this study was to investigate the concentration effects of propofol and midazolam on spinally generated sympathetic activity. METHODS Using an in vitro neonatal rat splanchnic nerve-spinal cord preparation that allows the precise control of drug concentrations, the central sympathetic effects elicited by the application of propofol (10-640 microM) and midazolam (10-640 microM) were compared. RESULTS There was a prompt decrease in sympathetic activity on application of propofol or midazolam in a concentration-dependent manner. A significant decrease in sympathetic activity was observed on application of propofol at 80-640 microM; however, the application of propofol at 10-40 microM caused only a slight alteration in activity. The sympathetic activity was not altered significantly by 10 microM of midazolam, but the application of midazolam at 20-640 microM caused a significant decrease in activity. Thus, in these experimental conditions, the minimum concentration of propofol causing a significant decrease in sympathetic activity was 80 microM and that of midazolam was 20 microM. CONCLUSIONS The current findings suggest that the administration of 9-19 microM of propofol or 0.7-0.9 microM of midazolam, the clinically relevant concentrations for sedation, does not alter central sympathetic outflow at the spinal cord level. However, propofol at a concentration of 86 microM, which could be achieved by a single-bolus loading dose to induce sedation, depresses central sympathetic activity.
Collapse
Affiliation(s)
- C-M Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan.
| | | | | |
Collapse
|
9
|
Chen HK, Su CK. Endogenous activation of nicotinic receptors underlies sympathetic tone generation in neonatal rat spinal cord in vitro. Neuropharmacology 2006; 51:1120-8. [PMID: 16904709 DOI: 10.1016/j.neuropharm.2006.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 06/16/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
Without the brainstem, thoracic spinal cords of neonatal rats in vitro spontaneously generate tonic sympathetic nerve discharge (SND) in the splanchnic nerves. Activation of nicotinic receptors in cords is known to alter a repertoire of neurotransmitter releases to sympathetic preganglionic neurons (SPNs). Using in vitro nerve-cord preparations, we investigated whether endogenous nicotinic receptor activity is essential for SND genesis. Application of mecamylamine, an open-channel nicotinic receptor blocker, reduced SND in a progressive manner. Exogenous activation of nicotinic receptors by application of various nicotinic agonists generally excited SND at low agonistic concentrations. At higher concentrations, however, agonists induced biphasic responses characterized by an initial excitation followed by prolonged SND suppression. Whether ionotropic glutamate, GABA(A), or glycine receptors are downstream signals of nicotinic receptor activation was explored by pretreatment of cords with selective antagonists. The initial excitation of SND persisted in the presence of ionotropic glutamate receptor antagonists. In contrast, the SND suppression was partially reversed by glycine or GABA(A) receptor antagonists. Incubation of the cord in a low Ca(2+)/high Mg(2+) bath solution to block Ca(2+)-dependent synaptic transmission did not affect SND excitation induced by nicotinic agonists, confirming direct activation of postsynaptic nicotinic receptors on SPNs. In conclusion, the endogenous activity of nicotinic receptors is essential for SND genesis in the thoracic spinal cord. Nicotinic activation of glycinergic and GABAergic interneurons may provide a recurrent inhibition of SPNs for homeostatic regulation of sympathetic outflow.
Collapse
Affiliation(s)
- Hsin-Kai Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | | |
Collapse
|
10
|
Ho CM, Su CK. Ketamine attenuates sympathetic activity through mechanisms not mediated by N-methyl-D-aspartate receptors in the isolated spinal cord of neonatal rats. Anesth Analg 2006; 102:806-10. [PMID: 16492832 DOI: 10.1213/01.ane.0000195547.35721.ff] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ketamine is believed to have sympathomimetic effects, although the central mechanism remains unclear. Using an in vitro splanchnic nerve-spinal cord preparation from neonatal rats, our previous investigations have demonstrated that tonic sympathetic activity is spontaneously generated from the thoracic spinal cord. We designed this study to investigate whether applications of ketamine to the cord would augment sympathetic activity and whether this action was dependent on N-methyl-d-aspartate receptors. Bath application of ketamine significantly reduced sympathetic activity in a concentration-dependent manner. Ketamine in 10, 20, 40, 80, and 120 microM reduced the sympathetic activity to 82.6% +/- 4.4% (P < 0.05), 61.7% +/- 5.1%, 42.8% +/- 4.2%, 24.9% +/- 4.4%, and 9.2% +/- 2.7% of the control value, respectively (P < 0.01, n = 8 for each test). The 50% inhibitory concentration of ketamine on sympathetic activity was 32 muM. Pretreatment with DL-2-amino-5-phosphonovaleric acid, a selective competitive N-methyl-d-aspartate receptor antagonist, did not alter ketamine-induced depression of sympathetic activity. These results suggest that ketamine reduces sympathetic activity by mechanisms that are independent of N-methyl-d-aspartate receptor activity.
Collapse
Affiliation(s)
- Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan.
| | | |
Collapse
|
11
|
Cheng YW, Ku MC, Ho CM, Chai CY, Su CK. GABAB-receptor-mediated suppression of sympathetic outflow from the spinal cord of neonatal rats. J Appl Physiol (1985) 2005; 99:1658-67. [PMID: 16037405 DOI: 10.1152/japplphysiol.00334.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using a splanchnic nerve-spinal cord preparation in vitro that could spontaneously generate sympathetic nerve discharge (SND), we investigated the roles of intraspinal GABAB receptors in the regulation of SND. Despite an age-dependent difference in sensitivity, bath applications of baclofen (Bac; GABAB-receptor agonist) consistently reduced SND in a concentration-dependent manner. The drug specificity of Bac in activation of GABAB receptors was verified by application of its antagonist saclofen (Sac) or CGP-46381 (CGP). Sac or CGP alone did not change SND. However, in the presence of Sac or CGP, the effects of Bac on SND inhibition were reversibly attenuated. The splanchnic sympathetic preganglionic neuron (SPN) was recorded by blind whole cell, patch-clamp techniques. We examined Bac effects on electrical membrane properties of SPNs. Applications of Bac reduced excitatory synaptic events, induced membrane hyperpolarizations, and inhibited SPN firing. In the presence of 12 mM Mg2+ or 0.5 μM TTX to block Ca2+- or action potential-dependent synaptic transmissions, applications of Bac induced an outward baseline current that reversed at −29 ± 6 mV. Because the K+ equilibrium potential in our experimental conditions was −100 mV, the Bac-induced currents could not simply be attributed to an alteration of K+ conductance. On the other hand, applications of Bac to Cs+-loaded SPNs reduced Cd2+-sensitive and high-voltage-activated inward currents, indicating an inhibition of voltage-gated Ca2+ currents. Our results suggest that the activation of intraspinal GABAB receptors suppresses SND via a mixture of ion events that may link to a change in Ca2+ conductance.
Collapse
Affiliation(s)
- Yi-Wen Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Peng SC, Ho CM, Ho ST, Tsai SK, Su CK. The role of intraspinal adenosine A1 receptors in sympathetic regulation. Eur J Pharmacol 2004; 492:49-55. [PMID: 15145705 DOI: 10.1016/j.ejphar.2004.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 03/24/2004] [Accepted: 04/01/2004] [Indexed: 11/28/2022]
Abstract
Using a splanchnic nerve-spinal cord preparation in vitro, we have previously demonstrated that tonic sympathetic activity is generated from the thoracic spinal cord. Here, we sought to determine if adenosine receptors play a role in modulating this spinally generated sympathetic activity. Various adenosine analogs were applied. N6-Cyclopentyladenosine (CPA, adenosine A1 receptor agonist) and 5'-N-ethylcarboxamidoadenosine (NECA, adenosine A1/A2 receptor agonist) reduced, while N6-[2-(4-aminophenyl)ethyl]adenosine (APNEA, non-selective adenosine A3 receptor agonist) did not alter sympathetic activity. The inhibitory effect of CPA or NECA on sympathetic activity was reversed by 8-cyclopentyltheophylline (CPT, adenosine A1 receptor antagonist) or abolished by CPT pretreatment. In the presence of 3,7-dimethyl-1-propargylxanthine (DMPX, adenosine A2 receptor antagonist), sympathetic activity was still reduced by CPA or NECA. Sympathetic activities were not changed by applications of the more selective adenosine A2 or A3 receptor agonists or antagonists, including 4-[2-[[6-amino-9-(N-ethyl-beta-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid (CGS21680), 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385), 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Chloro-IB-MECA), and 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191). These findings exclude a possible involvement of A2 or A3 receptors in sympathetic regulation at the spinal levels. Interestingly, CPT alone did not affect sympathetic activity, suggesting that adenosine A1 receptors are endogenously quiescent under our experimental conditions. We conclude that intraspinal adenosine A1 receptors may down-regulate sympathetic outflow and serve as a part of the scheme for neuroprotection.
Collapse
Affiliation(s)
- Shu-Chun Peng
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Abstract
Synaptic and endogenous pacemaker properties have been hypothesized as principal cellular mechanisms for respiratory rhythm generation. This rhythmic activity is thought to originate in the pre-Bötzinger complex, an area that can generate fictive respiration when isolated in brainstem slice preparations of mice. In slice preparations, external potassium concentration ([K+]o) is typically elevated from 3 to 8 mm to induce rhythmic population activity. However, elevated [K+](o) may not simply depolarize respiratory neurons but also change rhythm-generating mechanisms by inducing or altering pacemaker properties. To test this, we examined the membrane potential (V(m)) of nonpacemaker neurons and endogenous bursting properties of pacemaker neurons before and after blockade of excitatory and inhibitory synaptic input in 3 mm [K+]o artificial CSF (aCSF). Most pacemaker neurons (82%) ceased to burst in 3 mm [K+]o aCSF after blockade of glutamatergic transmission. In all of these, endogenous bursting was restored on additional blockade of glycinergic and GABAergic inhibition. Thus, bursting properties are suppressed by endogenous synaptic inhibition, the level of which may determine whether network rhythmicity is generated in 3 mm (n = 12) or 8 mm (n = 40) [K+]o aCSF. In 3 mm [K+]o aCSF, synaptically isolated pacemaker neurons (n = 22) continued to burst over a wide range of imposed V(m). Furthermore, the V(m) of synaptically isolated pacemaker neurons was not significantly affected (p = 0.1; n = 10) when [K+]o was changed from 8 to 3 mm, whereas isolated nonpacemakers hyperpolarized (p < 0.001; n = 14). We conclude that respiratory pacemaker neurons possess membrane properties that stabilize their bursting against changes in [K+]o and imposed changes in V(m).
Collapse
|
14
|
Su CK, Phoon SL, Yen CT. Identification of active thoracic spinal segments responsible for tonic and bursting sympathetic discharge in neonatal rats. Brain Res 2003; 966:288-99. [PMID: 12618352 DOI: 10.1016/s0006-8993(02)04227-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The isolated thoracic cord of a neonatal rat in vitro generates tonic sympathetic activities in the splanchnic nerves. This tonic sympathetic nerve discharge (SND) has a prominent quasi-periodic oscillation at approximately 1-2 Hz. Bath application of bicuculline and strychnine, which removes endogenous GABA(A) and glycine receptor activities, transforms the quasi-periodic tonic SND into synchronized bursts (bSND). Picrotoxin, another GABA(A) receptor antagonist, also induces bSND. Serial transections of the thoracic cord (T1-12) were performed to identify the cord segments responsible for these tonic and bursting SNDs. Removal of T1-5 did not affect tonic SND. Nerve-cord preparation with either T6-8 or T10-12 segments could generate a substantial amount of tonic SND that retained comparable oscillating patterns. On the other hand, removal of T1-5 significantly reduced bSND amplitude without affecting its rhythmicity. Either T6-8 or T10-12 segments alone could generate bSND. Mid-point transection of T6-12 at T9 might split bSND rhythmogenesis, leading to the occurrence of bSND that could be attributed to two independent oscillators. Our results demonstrated that three segments within the T6-12 cord were sufficient to generate a rudimentary tonic and bursting SNDs. The thoracic cord segments, however, are dynamically interacting so that a full size bSND could only be produced with the intact thoracic cord.
Collapse
Affiliation(s)
- Chun-Kuei Su
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan
| | | | | |
Collapse
|