1
|
de Souza JGV, de Souza DP, da Silva CAA, Martins Sá RW, Paton JFR, da Silva MP, Moraes DJA. Electrophysiological Properties and Morphology of Cardiac and Pulmonary Motoneurons within the Dorsal Motor Nucleus of the Vagus of Rats. Neuroscience 2024; 551:153-165. [PMID: 38821242 DOI: 10.1016/j.neuroscience.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The dorsal motor nucleus of the vagus (DMV) contains parasympathetic motoneurons that project to the heart and lungs. These motoneurons control ventricular excitability/contractility and airways secretions/blood flow, respectively. However, their electrophysiological properties, morphology and synaptic input activity remain unknown. One important ionic current described in DMV motoneurons controlling their electrophysiological behaviour is the A-type mediated by voltage-dependent K+ (Kv) channels. Thus, we compared the electrophysiological properties, synaptic activity, morphology, A-type current density, and single cell expression of Kv subunits, that contribute to macroscopic A-type currents, between DMV motoneurons projecting to either the heart or lungs of adult male rats. Using retrograde labelling, we visualized distinct DMV motoneurons projecting to the heart or lungs in acutely prepared medullary slices. Subsequently, whole cell recordings, morphological reconstruction and single motoneuron qRT-PCR studies were performed. DMV pulmonary motoneurons were more depolarized, electrically excitable, presented higher membrane resistance, broader action potentials and received greater excitatory synaptic inputs compared to cardiac DMV motoneurons. These differences were in part due to highly branched dendritic complexity and lower magnitude of A-type K+ currents. By evaluating expression of channels that mediate A-type currents from single motoneurons, we demonstrated a lower level of Kv4.2 in pulmonary versus cardiac motoneurons, whereas Kv4.3 and Kv1.4 levels were similar. Thus, with the distinct electrical, morphological, and molecular properties of DMV cardiac and pulmonary motoneurons, we surmise that these cells offer a new vista of opportunities for genetic manipulation providing improvement of parasympathetic function in cardiorespiratory diseases such heart failure and asthma.
Collapse
Affiliation(s)
- Júlia G V de Souza
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniel P de Souza
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A A da Silva
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renato W Martins Sá
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Melina P da Silva
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Davi J A Moraes
- Department of Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Xing T, Nanni G, Burkholder CR, Browning KN, Travagli RA. The substantia nigra modulates proximal colon tone and motility in a vagally-dependent manner in the rat. J Physiol 2023; 601:4751-4766. [PMID: 37772988 PMCID: PMC10873099 DOI: 10.1113/jp284238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
A monosynaptic pathway connects the substantia nigra pars compacta (SNpc) to neurons of the dorsal motor nucleus of the vagus (DMV). This monosynaptic pathway modulates the vagal control of gastric motility. It is not known, however, whether this nigro-vagal pathway also modulates the tone and motility of the proximal colon. In rats, microinjection of retrograde tracers in the proximal colon and of anterograde tracers in SNpc showed that bilaterally labelled colonic-projecting neurons in the DMV received inputs from SNpc neurons. Microinjections of the ionotropic glutamate receptor agonist, NMDA, in the SNpc increased proximal colonic motility and tone, as measured via a strain gauge aligned with the colonic circular smooth muscle; the motility increase was inhibited by acute subdiaphragmatic vagotomy. Upon transfection of SNpc with pAAV-hSyn-hM3D(Gq)-mCherry, chemogenetic activation of nigro-vagal nerve terminals by brainstem application of clozapine-N-oxide increased the firing rate of DMV neurons and proximal colon motility; both responses were abolished by brainstem pretreatment with the dopaminergic D1-like antagonist SCH23390. Chemogenetic inhibition of nigro-vagal nerve terminals following SNpc transfection with pAAV-hSyn-hM4D(Gi)-mCherry decreased the firing rate of DMV neurons and inhibited proximal colon motility. These data suggest that a nigro-vagal pathway modulates activity of the proximal colon motility tonically via a discrete dopaminergic synapse in a manner dependent on vagal efferent nerve activity. Impairment of this nigro-vagal pathway may contribute to the severely reduced colonic transit and prominent constipation observed in both patients and animal models of parkinsonism. KEY POINTS: Substantia nigra pars compacta (SNpc) neurons are connected to the dorsal motor nucleus of the vagus (DMV) neurons via a presumed direct pathway. Brainstem neurons in the lateral DMV innervate the proximal colon. Colonic-projecting DMV neurons receive inputs from neurons of the SNpc. The nigro-vagal pathway modulates tone and motility of the proximal colon via D1-like receptors in the DMV. The present study provides the mechanistic basis for explaining how SNpc alterations may lead to a high rate of constipation in patients with Parkinson's Disease.
Collapse
Affiliation(s)
| | | | | | - Kirsteen N. Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA and Neurobiology Research, Newport, NC
| | | |
Collapse
|
3
|
Nakamura NH, Fukunaga M, Oku Y. Respiratory fluctuations in pupil diameter are not maintained during cognitive tasks. Respir Physiol Neurobiol 2018; 265:68-75. [PMID: 30021125 DOI: 10.1016/j.resp.2018.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/20/2018] [Accepted: 07/14/2018] [Indexed: 01/26/2023]
Abstract
Pupil diameter fluctuation throughout the respiratory cycle is autonomically controlled in the resting state, as pupils dilate during inspiration and constrict during expiration. Furthermore, pupil size is differentially modulated by cognitive states between task engagement and disengagement. To determine whether respiratory-dependent fluctuations in pupil size are maintained during a cognitive task, we employed healthy human subjects performing a delayed matching-to-sample task with a short delay and measured their pupil sizes and R wave-to-R wave intervals (RRIs). We detected respiratory fluctuations in pupil size and the RRI during the delay period immediately before the discrimination stage of the task. During the discrimination stage, the cognitive state with the higher task engagement yielded more pupil dilation. However, respiratory fluctuations in pupil size were abolished, whereas those in the RRI were still discernible during the discrimination stage. Our results suggest that an alternative control mechanism involving the cognitive state associated with task engagement overrides the respiratory-related autonomic control of pupil diameter.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Division of Physiome, Department of Physiology, Hyogo College of Medicine, 1-1, Mukogawa cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Masaki Fukunaga
- Division of Cerebral Integration, Department of System Neuroscience, National Institute of Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo College of Medicine, 1-1, Mukogawa cho, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
4
|
Abstract
A large body of research has been dedicated to the effects of gastrointestinal peptides on vagal afferent fibres, yet multiple lines of evidence indicate that gastrointestinal peptides also modulate brainstem vagal neurocircuitry, and that this modulation has a fundamental role in the physiology and pathophysiology of the upper gastrointestinal tract. In fact, brainstem vagovagal neurocircuits comprise highly plastic neurons and synapses connecting afferent vagal fibres, second order neurons of the nucleus tractus solitarius (NTS), and efferent fibres originating in the dorsal motor nucleus of the vagus (DMV). Neuronal communication between the NTS and DMV is regulated by the presence of a variety of inputs, both from within the brainstem itself as well as from higher centres, which utilize an array of neurotransmitters and neuromodulators. Because of the circumventricular nature of these brainstem areas, circulating hormones can also modulate the vagal output to the upper gastrointestinal tract. This Review summarizes the organization and function of vagovagal reflex control of the upper gastrointestinal tract, presents data on the plasticity within these neurocircuits after stress, and discusses the gastrointestinal dysfunctions observed in Parkinson disease as examples of physiological adjustment and maladaptation of these reflexes.
Collapse
|
5
|
Browning KN, Babic T, Holmes GM, Swartz E, Travagli RA. A critical re-evaluation of the specificity of action of perivagal capsaicin. J Physiol 2013; 591:1563-80. [PMID: 23297311 DOI: 10.1113/jphysiol.2012.246827] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Perivagal application of capsaicin (1% solution) is considered to cause a selective degeneration of vagal afferent C fibres and has been used extensively to examine the site of action of many gastrointestinal (GI) neuropeptides. The actions of both capsaicin and GI neuropeptides may not be restricted to vagal afferent fibres, however, as other non-sensory neurones have displayed sensitivity to capsaicin and brainstem microinjections of these neuropeptides induce GI effects similar to those obtained upon systemic application. The aim of the present study was to test the hypothesis that perivagal capsaicin induces degeneration of vagal efferents controlling GI functions. Experiments were conducted 7-14 days after 30 min unilateral perivagal application of 0.1-1% capsaicin. Immunohistochemical analyses demonstrated that, as following vagotomy, capsaicin induced dendritic degeneration, decreased choline acetyltransferase but increased nitric oxide synthase immunoreactivity in rat dorsal motor nucleus of the vagus (DMV) neurones. Electrophysiological recordings showed a decreased DMV input resistance and excitability due, in part, to the expression of a large conductance calcium-dependent potassium current and the opening of a transient outward potassium window current at resting potential. Furthermore, the number of DMV neurones excited by thyrotrophin-releasing hormone and the gastric motility response to DMV microinjections of TRH were decreased significantly. Our data indicate that perivagal application of capsaicin induced DMV neuronal degeneration and decreased vagal motor responses. Treatment with perivagal capsaicin cannot therefore be considered selective for vagal afferent C fibres and, consequently, care is needed when using perivagal capsaicin to assess the mechanism of action of GI neuropeptides.
Collapse
Affiliation(s)
- K N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
6
|
Dergacheva O, Griffioen KJ, Neff RA, Mendelowitz D. Respiratory modulation of premotor cardiac vagal neurons in the brainstem. Respir Physiol Neurobiol 2010; 174:102-10. [PMID: 20452467 PMCID: PMC2932818 DOI: 10.1016/j.resp.2010.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 02/09/2023]
Abstract
The respiratory and cardiovascular systems are highly intertwined, both anatomically and physiologically. Respiratory and cardiovascular neurons are often co-localized in the same brainstem regions, and this is particularly evident in the ventral medulla which contains presympathetic neurons in the rostral ventrolateral medulla, premotor parasympathetic cardioinhibitory neurons in the nucleus ambiguus, and the ventral respiratory group, which includes the pre-Botzinger complex. Anatomical studies of respiratory and cardiovascular neurons have demonstrated that many of these neurons have projections and axon collateral processes which extend into their neighboring cardiorespiratory regions providing an anatomical substrate for cardiorespiratory interactions. As other reports in this Special Issue of Respiratory Physiology & Neurobiology focus on interactions between the respiratory network and baroreceptors, neurons in the nucleus tractus solitarius, presympathetic neurons and sympathetic activity, this report will focus on the respiratory modulation of parasympathetic activity and the neurons that generate parasympathetic activity to the heart, cardiac vagal neurons.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
7
|
Davidson S, Truong H, Nakagawa Y, Giesler GJ. A microinjection technique for targeting regions of embryonic and neonatal mouse brain in vivo. Brain Res 2009; 1307:43-52. [PMID: 19840780 DOI: 10.1016/j.brainres.2009.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 10/05/2009] [Accepted: 10/11/2009] [Indexed: 01/30/2023]
Abstract
A simple pressure injection technique was developed to deliver substances into specific regions of the embryonic and neonatal mouse brain in vivo. The retrograde tracers Fluorogold and cholera toxin B subunit were used to test the validity of the technique. Injected animals survived the duration of transport (24-48 h) and then were sacrificed and perfused with fixative. Small injections (<or=50 nL) were contained within targeted structures of the perinatal brain and labeled distant cells of origin in several model neural pathways. Traced neural pathways in the perinatal mouse were further examined with immunohistochemical methods to test the feasibility of double labeling experiments during development. Several experimental situations in which this technique would be useful are discussed, for example, to label projection neurons in slice or culture preparations of mouse embryos and neonates. The administration of pharmacological or genetic vectors directly into specific neural targets during development should also be feasible. An examination of the form of neural pathways during early stages of life may lead to insights regarding the functional changes that occur during critical periods of development and provide an anatomic basis for some neurodevelopmental disorders.
Collapse
Affiliation(s)
- Steve Davidson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
8
|
Wang X. Nicotinic receptors partly mediate brainstem autonomic dysfunction evoked by the inhaled anesthetic isoflurane. Anesth Analg 2009; 108:134-41. [PMID: 19095841 DOI: 10.1213/ane.0b013e31818f871c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Isoflurane is one of the most commonly used volatile anesthetics, yet the cardiorespiratory depression that occurs with its use remains poorly understood. In this study, the author examined isoflurane modulation of postsynaptic gamma-aminobutyric acid (GABA) receptors in parasympathetic cardiac vagal neurons (CVNs) and alterations of GABAergic function by targeting nicotinic acetylcholine receptors on GABAergic presynaptic terminals. METHODS Rhythmic inspiratory-related activity was recorded from the hypoglossal rootlet of 800 microm medullary sections. CVNs were identified by retrograde fluorescent labeling, and GABAergic neurotransmission to CVNs were examined using patch-clamp electrophysiological techniques. RESULTS Isoflurane at concentrations of >50 microM significantly suppressed inspiratory bursting frequency, amplitude, and duration. Isoflurane dose-dependently decreased the frequency and increased the decay time of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) in CVNs. To test whether the inhibition of GABAergic activity to CVNs was mediated by presynaptic nicotinic receptors, the nicotinic antagonist, dihydro-beta-erythroidine in an alpha(4)beta(2)-selective concentration (3 microM), was used. Dihydro-beta-erythroidine (3 microM) prevented the isoflurane-evoked depression of spontaneous GABAergic IPSC frequency, yet isoflurane still increased the IPSC decay time. CONCLUSIONS These results suggest clinically relevant concentrations of isoflurane inhibit brainstem respiratory rhythmogenesis, prolong inhibitory GABAergic postsynaptic currents and reduce GABA activity in CVNs. The decrease of GABAergic IPSCs frequency is dependent upon inhibition of presynaptic alpha(4)beta(2) nicotinic receptors.
Collapse
Affiliation(s)
- Xin Wang
- Departments of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
9
|
Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 2008; 118:863-71. [PMID: 18711023 DOI: 10.1161/circulationaha.107.760405] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Brian Olshansky
- Division of Cardiology, University of Iowa Hospitals, 200 Hawkins Dr 4426a JCP, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
10
|
Role of Purinergic and Nicotinic Receptors in the Hypoxia/Hypercapnia Evoked Excitation of Parasympathetic Cardiac Vagal Neurons in the Brainstem. Tzu Chi Med J 2008. [DOI: 10.1016/s1016-3190(08)60001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Kamendi HW, Cheng Q, Dergacheva O, Frank JG, Gorini C, Jameson HS, Pinol RA, Wang X, Mendelowitz D. Recruitment of excitatory serotonergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus post hypoxia and hypercapnia. J Neurophysiol 2008; 99:1163-8. [PMID: 18184887 DOI: 10.1152/jn.01178.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inhibitory GABAergic and glycinergic neurotransmission to cardioinhibitory cardiac vagal neurons (CVNs) increase during inspiratory activity and likely mediate respiratory sinus arrhythmia, while the frequency of excitatory postsynaptic currents (EPSCs) in CVNs are unaltered during the different phases of respiration. However, following hypoxia and hypercapnia (H/H), the parasympathetic activity to the heart increases and thus far, identification of the pathways and neurotransmitters that are responsible for exciting CVNs post H/H are unclear. This study identifies different excitatory pathways to CVNs recruited post H/H. Spontaneous and inspiratory-related EPSCs were recorded in CVNs before, during, and after 10 min of H/H in an in vitro slice preparation that retains rhythmic respiratory activity. Before and during H/H, EPSCs in CVNs were completely blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and d(-)-2-amino-5-phosphonopentanoic acid (AP5), selective AMPA/kainate and N-methyl-d-apartate (NMDA) receptor blockers, respectively. However, after H/H, there was a significant increase in EPSCs during each inspiratory burst. While some of the inspiratory-related EPSCs were blocked by the broad purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS) and the specific P2X receptor antagonist 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate monolithium trisodium salt (TNP-ATP) a P2X receptor blocker, most of the recruited excitatory neurotransmission to CVNs is serotonergic because odansetron, a selective 5-HT3 antagonist, abolished the majority of the spontaneous and inspiratory-related EPSCs evoked during recovery from H/H. The results from this study suggest that following episodes of H/H, two nonglutamatergic excitatory pathways, purinergic and serotonergic, activating P2X and 5-HT3 receptors, respectively, are recruited to excite CVNs in the post H/H recovery period.
Collapse
Affiliation(s)
- H W Kamendi
- Department of Pharmacology and Physiology, George Washington University, 2300 Eye St. NW, Washington, DC 20037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang X, Dergacheva O, Kamendi H, Gorini C, Mendelowitz D. 5-Hydroxytryptamine 1A/7 and 4alpha receptors differentially prevent opioid-induced inhibition of brain stem cardiorespiratory function. Hypertension 2007; 50:368-76. [PMID: 17576856 DOI: 10.1161/hypertensionaha.107.091033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Opioids evoke respiratory depression, bradycardia, and reduced respiratory sinus arrhythmia, whereas serotonin (5-HT) agonists stimulate respiration and cardiorespiratory interactions. This study tested whether serotonin agonists can prevent the inhibitory effects of opioids on cardiorespiratory function. Spontaneous and rhythmic inspiratory-related activity and gamma-aminobutyric acid (GABA) neurotransmission to premotor parasympathetic cardioinhibitory neurons in the nucleus ambiguus were recorded simultaneously in an in vitro thick slice preparation. The mu-opioid agonist fentanyl inhibited respiratory frequency. The 5-hydroxytryptamine 1A/7 receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin increased respiratory frequency by itself and also prevented the fentanyl-induced respiratory depression. The 5-hydroxytryptamine 4alpha agonist BIMU-8 did not by itself change inspiratory activity but prevented the mu-opioid-mediated respiratory depression. Both spontaneous and inspiratory-evoked GABAergic neurotransmission to cardiac vagal neurons were inhibited by fentanyl. 8-Hydroxy-2-(di-n-propylamino)tetralin inhibited spontaneous but not inspiratory-evoked GABAergic activity to parasympathetic cardiac neurons. However, 8-hydroxy-2-(di-n-propylamino)tetralin differentially altered the opioid-mediated depression of inspiratory-evoked GABAergic activity but did not change the opioid-induced reduction in spontaneous GABAergic neurotransmission. In contrast, BIMU-8 did not alter GABAergic neurotransmission to cardiac vagal neurons by itself but prevented the fentanyl depression of both spontaneous and inspiratory-elicited GABAergic neurotransmission to cardiac vagal neurons. In the presence of tetrodotoxin, the inhibition of GABAergic inhibitory postsynaptic currents with fentanyl is prevented by coapplication of BIMU-8, indicating that BIMU-8 acts at presynaptic GABAergic terminals to prevent fentanyl-induced depression. These results suggest that activation of 5-hydroxytryptamine receptors, particularly 5-hydroxytryptamine 4alpha agonists, may be a useful therapeutic approach in preventing opioid-evoked cardiorespiratory depression.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology and Physiology, George Washington University, 2300 Eye St, NW, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
13
|
Derbenev AV, Monroe MJ, Glatzer NR, Smith BN. Vanilloid-mediated heterosynaptic facilitation of inhibitory synaptic input to neurons of the rat dorsal motor nucleus of the vagus. J Neurosci 2006; 26:9666-72. [PMID: 16988037 PMCID: PMC6674441 DOI: 10.1523/jneurosci.1591-06.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vanilloid type-1 receptors (VR1) are abundant in the dorsal vagal complex, where their function is mostly unknown. We examined the role of VR1 in regulating synaptic inputs to neurons of the dorsal motor nucleus of the vagus (DMV). Using patch-clamp recordings from DMV neurons in brainstem slices, capsaicin was found to increase action potential-independent inhibitory input onto DMV neurons. This rapid effect was mimicked by application of the endogenous cannabinoid, anandamide and blocked by VR1 antagonists. The VR1-mediated facilitation of synaptic inhibition was reduced by ionotropic and metabotropic glutamate receptor antagonists, suggesting an indirect, heterosynaptic enhancement of GABA release caused by a VR1-mediated increase in glutamate release from presynaptic terminals of excitatory neurons. Application of L-glutamate also increased GABA release. The paired-pulse ratio was increased for IPSCs evoked after electrical stimulation of the nucleus tractus solitarius, but the effect was slower than for the enhancement of spontaneous and miniature IPSCs. Capsaicin also increased the frequency of glutamatergic postsynaptic currents in a VR1-mediated manner. Results of these studies suggest that VR1-containing glutamatergic terminals contact DMV neurons. Activation of VR1 potently enhances glutamate release onto GABAergic terminals, facilitating GABA release. Endogenous cannabinoids can thereby rapidly enhance inhibitory input to DMV neurons via VR1-mediated presynaptic mechanisms.
Collapse
Affiliation(s)
- Andrei V. Derbenev
- Department of Cell and Molecular Biology, Division of Neurobiology, Tulane University, New Orleans, Louisiana 70118
| | - Michael J. Monroe
- Department of Cell and Molecular Biology, Division of Neurobiology, Tulane University, New Orleans, Louisiana 70118
| | - Nicholas R. Glatzer
- Department of Cell and Molecular Biology, Division of Neurobiology, Tulane University, New Orleans, Louisiana 70118
| | - Bret N. Smith
- Department of Cell and Molecular Biology, Division of Neurobiology, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|
14
|
Bouairi E, Kamendi H, Wang X, Gorini C, Mendelowitz D. Multiple types of GABAA receptors mediate inhibition in brain stem parasympathetic cardiac neurons in the nucleus ambiguus. J Neurophysiol 2006; 96:3266-72. [PMID: 16914614 DOI: 10.1152/jn.00590.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent work suggests neurons can have different types of gamma-aminobutyric acid type A (GABA(A)) receptors that mediate phasic inhibitory postsynaptic currents (IPSCs) and tonic currents. This study examines the diversity of GABAergic synaptic currents in parasympathetic cardioinhibitory neurons that receive rhythmic bursts of GABAergic neurotransmission. Focal application of gabazine (25 microM) to cardiac vagal neurons in vitro did not change the frequency of firing in spontaneously active neurons or the resting membrane potential; however, picrotoxin (100 microM) significantly depolarized cardiac vagal neurons and increased their firing. Similarly, gabazine (25 microM) selectively blocked GABAergic IPSCs but did not change holding current in cardiac vagal neurons, whereas picrotoxin (100 microM) not only blocked GABAergic IPSCs but also rapidly decreased the tonic current. Because the tonic current could be attributable to activation of GABA receptors by ambient GABA or, alternatively, spontaneous opening of constitutively active GABA channels, an antagonist for the GAT-1 GABA transporter NO-711 (10 microM) was applied to distinguish between these possibilities. NO-711 did not significantly alter the holding current in these neurons. The benzodiazepine flunitrazepam (1 microM) significantly increased the tonic current and GABAergic IPSC decay time; surprisingly, however, in the presence of gabazine flunitrazepam failed to elicit any change. These results suggest cardiac vagal neurons possess gabazine-sensitive GABA(A) receptors that mediate phasic synaptic currents, a gabazine-insensitive but picrotoxin-sensitive extrasynaptic tonic current that when blocked depolarizes and increases the firing rate of cardiac vagal neurons, and benzodiazepines recruit a third type of GABA(A) receptor that is sensitive to gabazine and augments the extrasynaptic tonic current.
Collapse
Affiliation(s)
- Euguenia Bouairi
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Mechanisms responsible for atrial fibrillation are not completely understood but the autonomic nervous system is a potentially potent modulator of the initiation, maintenance, termination and ventricular rate determination of atrial fibrillation. Complex interactions exist between the parasympathetic and sympathetic nervous systems on the central, ganglionic, peripheral, tissue, cellular and subcellular levels that could be responsible for alterations in conduction and refractoriness properties of the heart as well as the presence and type of triggered activity, all of which could contribute to atrial fibrillation. These dynamic inter-relationships may also be altered dependent upon other neurohumoral modulators and cardiac mechanical effects from ventricular dysfunction and congestive heart failure. The clinical implications regarding the effects of the autonomic nervous system in atrial fibrillation are widespread. The effects of modulating ganglionic input into the atria may alter the presence or absence of atrial fibrillation as has been highlighted from ablation investigations. This article reviews what is known regarding the inter-relationships between the autonomic nervous system and atrial fibrillation and provides state of the art information at all levels of autonomic interactions.
Collapse
Affiliation(s)
- Brian Olshansky
- Department of Internal Medicine, University of Iowa Hospitals, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Wang X, Evans C, Mendelowitz D. Voltage gated P/Q and N-type calcium channels mediate the nicotinic facilitation of GABAergic and glycinergic inputs to cardiac vagal neurons. Neuropharmacology 2004; 46:372-8. [PMID: 14975692 DOI: 10.1016/j.neuropharm.2003.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 09/24/2003] [Accepted: 09/24/2003] [Indexed: 11/23/2022]
Abstract
Previous work has shown endogenous cholinergic activity facilitates both GABAergic and glycinergic neurotransmission to premotor cardiac vagal neurons. Exogenous application of nicotine increases the frequency of glycinergic and GABAergic inhibitory postsynaptic currents (IPSCs) and miniature IPSCs (mIPSCs) to cardiac vagal neurons. In this study we examined whether the nicotine evoked facilitation of GABAergic and glycinergic neurotransmission to cardiac vagal neurons is dependent or independent of activation of voltage dependent calcium channels. Nicotine evoked increases in GABAergic and glycinergic mIPSCs in cardiac vagal neurons which were blocked by the non-specific calcium channel antagonist cadmium (100 microM). Application of the L (Cav 1) type calcium channel antagonist nimodipine (10 microM) had no effect. However, the increase in both GABAergic and glycinergic mIPSCs elicited by nicotine was abolished by the P/Q (Cav 2.1) voltage gated calcium channel antagonist omega-agatoxin IVA (100 nM). Omega-conotoxin GVIA (1 microM), a specific blocker of N (Cav 2.2) type voltage gated calcium currents, inhibited the nicotine elicited augmentation of GABA and abolished the increase in glycine mIPSC frequency. This work demonstrates that the nicotine evoked facilitation of GABAergic and glycinergic neurotransmission to cardiac vagal neurons is dependent upon activation of P/Q (Cav 2.1) and N (Cav 2.2) type calcium channels.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA
| | | | | |
Collapse
|