1
|
Deficiency of female sex hormones augments PGE2 and CGRP levels within midbrain periaqueductal gray. J Neurol Sci 2014; 346:107-11. [DOI: 10.1016/j.jns.2014.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 01/01/2023]
|
2
|
Popp L, Häussler A, Olliges A, Nüsing R, Narumiya S, Geisslinger G, Tegeder I. Comparison of nociceptive behavior in prostaglandin E, F, D, prostacyclin and thromboxane receptor knockout mice. Eur J Pain 2012; 13:691-703. [DOI: 10.1016/j.ejpain.2008.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 08/08/2008] [Accepted: 09/07/2008] [Indexed: 11/30/2022]
|
3
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
4
|
Lu J, Xing J, Li J. Prostaglandin E2 (PGE2) inhibits glutamatergic synaptic transmission in dorsolateral periaqueductal gray (dl-PAG). Brain Res 2007; 1162:38-47. [PMID: 17612511 PMCID: PMC2030489 DOI: 10.1016/j.brainres.2007.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/25/2007] [Accepted: 06/02/2007] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to determine the role of prostaglandin E(2) (PGE(2)) in modulating neuronal activity of the dorsolateral periaqueductal gray (dl-PAG) through excitatory and inhibitory synaptic inputs. First, whole cell voltage-clamp recording was performed to obtain excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) of the dl-PAG neurons. Our results show that PGE(2) significantly decreased the frequency of miniature EPSCs and amplitude of evoked EPSCs. The effects were mimicked by sulprostone, an agonist to PGE(2) EP(3) receptors. In contrast, PGE(2) had no distinct effect on IPSCs. In addition, spontaneous action potential of the dl-PAG neurons was recorded using whole cell current-clamp methods. PGE(2) significantly attenuated the discharge rate of the dl-PAG neurons. The decreased firing activity was abolished in the presence of glutamate NMDA and non-NMDA receptor antagonists. The results from the current study provide the first evidence indicating that PGE(2) inhibits the neuronal activity of the dl-PAG via selective attenuation of glutamatergic synaptic inputs, likely due to the activation of presynaptic EP(3) receptors.
Collapse
Affiliation(s)
| | | | - Jianhua Li
- *Corresponding Author: Dr. Jianhua Li, Heart and Vascular Institute and, Division of Cardiology H047, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, Telephone: (717) 531-5051, FAX: (717) 531-1792, E-mail:
| |
Collapse
|
5
|
Knight YE, Levy MJ, O'Shaughnessy CT, Goadsby PJ. Prostaglandin E2 injected into the posterior hypothalamus has no effect on trigeminal nociception in the rat. Neurosci Lett 2003; 350:85-8. [PMID: 12972159 DOI: 10.1016/s0304-3940(03)00874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Craniovascular prostaglandin E2 (PGE2) release is elevated in the headache phase of migraine and in experimental models of headache. PGE2 synthesised in the brain may be involved in modulating trigeminal nociception. We examined whether PGE2 injected into the posterior hypothalamus could modulate trigeminovascular nociception. In seven rats, electrophysiological recordings were made from trigeminal nucleus caudalis neurons responsive to noxious middle meningeal artery stimulation and inhibited by bicuculline activation of the posterior hypothalamus. Microinjection into the posterior hypothalamus of a non-pyrogenic dose of PGE2 (2.5 microg/ml) produced no effect on nociceptive trigeminal nucleus caudalis neurons compared with saline injection (P=0.29). The mean response to PGE2 injection was 97% of baseline. We conclude that PGE2 in the posterior hypothalamus is unlikely to play a significant role in modulating trigeminal nociception.
Collapse
|
6
|
Oka T, Oka K, Saper CB. Contrasting effects of E type prostaglandin (EP) receptor agonists on core body temperature in rats. Brain Res 2003; 968:256-62. [PMID: 12663095 DOI: 10.1016/s0006-8993(03)02268-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Prostaglandin E2 (PGE2) is thought to be a principal fever mediator. There are four subtypes of PGE (EP) receptors, EP1-EP4. We investigated which EP receptors mediate PGE2-induced hyperthermia by injecting selective EP receptor agonists into the rat lateral cerebral ventricle under unrestrained condition. ONO-DI-004, an EP1 receptor agonist, increased the core temperature (T(c)) in a dose-dependent manner (1.6+/-0.1 degrees C at 20 nmol, with the peak 30 min after injection) with a time course similar to PGE2-induced hyperthermia. ONO-AE1-259-01 (20 nmol), an EP2 receptor agonist, did not change the T(c). ONO-AE-248 (20 nmol), an EP3 receptor agonist, also increased the T(c). However, the peak effect was delayed (1.2+/-0.2 degrees C, 50 min after injection) compared to PGE2. In contrast, ONO-AE1-329, an EP4 receptor agonist, decreased the T(c). These findings suggest that the EP1, EP3, and EP4 receptors all may contribute to the thermoregulatory response to PGE2, but each may have a different role.
Collapse
Affiliation(s)
- Takakazu Oka
- Department of Neurology and Program in Neuroscience, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
7
|
Summy-Long JY, Bui V, Gestl S, Kadekaro M. Nitric oxide, interleukin and prostaglandin interactions affecting the magnocellular system. Brain Res 2002; 940:10-20. [PMID: 12020869 DOI: 10.1016/s0006-8993(02)02556-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnocellular neurons are innervated by an excitatory histaminergic pathway. They also express neuronal NO synthase, interleukin-1beta (IL-1beta) and cyclo-oxygenase (COX). In normally hydrated rats when NO synthase activity is inhibited with N(G)-nitro-L-arginine methyl ester (L-NAME), administered intracerebroventricularly (i.c.v.), OT concentration in plasma increases. In the present study, the increase in hormone after L-NAME is attenuated by indomethacin, an inhibitor of COX, as well as by antagonists of histamine receptors at H1 (pyrilamine) and H2 (cimetidine) subtypes injected i.c.v. Moreover, enhanced OT secretion induced by centrally administered IL-1beta, but not naloxone (opiate receptor antagonist), is prevented by indomethacin. PGE2 and PGD2 (i.c.v.) stimulate OT release, but only PGD2 affects circulating vasopressin levels. Thus, NO inhibits release of OT stimulated by: (1) a COX-dependent mechanism, i.e. NO-->-(COX-->+PG-->+OT release); (2) histamine, i.e. NO-->-(histamine-->H1 and H2 receptors-->+OT release); and possibly (3) IL-1beta, i.e. NO-->-(IL-1beta-->+COX-->+PG-->+OT release). These interactions of NO, cytokine and histamine may be important for management of stress-induced activation of neuroendocrine systems.
Collapse
Affiliation(s)
- Joan Y Summy-Long
- Department of Pharmacology-MCH108, The Pennsylvania State University, The Milton S. Hershey Medical Center, P.O. Box 850, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
8
|
Hönemann CW, Heyse TJ, Möllhoff T, Hahnenkamp K, Berning S, Hinder F, Linck B, Schmitz W, van Aken H. The inhibitory effect of bupivacaine on prostaglandin E(2) (EP(1)) receptor functioning: mechanism of action. Anesth Analg 2001; 93:628-34. [PMID: 11524330 DOI: 10.1097/00000539-200109000-00019] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prostaglandin E(2) receptors, subtype EP(1) (PGE(2)EP(1)) have been linked to several physiologic responses, such as fever, inflammation, and mechanical hyperalgesia. Local anesthetics modulate these responses, which may be due to direct interaction of local anesthetics with PGE(2)EP(1) receptor signaling. We sought to characterize the local anesthetic effects on PGE(2)EP(1) signaling and elucidate mechanisms of anesthetic action. In Xenopus laevis oocytes, recombinant expressed PGE(2)EP(1) receptors were functional (half maximal effect concentration, 2.09 +/- 0.98 x 10(-6) M). Bupivacaine, after incubation for 10 min, inhibited concentration-dependent PGE(2)EP(1) receptor functioning (half-maximal inhibitory effect concentration, 3.06 +/- 1.26 x 10(-6) M). Prolonged incubation in bupivacaine (24 h) inhibited PGE(2)-induced calcium-dependent chloride currents (I(Cl(Ca))) even more. Intracellular pathways were not significantly inhibited after 10 min of incubation in bupivacaine. But I(Cl(Ca)) activated by intracellular injection of GTPgammaS (a nonhydrolyzable guanosine triphosphate [GTP] analog that activates G proteins, irreversible because it cannot be dephosphorylated by the intrinsic GTPase activity of the alpha subunit of the G protein) was reduced after 24 h of incubation in bupivacaine, indicating a G protein-dependent effect. However, inositol 1,4,5-trisphosphate- and CaCl(2)- induced I(Cl(Ca)) were unaffected by bupivacaine at any time points tested. Therefore, bupivacaine's effect is at phospholipase C or at the G protein or the PGE(2)EP(1) receptor. All inhibitory effects were reversible. We conclude that bupivacaine inhibited PGE(2)EP(1) receptor signaling at clinically relevant concentrations. These effects could, at least in part, explain how local anesthetics affect physiologic responses such as fever, inflammation, and hyperalgesia during the perioperative period.
Collapse
Affiliation(s)
- C W Hönemann
- Klinik und Poliklinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dolan S, Nolan AM. Biphasic modulation of nociceptive processing by the cyclic AMP-protein kinase A signalling pathway in sheep spinal cord. Neurosci Lett 2001; 309:157-60. [PMID: 11514065 DOI: 10.1016/s0304-3940(01)02063-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A role for the cyclic AMP (cAMP)-protein kinase A (PKA) transduction cascade in nociceptive processing has been identified. This study examined the effects of intrathecal treatment with the cAMP analogue 8-Bromo-cAMP and the PKA inhibitor H-89 dihydrochloride on nociceptive thresholds to mechanical stimulation in six adult sheep to define further the role of cAMP in spinal nociception. Treatment with 420 nmol 8-Br-cAMP induced significant hypoalgesia to noxious stimulation, while a 10-fold higher dose (4.2 micromol) induced mechanical hyperalgesia. Both of these behaviours were blocked by H-89 (38-380 nmol). Treatment with high dose H-89 (380 nmol) alone significantly increased nociceptive thresholds. These results demonstrate that activation of the cAMP-PKA signalling pathway modulates acute nociceptive events in spinal cord in a biphasic manner, and suggest that significant tonic activity exists in this pathway.
Collapse
Affiliation(s)
- S Dolan
- Division of Veterinary Physiology and Pharmacology, Department of Veterinary Preclinical Studies, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | | |
Collapse
|
10
|
Zhang Z, Hefferan MP, Loomis CW. Topical bicuculline to the rat spinal cord induces highly localized allodynia that is mediated by spinal prostaglandins. Pain 2001; 92:351-361. [PMID: 11376908 DOI: 10.1016/s0304-3959(01)00276-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to investigate the allodynic effect of bicuculline (BIC) given topically to the dorsal surface of the rat spinal cord, and to determine if spinal prostaglandins (PGs) mediate the allodynic state arising from spinal GABA(A)-receptor blockade. Male Sprague-Dawley rats (325-400 g) were anaesthetized with halothane and maintained with urethane for the continuous monitoring of blood pressure (MAP), heart rate (HR) and cortical electroencephalogram (EEG). A laminectomy was performed to expose the dorsal surface of the spinal cord. Unilateral application of BIC (0.1 microg in 0.1 microl) to the L5 or L6 spinal segment induced a highly localized allodynia (e.g. one or two digits) on the ipsilateral hind paw. Thus, hair deflection (brushing the hair with a cotton-tipped applicator) in the presence, but not absence of BIC, evoked an increase in MAP and HR, abrupt motor responses (MR; e.g. withdrawal of the hind leg, kicking, and/or scratching) on the affected side, and desynchrony of the EEG. BIC-allodynia was dose-dependent, yielding ED(50)'s (95% CI's) of 45 ng (31-65) for MAP; 68 ng (46-101) for HR and 76 ng (60-97) for MR. Allodynia was sustained for up to 2 h with repeated BIC application without any detectable change in the location or area of peripheral sensitization. Pretreatment with either the EP(1)- receptor antagonist, SC-51322, the cyclooxygenase (COX)-2 selective inhibitor, NS-398, or the NMDA-receptor antagonist, AP-7, inhibited BIC-allodynia in a dose-dependent manner. The results demonstrate: (a) BIC, applied to the dorsal surface of the spinal cord, induces highly localized allodynia; (b) this effect can be sustained with repeated BIC application; (c) it is evoked by NMDA-dependent afferent input; (d) spinal PGs are synthesized by constitutive COX-2 during BIC-allodynia; and (e) spinal PGs contribute to the abnormal processing of tactile input via spinal EP1-receptors.
Collapse
Affiliation(s)
- Zizhen Zhang
- School of Pharmacy and Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6, Canada
| | | | | |
Collapse
|
11
|
Nakamura K, Li YQ, Kaneko T, Katoh H, Negishi M. Prostaglandin EP3 receptor protein in serotonin and catecholamine cell groups: a double immunofluorescence study in the rat brain. Neuroscience 2001; 103:763-75. [PMID: 11274793 DOI: 10.1016/s0306-4522(01)00027-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prostaglandin E(2) exerts diverse physiological actions in the central nervous system with unknown mechanisms. We have reported the immunohistochemical localization of the EP3 receptor, one of the prostaglandin E receptor subtypes, in various brain regions including many monoaminergic nuclei. In the present study, a double immunofluorescence technique with an antibody to EP3 receptor and antibodies to markers for monoamine neurons was employed to examine the expression of the receptor in serotonin and catecholamine neurons, and to reveal the distribution of the receptor-expressing monoamine neurons in the rat brain. Almost all serotonergic cells in the medulla oblongata (B1-B4) exhibited EP3 receptor-like immunoreactivity, whereas mesencephalic and pontine serotonergic cell groups (B5-B9) contained relatively small populations of EP3 receptor-immunoreactive cells. In the catecholaminergic cell groups, many of the noradrenergic A7 cells in the subcoeruleus nucleus showed immunoreactivity for the receptor. The locus coeruleus exhibited EP3 receptor-like immunoreactivity densely in the neuropil and occasionally in neuronal cell bodies, all of which were immunopositive for dopamine beta-hydroxylase, as observed by confocal laser microscopy. Many of the other noradrenergic and adrenergic cell groups contained small populations of EP3 receptor-like immunoreactive cells. In contrast, no EP3 receptor-like immunoreactivity was detected in the noradrenergic A2 and A4, the adrenergic C2, and all the dopaminergic cell groups. The expression of EP3 receptor by most of the serotonergic, noradrenergic and adrenergic cell groups suggests that prostaglandin E(2) modulates many physiological processes mediated by widely distributed monoaminergic projections through activation of the EP3 receptor on the monoaminergic neurons; for instance, it may modulate nociceptive and autonomic processes by affecting the descending serotonergic pathway from the raphe magnus nucleus to the spinal cord.
Collapse
Affiliation(s)
- K Nakamura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
12
|
Hori T, Oka T, Hosoi M, Abe M, Oka K. Hypothalamic mechanisms of pain modulatory actions of cytokines and prostaglandin E2. Ann N Y Acad Sci 2001; 917:106-20. [PMID: 11268335 DOI: 10.1111/j.1749-6632.2000.tb05375.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A decrease and subsequent increase in nociceptive threshold in the whole body are clinical symptoms frequently observed during the course of acute systemic infection. These biphasic changes in nociceptive reactivity are brought about by central signal substances induced by peripheral inflammatory messages. Systemic administration of lipopolysaccharide (LPS) or interleukin-1 beta (IL-1 beta), an experimental model of acute infection, may mimic the biphasic changes in nociception, hyperalgesia at small doses of LPS, and IL-1 beta and analgesia at larger doses. Our behavioral and electrophysiological studies have revealed that IL-1 beta in the brain induces hyperalgesia through the actions of prostaglandin E2 (PGE2) on EP3 receptors in the preoptic area and its neighboring basal forebrain, whereas the IL-1 beta-induced analgesia is produced by the actions of PGE2 on EP1 receptors in the ventromedial hypothalamus. An intravenous injection of LPS (10-100 micrograms/kg) produced hyperalgesia only during the period before fever develops and was abolished by microinjection of NS-398 (an inhibitor of cyclooxygenase 2) into the preoptic area, but not into the other areas in the hypothalamus. The hyperalgesia induced by the cytokines PGE2 and LPS may explain the systemic hyperalgesia clinically observed in the early phase of infectious diseases, which probably warns the organisms of infection before the full development of sickness symptoms. The switching of nociception from hyperalgesia to analgesia accompanied by sickness symptoms may reflect changes in the host's strategy for fighting microbial invasion as the disease progresses.
Collapse
Affiliation(s)
- T Hori
- Department of Integrative Physiology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
13
|
Watkins LR, Maier SF. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu Rev Psychol 2001; 51:29-57. [PMID: 10751964 DOI: 10.1146/annurev.psych.51.1.29] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on the powerful pain facilitatory effects produced by the immune system. Immune cells, activated in response to infection, inflammation, or trauma, release proteins called proinflammatory cytokines. These proinflammatory cytokines signal the central nervous system, thereby creating exaggerated pain as well as an entire constellation of physiological, behavioral, and hormonal changes. These changes are collectively referred to as the sickness response. Release of proinflammatory cytokines by immune cells in the body leads, in turn, to release of proinflammatory cytokines by glia within the brain and spinal cord. Evidence is reviewed supporting the idea that proinflammatory cytokines exert powerful pain facilitatory effects following their release in the body, in the brain, and in the spinal cord. Such exaggerated pain states naturally occur in situations involving infection, inflammation, or trauma of the skin, of peripheral nerves, and of the central nervous system itself. Implications for human pain conditions are discussed.
Collapse
Affiliation(s)
- L R Watkins
- Department of Psychology, University of Colorado at Boulder 80309-0345, USA.
| | | |
Collapse
|
14
|
Nakamura K, Kaneko T, Yamashita Y, Hasegawa H, Katoh H, Negishi M. Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system. J Comp Neurol 2000; 421:543-69. [PMID: 10842213 DOI: 10.1002/(sici)1096-9861(20000612)421:4<543::aid-cne6>3.0.co;2-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The prostaglandin EP3 receptor (EP3R) subtype is believed to mediate large portions of diverse physiologic actions of prostaglandin E2 in the nervous system. However, the distribution of EP3R protein has not yet been unveiled in the peripheral or central nervous systems. The authors raised a polyclonal antibody against an amino-terminal portion of rat EP3R that recognized specifically the receptor protein. In this study, immunoblotting analysis with this antibody showed several immunoreactive bands with different molecular weights in rat brain extracts and in membrane fractions of recombinant EP3R-expressing culture cells, and treatment with N-glycosidase shifted those immunoreactive bands to an apparently single band with a lower molecular weight, suggesting that EP3R proteins are modified posttranslationally with carbohydrate moieties of various sizes. The authors performed immunohistochemical investigation of EP3R in the rat brain, spinal cord, and peripheral ganglia by using the antibody. EP3R-like immunoreactivity was observed in many and discrete regions of the rostrocaudal axis of the nervous system. The signals were particularly strong in the anterior, intralaminar, and midline thalamic nuclear groups; the median preoptic nucleus; the medial mammillary nucleus; the superior colliculus; the periaqueductal gray; the lateral parabrachial nucleus; the nucleus of the solitary tract; and laminae I and II of the medullary and spinal dorsal horns. Sensory ganglia, such as the trigeminal, dorsal root, and nodose ganglia, contained many immunopositive neurons. Neuronal cells in the locus coeruleus and raphe nuclei exhibited EP3R-like immunoreactivity. This suggests that EP3R plays regulatory roles in the noradrenergic and serotonergic monoamine systems. Autonomic preganglionic nuclei, such as the dorsal motor nucleus of the vagus nerve, the spinal intermediolateral nucleus, and the sacral parasympathetic nucleus, also contained neuronal cell bodies with the immunoreactivity, implying modulatory functions of EP3R in the central autonomic nervous system. The characteristic distribution of EP3R provides valuable information on the mechanisms for various physiologic actions of prostaglandin E2 in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- K Nakamura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Hosoi M, Oka T, Abe M, Hori T, Yamamoto H, Mine K, Kubo C. Prostaglandin E(2) has antinociceptive effect through EP(1) receptor in the ventromedial hypothalamus in rats. Pain 1999; 83:221-7. [PMID: 10534593 DOI: 10.1016/s0304-3959(99)00105-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of microinjection of prostaglandin E(2) (PGE(2)) (50 fg-50 ng/0.2 microl) into the ventromedial hypothalamus (VMH) on nociception were studied using a hot-plate test in rats. Microinjection of PGE(2) (5-500 pg and 50 ng/0.2 microl) into the VMH significantly prolonged the paw-withdrawal latency on a hot plate 5 and 10 min after injection, respectively. Maximal prolongation was obtained 5 min after the injection of PGE(2) at 5 pg. Subsequently, to determine whether the PGE(2) receptor subtype EP(1) is involved in the PGE(2)-induced antinociceptive effect in the VMH, we observed the changes in nociception after intraVMH microinjection of SC19220, an EP(1) receptor antagonist, and 17-phenyl-omega-trinor PGE(2), an EP(1) receptor agonist. Simultaneous injection of SC19220 (150 ng) with PGE(2) (500 pg) into the VMH blocked the PGE(2)-induced prolongation of the paw-withdrawal latency. Moreover, an intraVMH microinjection of 17-phenyl-omega-trinor PGE(2) (500 pg) prolonged it. These results indicate that PGE(2) in the VMH has antinociceptive effect through its actions on EP(1) receptors in rats.
Collapse
Affiliation(s)
- M Hosoi
- Department of Psychosomatic Medicine, Kyushu University Faculty of Medicine, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|