1
|
Cruz-Martínez AM, Tejas-Juárez JG, Mancilla-Díaz JM, Florán-Garduño B, López-Alonso VE, Escartín-Pérez RE. CB1 receptors in the paraventricular nucleus of the hypothalamus modulate the release of 5-HT and GABA to stimulate food intake in rats. Eur Neuropsychopharmacol 2018; 28:1247-1259. [PMID: 30217553 DOI: 10.1016/j.euroneuro.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/13/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
Endocannabinoids and their receptors not only contribute to the control of natural processes of appetite regulation and energy balance but also have an important role in the pathogenesis of obesity. CB1 receptors (CB1R) are expressed in several hypothalamic nuclei, including the paraventricular nucleus (PVN), where induce potent orexigenic responses. Activation of CB1R in the PVN induces hyperphagia by modulating directly or indirectly orexigenic and anorexigenic signals; however, interaction among these mediators has not been clearly defined. CB1R mRNA is expressed in serotonergic neurons that innervate the PVN, and activation of 5-HT receptors in the PVN constitutes an important satiety signal. Some GABAergic terminals are negatively influenced by 5-HT, suggesting that the hyperphagic effect of CB1R activation could involve changes in serotonergic and GABAergic signaling in the PVN. Accordingly, the present study was aimed to characterize the neurochemical mechanisms related to the hyperphagic effects induced by activation of CB1R in the PVN, studying in vitro and in vivo changes induced by direct activation these receptors. Here, we have found that the neurochemical mechanisms activated by stimulation of CB1 receptors in the PVN involve inhibition of 5-HT release, resulting in a decrease of serotonergic activity mediated by 5-HT1A and 5-HT1B receptors and inducing disinhibition of GABA release to stimulate food intake. In conclusion, these neurochemical changes in the PVN are determinant to the cannabinoid-induced stimulation of food intake. Our findings provide evidence of a functional connection among CB1R and serotonergic and GABAergic systems on the control of appetite regulation mediated by endocannabinoids.
Collapse
Affiliation(s)
- Ana María Cruz-Martínez
- Department of Pharmacology, CINVESTAV-IPN, 2508 Av. Instituto Politécnico Nacional, San Pedro Zacatenco, Ciudad de México 07360, México
| | - Juan Gabriel Tejas-Juárez
- Multidisciplinary Academic Division of Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur 4(ª) Sección, Tabasco 86650, México
| | - Juan Manuel Mancilla-Díaz
- Laboratory of Neurobiology of Eating, Universidad Nacional Autónoma de México, FES Iztacala, 1 Av. de los Barrios, Los Reyes Iztacala, Tlalnepantla 54090, México
| | - Benjamín Florán-Garduño
- Department of Physiology, Biophysics and Neuroscience, CINVESTAV-IPN, 2508 Av. Instituto Politécnico Nacional, San Pedro Zacatenco, Ciudad de México 07360, México
| | - Verónica Elsa López-Alonso
- Laboratory of Neurobiology of Eating, Universidad Nacional Autónoma de México, FES Iztacala, 1 Av. de los Barrios, Los Reyes Iztacala, Tlalnepantla 54090, México
| | - Rodrigo Erick Escartín-Pérez
- Laboratory of Neurobiology of Eating, Universidad Nacional Autónoma de México, FES Iztacala, 1 Av. de los Barrios, Los Reyes Iztacala, Tlalnepantla 54090, México.
| |
Collapse
|
2
|
Kang DY, Kim HC. Functional relevance of three proopiomelanocortin (POMC) genes in darkening camouflage, blind-side hypermelanosis, and appetite of Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 2015; 179:44-56. [DOI: 10.1016/j.cbpb.2014.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/21/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022]
|
3
|
Bedse G, Colangeli R, Lavecchia AM, Romano A, Altieri F, Cifani C, Cassano T, Gaetani S. Role of the basolateral amygdala in mediating the effects of the fatty acid amide hydrolase inhibitor URB597 on HPA axis response to stress. Eur Neuropsychopharmacol 2014; 24:1511-23. [PMID: 25106694 DOI: 10.1016/j.euroneuro.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/27/2014] [Accepted: 07/11/2014] [Indexed: 12/30/2022]
Abstract
The endocannabinoid system is an important regulator of neuroendocrine and behavioral adaptation in stress related disorders thus representing a novel potential therapeutic target. The aim of this study was to determine the effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on stress mediators of HPA axis and to study the role of the basolateral amygdala (BLA) in responses to forced swim stress. Systemic administration of URB597 (0.1 and 0.3mg/kg) reduced the forced swim stress-induced activation of HPA axis. More specifically, URB597 decreased stress-induced corticotropin-releasing hormone (CRH) mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus, and pro-opiomelanocortin (POMC) mRNA expression dose-dependently in pituitary gland without affecting plasma corticosterone levels. URB597 treatment also attenuated stress-induced neuronal activation of the amygdala and PVN, and increased neuronal activation in the locus coeruleus (LC) and nucleus of solitary tract (NTS). Injection of the CB1 receptor antagonist AM251 (1ng/side) in the BLA significantly attenuated URB597-mediated effects in the PVN and completely blocked those induced in the BLA. These results suggest that the BLA is a key structure involved in the anti-stress effects of URB597, and support the evidence that enhancement of endogenous cannabinoid signaling by inhibiting FAAH represents a potential therapeutic strategy for the management of stress-related disorders.
Collapse
Affiliation(s)
- Gaurav Bedse
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, 00185, Italy
| | - Roberto Colangeli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, 00185, Italy
| | - Angelo M Lavecchia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, 00185, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, 00185, Italy
| | - Fabio Altieri
- Istituto Pasteur-Fondazione Cenci Bolognetti - Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, 00185, Italy.
| |
Collapse
|
4
|
Hypophagia and induction of serotonin transporter gene expression in raphe nuclei of male and female rats after short-term fluoxetine treatment. J Physiol Biochem 2012; 69:69-74. [PMID: 22730080 DOI: 10.1007/s13105-012-0188-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
Serotonin (5-HT) is one of the regulators of feeding in humans. Drugs acting on the serotoninergic system are used to treat bulimia nervosa and to enhance the effect of hypocaloric diets in overweight subjects. They act rapidly to normalise feeding when used to treat eating-related problems. To explore the role of the 5-HT transporter (serotonin transporter (SERT)) in the short-term action of serotonin selective reuptake inhibitor fluoxetine, rats were i.p. given the drug for five consecutive days. Acute administration of fluoxetine in male and female rats produced a strong reduction in food intake, an effect that held up when daily treatment was maintained for five consecutive days. This reduction translated into a diminution of body weight that was statistically significant in the case of the males. As a reflection of the body weight change in rats killed after the fifth daily drug injection, retroperitoneal fat pad also decreased; a diminution that was statistically significant in the case of male rats. In these conditions, plasma leptin levels of both male and female rats were lower than in untreated animals. While acute fluoxetine administration did not modify SERT gene expression, subchronic drug treatment increased the content of SERT mRNA in the midbrain raphe complex of both rat genders. These findings may contribute to explain the role of SERT in fluoxetine action on binging and as an adjunct to hypocaloric diets.
Collapse
|
5
|
Reduction of the olfactory cognitive ability in horses during preslaughter: stress-related hormones evaluation. Meat Sci 2011; 90:272-5. [PMID: 21775068 DOI: 10.1016/j.meatsci.2011.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 06/10/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022]
Abstract
As horses may perceive several odour signals of danger at slaughter, application of mentholated ointment to their nostrils may limit their perception of danger. To assess the effect of the application of a mentholated ointment to horse nostrils on the stress response during pre-slaughter handling, plasma levels were evaluated for cortisol, beta-endorphin, epinephrine and norepinephrine prior to and after stunning. Twenty draught-type horses were divided into control (n=10) and treated (n=10) groups and a mentholated ointment applied to the nostrils of the treated horses following blood sampling in lairage 45 min prior to slaughter. Treatment did not affect plasma concentrations of beta-endorphin or cortisol but significantly reduced the concentrations of epinephrine and norepinephrine observed in post-stun plasma. These results indicated that mentholated ointment applied to the nostrils of horses pre-slaughter reduced their adrenergic response to the slaughter environment, implying that the stress response may be reduced with this technology.
Collapse
|
6
|
Liu X, Xie B, Zhang Y, Wang D, Wang Z. cDNA cloning, pituitary location, and extra-pituitary expression of pro-opiomelanocortin gene in rare minnow (Gobiocypris rarus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:233-247. [PMID: 20878469 DOI: 10.1007/s10695-010-9433-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 09/06/2010] [Indexed: 05/29/2023]
Abstract
A cDNA encoding pro-opiomelanocortin (POMC) gene was cloned from the pituitary gland of the rare minnow (Gobiocypris rarus), a small freshwater fish endemic to China. This was achieved by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Data showed that the predicted rare minnow POMC (rmPOMC) cDNA consisted of 846bps coding for the following sequences, flanked by proteolytic cleavage sites: signal peptide (SP, Met(1)-Ala(28)), N-terminal peptide (Gln(29)-His(105)), ACTH (Ser(108)-Met(146)), α-MSH (Ser(108)-Gal(121)), CLIP (Pro(126)-Met(146)), β-LPH (Glu(149)-His(221)), γ-LPH (Glu1(49)-Ser(186)), β-MSH (Asp(170)-Ser(186)), and β-endorphin (β-EP, Tyr(189)-Gln(221)). Sequence analysis showed no region was homologous to γ-MSH (a tetrapod POMC feature). The amino acid sequence is highly similar to POMC-I and POMC-II of the common carp (92.4%), according to homologous alignment. It was POMCα through the phylogenetic analysis. Pituitary and extra-pituitary expression were studied using RT-PCR and in situ hybridization. The rmPOMC-positive cells were mainly located in the rostral pars distalis (RPD) and pars intermedia (PI). Some rmPOMC-positive cells were detected in the proximal pars distalis (PPD) as well, according to in situ hybridization. In the extra-pituitary tissues, positive signals were observed in the brain, intestines, gonads, hepatopancreas, spleen, and gills by RT-PCR analysis.
Collapse
Affiliation(s)
- Xiaohong Liu
- Key Laboratory of Aquatic Organism Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Micera E, Albrizio M, Surdo NC, Moramarco AM, Zarrilli A. Stress-related hormones in horses before and after stunning by captive bolt gun. Meat Sci 2010; 84:634-7. [DOI: 10.1016/j.meatsci.2009.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 09/18/2009] [Accepted: 10/21/2009] [Indexed: 11/27/2022]
|
8
|
Lauzurica N, García-García L, Pinto S, Fuentes JA, Delgado M. Changes in NPY and POMC, but not serotonin transporter, following a restricted feeding/repletion protocol in rats. Brain Res 2010; 1313:103-12. [DOI: 10.1016/j.brainres.2009.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 11/24/2009] [Accepted: 11/29/2009] [Indexed: 10/20/2022]
|
9
|
Noguchi T, Makino S, Maruyama H, Hashimoto K. Regulation of proopiomelanocortin gene transcription during single and repeated immobilization stress. Neuroendocrinology 2006; 84:21-30. [PMID: 17085933 DOI: 10.1159/000096824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/08/2006] [Indexed: 11/19/2022]
Abstract
We have previously reported that repeated immobilization produces persistent activation of the hypothalamic-pituitary-adrenocortical axis in rats. In an attempt to assess whether any adaptational responses occur at the pituitary level, we examined the detailed time courses of proopiomelanocortin (POMC) gene transcription in the anterior pituitary (AP) in comparison with those of corticotropin-releasing hormone (CRH) gene transcription in the hypothalamic paraventricular nucleus (PVN) during single and repeated immobilization using both intronic and exonic probes. During single immobilization, there was a robust and rapid increase in both CRH heteronuclear RNA (hnRNA) in the PVN and POMC hnRNA in the AP, together with a slower increase in CRH mRNA, but no significant increase in POMC mRNA. Single immobilization also caused significant increases in the plasma concentrations of both ACTH and corticosterone. Daily immobilization for 6 days increased the basal levels of CRH hnRNA and CRH mRNA in the PVN and POMC mRNA in the AP. Both CRH hnRNA and POMC hnRNA responded rapidly to a final episode of acute immobilization on day 7, whereas the peak values of CRH hnRNA and POMC hnRNA after 15 min of the final stress were smaller than those during single immobilization. In contrast to single stress, CRH mRNA did not change significantly, whereas POMC mRNA robustly increased after the final immobilization on day 7. Plasma ACTH increased to a similar degree to single stress, but its initial increase at 5 min was significantly higher than that during single immobilization. The increase in the plasma corticosterone concentration was higher during final immobilization than during single stress. These results suggest that, in response to the hypothalamic drive during repeated immobilization stress, pituitary corticotrophs are capable of upregulating the basal and stress-induced POMC mRNA levels via increased efficiency of the posttranscriptional processing of the hnRNA and/or increased mRNA stability.
Collapse
Affiliation(s)
- Tohru Noguchi
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Nankoku, Japan
| | | | | | | |
Collapse
|
10
|
Kelliher P, Kelly JP, Leonard BE, Sánchez C. Effects of acute and chronic administration of selective monoamine re-uptake inhibitors in the rat forced swim test. Psychoneuroendocrinology 2003; 28:332-47. [PMID: 12573300 DOI: 10.1016/s0306-4530(02)00026-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The rat forced swim test (FST) is a model that is used extensively as a screening test for antidepressant activity. It has previously been reported that thorough analysis of behaviour in this model reveals two distinct types of active response - climbing and swimming - and that these are separately evoked by re-uptake inhibitors selective for noradrenaline (NA) and serotonin (5-HT), respectively. In the present study, utilising re-uptake inhibitors selective for NA, talsupram, and 5-HT, 5-chloro-1-(3-dimethylaminopropyl)-1-(4-fluorophenyl)- phthalan (Lu 10-134-C), we examined if this scoring technique could detect the antidepressant potential of a selective serotonin re-uptake inhibitor (SSRI), and whether re-uptake inhibitors selective for distinct monoamine systems induce exclusive behavioural responses. We also analysed if chronic antidepressant administration for three weeks was more effective than acute treatment. We found Lu 10-134-C (40 mg/kg; PO) to be behaviourally active in this paradigm. Although treatment with talsupram (40 mg/kg; PO) resulted solely in climbing behaviour, Lu 10-134-C induced both climbing and swimming behaviour. However, chronic pre-treatment with either re-uptake inhibitor (20 mg/kg; twice daily; PO) failed to augment the response observed with acute treatment. Similarly, chronic administration of either compound was without effect on the basal, or stress-induced, serum corticosterone concentrations or anterior pituitary (AP) preproopiomelanocorticotropin (POMC) mRNA expression. These results suggest that selective monoamine re-uptake inhibition produces distinct, but not necessarily exclusive, behavioural responses in the forced swim test.
Collapse
Affiliation(s)
- P Kelliher
- National University of Ireland, Department of Pharmacology, Galway, Ireland
| | | | | | | |
Collapse
|
11
|
Jensen JB, Mørk A, Mikkelsen JD. Chronic antidepressant treatments decrease pro-opiomelanocortin mRNA expression in the pituitary gland: effects of acute stress and 5-HT(1A) receptor activation. J Neuroendocrinol 2001; 13:887-93. [PMID: 11679057 DOI: 10.1046/j.1365-2826.2001.00712.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Consistent findings in depressed patients are hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis with high plasma concentrations of adrenocorticotropic hormone and cortisol. Long-term antidepressant treatments seem to normalize this hyperactivity, suggesting a link between the HPA axis and the action of antidepressant treatments. The present study was carried out to study the effects of antidepressant treatments on pro-opiomelanocortin (POMC) mRNA expression, with a focus on interaction with acute stress and 5-HT(1A) receptor activation. Male rats were treated for 21 days with saline, citalopram, fluoxetine, moclobemide or desipramine, and the expression of POMC mRNA in the anterior pituitary was analysed by semi-quantitative in situ hybridization. All antidepressants, but not saline, cocaine and haloperidol, reduced POMC mRNA expression. The decrease in POMC mRNA was not observed until 9 days of citalopram treatment. Decreased POMC mRNA levels were also observed after 14 days of repeated electroconvulsive stimulation. The decreased POMC mRNA levels did not affect the stress-induced POMC mRNA increase, measured following swim stress and restraint stress. Finally, using Fos as a marker for neural activity, we showed attenuation of 8-OH-DPAT-stimulated activity in the paraventricular nucleus following 21 days of citalopram treatment. In conclusion, antidepressant treatments decrease basal POMC mRNA expression without affecting the acute stress response, and the reduced POMC mRNA may be related to reduced 5-HT(1A)-stimulated hypothalamic output.
Collapse
Affiliation(s)
- J B Jensen
- Department of Neurobiology, H. Lundbeck A/S, Copenhagen, Denmark.
| | | | | |
Collapse
|
12
|
Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev 2000; 80:979-1020. [PMID: 10893429 DOI: 10.1152/physrev.2000.80.3.979] [Citation(s) in RCA: 570] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The skin is a known target organ for the proopiomelanocortin (POMC)-derived neuropeptides alpha-melanocyte stimulating hormone (alpha-MSH), beta-endorphin, and ACTH and also a source of these peptides. Skin expression levels of the POMC gene and POMC/corticotropin releasing hormone (CRH) peptides are not static but are determined by such factors as the physiological changes associated with hair cycle (highest in anagen phase), ultraviolet radiation (UVR) exposure, immune cytokine release, or the presence of cutaneous pathology. Among the cytokines, the proinflammatory interleukin-1 produces important upregulation of cutaneous levels of POMC mRNA, POMC peptides, and MSH receptors; UVR also stimulates expression of all the components of the CRH/POMC system including expression of the corresponding receptors. Molecular characterization of the cutaneous POMC gene shows mRNA forms similar to those found in the pituitary, which are expressed together with shorter variants. The receptors for POMC peptides expressed in the skin are functional and include MC1, MC5 and mu-opiate, although most predominant are those of the MC1 class recognizing MSH and ACTH. Receptors for CRH are also present in the skin. Because expression of, for example, the MC1 receptor is stimulated in a similar dose-dependent manner by UVR, cytokines, MSH peptides or melanin precursors, actions of the ligand peptides represent a stochastic (predictable) nonspecific response to environmental/endogenous stresses. The powerful effects of POMC peptides and probably CRH on the skin pigmentary, immune, and adnexal systems are consistent with stress-neutralizing activity addressed at maintaining skin integrity to restrict disruptions of internal homeostasis. Hence, cutaneous expression of the CRH/POMC system is highly organized, encoding mediators and receptors similar to the hypothalamic-pituitary-adrenal (HPA) axis. This CRH/POMC skin system appears to generate a function analogous to the HPA axis, that in the skin is expressed as a highly localized response which neutralizes noxious stimuli and attendant immune reactions.
Collapse
Affiliation(s)
- A Slominski
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
It has long been known that a large number of POMC-related peptides are found in skin. In this introduction I describe the formation of POMC-derived peptides in various tissues to indicate that processing is largely tissue-dependent. I focus on the peptides from the N-terminal fragment, such as gamma-MSH, ACTH and alpha-MSH, and beta-lipopropin as well as beta-endorphin. I touch on the factors that control the synthesis of the various peptides, which are now numerous and varied, and again are tissue specific. The biologic activity of the peptides generated from POMC are described in relation to their possible action in skin. In addition, I describe a new class of peptides induced in skin following injury and which are of great interest.
Collapse
Affiliation(s)
- S Solomon
- Department of Medicine and Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Hoffman BJ, Hansson SR, Mezey E, Palkovits M. Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front Neuroendocrinol 1998; 19:187-231. [PMID: 9665836 DOI: 10.1006/frne.1998.0168] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The monoamines, serotonin, dopamine, norepinephrine, epinephrine and histamine, play a critical role in the function of the hypothalamic-pituitary-adrenal axis and in the integration of information in sensory, limbic, and motor systems. The primary mechanism for termination of monoaminergic neurotransmission is through reuptake of released neurotransmitter by Na+, CI-dependent plasma membrane transporters. A second family of transporters packages monoamines into synaptic and secretory vesicles by exchange of protons. Identification of those cells which express these two families of neurotransmitter transporters is an initial step in understanding what adaptive strategies cells expressing monoamine transporters use to establish the appropriate level of transport activity and thus attain the appropriate efficiency of monoamine storage and clearance. The most recent advances in this field have yielded several surprises about their function, cellular and subcellular localization, and regulation, suggesting that these molecules are not static and most likely are the most important determinants of extracellular levels of monoamines. Here, information on the localization of mRNAs for these transporters in rodent and human brain is summarized along with immunohistochemical information at the light and electron microscopic levels. Regulation of transporters at the mRNA level by manipulation in rodents and differences in transporter site densities by tomographic techniques as an index of regulation in human disease and addictive states are also reviewed. These studies have highlighted the presence of monoamine neurotransmitter transporters in neurons but not in glia in situ. The norepinephrine transporter is present in all cells which are both tyrosine hydroxylase (TH)- and dopamine beta-hydroxylase-positive but not in those cells which are TH- and phenyl-N-methyltransferase-positive, suggesting that epinephrine cells may have their own, unique transporter. In most dopaminergic cells, dopamine transporter mRNA completely overlaps with TH mRNA-positive neurons. However, there are areas in which there is a lack of one to one correspondence. The serotonin transporter (5-HTT) mRNA is found in all raphe nuclei and in the hypothalamic dorsomedial nucleus where the 5-HTT mRNA is dramatically reduced following immobilization stress. The vesicular monoamine transporter 2 (VMAT2) is present in all monoaminergic neurons including epinephrine- and histamine-synthesizing cells. Immunohistochemistry demonstrates that the plasma membrane transporters are present along axons, soma, and dendrites. Subcellular localization of DAT by electron microscopy suggests that these transporters are not at the synaptic density but are confined to perisynaptic areas, implying that dopamine diffuses away from the synapse and that contribution of diffusion to dopamine signalling may vary between brain regions. Interestingly, the presence of VMAT2 in vesicles underlying dendrites, axons, and soma suggests that monoamines may be released at these cellular domains. An understanding of the regulation of transporter function may have important therapeutic consequences for neuroendocrine function in stress and psychiatric disorders.
Collapse
Affiliation(s)
- B J Hoffman
- Unit on Molecular Pharmacology, National Institute of Mental Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|