1
|
Cerri M, Hitrec T, Luppi M, Amici R. Be cool to be far: Exploiting hibernation for space exploration. Neurosci Biobehav Rev 2021; 128:218-232. [PMID: 34144115 DOI: 10.1016/j.neubiorev.2021.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/08/2023]
Abstract
In mammals, torpor/hibernation is a state that is characterized by an active reduction in metabolic rate followed by a progressive decrease in body temperature. Torpor was successfully mimicked in non-hibernators by inhibiting the activity of neurons within the brainstem region of the Raphe Pallidus, or by activating the adenosine A1 receptors in the brain. This state, called synthetic torpor, may be exploited for many medical applications, and for space exploration, providing many benefits for biological adaptation to the space environment, among which an enhanced protection from cosmic rays. As regards the use of synthetic torpor in space, to fully evaluate the degree of physiological advantage provided by this state, it is strongly advisable to move from Earth-based experiments to 'in the field' tests, possibly on board the International Space Station.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Timna Hitrec
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| |
Collapse
|
2
|
Activation of Kappa Opioid Receptor Regulates the Hypothermic Response to Calorie Restriction and Limits Body Weight Loss. Curr Biol 2019; 29:4291-4299.e4. [PMID: 31786059 DOI: 10.1016/j.cub.2019.10.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/16/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022]
Abstract
Mammals maintain a nearly constant core body temperature (Tb) by balancing heat production and heat dissipation. This comes at a high metabolic cost that is sustainable if adequate calorie intake is maintained. When nutrients are scarce or experimentally reduced such as during calorie restriction (CR), endotherms can reduce energy expenditure by lowering Tb [1-6]. This adaptive response conserves energy, limiting the loss of body weight due to low calorie intake [7-10]. Here we show that this response is regulated by the kappa opioid receptor (KOR). CR is associated with increased hypothalamic levels of the endogenous opioid Leu-enkephalin, which is derived from the KOR agonist precursor dynorphin [11]. Pharmacological inhibition of KOR, but not of the delta or the mu opioid receptor subtypes, fully blocked CR-induced hypothermia and increased weight loss during CR independent of calorie intake. Similar results were seen with DIO mice subjected to CR. In contrast, inhibiting KOR did not change Tb in animals fed ad libitum (AL). Chemogenetic inhibition of KOR neurons in the hypothalamic preoptic area reduced the CR-induced hypothermia, whereas chemogenetic activation of prodynorphin-expressing neurons in the arcuate or the parabrachial nucleus lowered Tb. These data indicate that KOR signaling is a pivotal regulator of energy homeostasis and can affect body weight during dieting by modulating Tb and energy expenditure.
Collapse
|
3
|
Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center. Pflugers Arch 2018; 470:809-822. [DOI: 10.1007/s00424-017-2101-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
4
|
Role of preoptic opioid receptors in the body temperature reduction during hypoxia. Brain Res 2009; 1286:66-74. [DOI: 10.1016/j.brainres.2009.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/10/2009] [Accepted: 06/13/2009] [Indexed: 11/16/2022]
|
5
|
Rometo AM, Rance NE. Changes in prodynorphin gene expression and neuronal morphology in the hypothalamus of postmenopausal women. J Neuroendocrinol 2008; 20:1376-81. [PMID: 19094085 PMCID: PMC2893873 DOI: 10.1111/j.1365-2826.2008.01796.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human menopause is characterised by ovarian failure, gonadotrophin hypersecretion and hypertrophy of neurones expressing neurokinin B (NKB), kisspeptin (KiSS)-1 and oestrogen receptor (ER) alpha gene transcripts within the hypothalamic infundibular (arcuate) nucleus. In the arcuate nucleus of experimental animals, dynorphin, an opioid peptide, is colocalised with NKB, kisspeptin, ER alpha and progesterone receptors. Moreover, ovariectomy decreases the expression of prodynorphin gene transcripts in the arcuate nucleus of the ewe. Therefore, we hypothesised that the hypertrophied neurones in the infundibular nucleus of postmenopausal women would express prodynorphin mRNA and that menopause would be accompanied by changes in prodynorphin gene transcripts. In the present study, in situ hybridisation was performed on hypothalamic sections from premenopausal and postmenopausal women using a radiolabelled cDNA probe targeted to prodynorphin mRNA. Autoradiography and computer-assisted microscopy were used to map and count labelled neurones, measure neurone size and compare prodynorphin gene expression between premenopausal and postmenopausal groups. Neurones expressing dynorphin mRNA in the infundibular nucleus of the postmenopausal women were larger and exhibited hypertrophied morphological features. Moreover, there were fewer neurones labelled with the prodynorphin probe in the infundibular nucleus of the postmenopausal group compared to the premenopausal group. The number of dynorphin mRNA-expressing neurones was also reduced in the medial preoptic/anterior hypothalamic area of postmenopausal women without changes in cell size. No differences in cell number or size of dynorphin mRNA-expressing neurones were observed in any other hypothalamic region. Previous studies using animal models provide strong evidence that the changes in prodynorphin neuronal size and gene expression in postmenopausal women are secondary to the ovarian failure of menopause. Given the inhibitory effect of dynorphin on the reproductive axis, decreased dynorphin gene expression could play a role in the elevation in luteinising hormone secretion that occurs in postmenopausal women.
Collapse
Affiliation(s)
- A M Rometo
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | |
Collapse
|
6
|
Opioidergic projections to sleep-active neurons in the ventrolateral preoptic nucleus. Brain Res 2008; 1245:96-107. [PMID: 18840417 DOI: 10.1016/j.brainres.2008.09.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/01/2008] [Accepted: 09/08/2008] [Indexed: 11/22/2022]
Abstract
Although opioids are known to influence sleep-wake regulation, the neuroanatomic substrate(s) mediating these effects remain unresolved. We hypothesized that the influence of opiates on sleep may be mediated, at least in part, by the ventrolateral preoptic nucleus (VLPO), a key cell group for producing behavioral sleep. By combining in situ hybridization for kappa and mu receptor mRNA with immunostaining of Fos expressed by VLPO cells during sleep we show that >85% of sleep-active VLPO neurons contain mRNA for either or both opioid receptors. Microinfusions of a kappa receptor agonist into the VLPO region increased NREM sleep by 51% during the subjective night, whereas a mu receptor agonist increased wakefulness by 60% during the subjective day. The sleep- and wake-promoting effects of the kappa and mu agonists were blocked by prior administration of their respective antagonist. Combining retrograde tracing from the VLPO with immunohistochemistry for dynorphin (Dyn, the endogenous kappa receptor agonist) or endomorphin 1 (EM1, the endogenous mu receptor agonist) we show that the central lateral parabrachial subnucleus (PBcl) provides Dyn inputs to the VLPO, whereas hypothalamic histaminergic neurons provide EM1 inputs to the VLPO. In summary, results from the present study suggest that central opioid inputs to the VLPO may play a role in sleep-wake regulation and that the VLPO likely mediates the hypnotic response to high levels of opioid analgesics.
Collapse
|
7
|
Simon E. Ion channel proteins in neuronal temperature transduction: from inferences to testable theories of deep-body thermosensitivity. Am J Physiol Regul Integr Comp Physiol 2006; 291:R515-7. [PMID: 16614053 DOI: 10.1152/ajpregu.00239.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Yakimova KS. Effects of GABAB-agonist on rat hypothalamic neurons: Functional antagonism with μ-receptor agonist. Neurosci Res 2006; 54:281-7. [PMID: 16427715 DOI: 10.1016/j.neures.2005.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 11/22/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
Extracellular and whole-cell patch clamp recordings were made from neurons in slices of the preoptic area/anterior hypothalamus (PO/AH) of rats, to investigate the effects of the GABA(B)-receptor agonist baclofen on neuronal response characteristics, as well as its interactions with mu-opioid receptor agonist PL-017 on the level of central temperature controller. Baclofen decreased tonic activity (firing rate) in all types of neurons, but increased temperature sensitivity (temperature coefficient, TC) in warm-sensitive neurons. The decrease in firing rate during baclofen application was accompanied with significant membrane hyperpolarization and decrease of input resistances. The tonic activity (in all type of PO/AH neurons), as well as the temperature sensitivity (in warm-sensitive neurons), were inhibited by mu-opioid receptor agonist PL-017. Remarkably, the effect on temperature sensitivity was abolished and absence of synergism in regard to firing rate decrease occurred, when baclofen and PL-017 were applied simultaneously. Our results are step of understanding the complicated mechanisms of action of neurotransmitters and their interactions on the level of central temperature controller-the neurons of the PO/AH.
Collapse
Affiliation(s)
- Krassimira S Yakimova
- Department of Pharmacology, Faculty of Medicine, Medical University, Sofia, Bulgaria.
| |
Collapse
|
9
|
Burke MC, Letts PA, Krajewski SJ, Rance NE. Coexpression of dynorphin and neurokinin B immunoreactivity in the rat hypothalamus: Morphologic evidence of interrelated function within the arcuate nucleus. J Comp Neurol 2006; 498:712-26. [PMID: 16917850 DOI: 10.1002/cne.21086] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Considerable evidence suggests that dynorphin and neurokinin B (NKB) neurons in the hypothalamic arcuate nucleus participate in the sex-steroid regulation of reproduction. In the present study, we used dual-label immunofluorescence to explore the distribution of prodynorphin and proNKB immunoreactivity in the rat hypothalamus. Additionally, we investigated whether arcuate prodynorphin-ir (immunoreactive) neurons expressed the neurokinin 3 receptor (NK3R) or nuclear estrogen receptor-alpha (ERalpha). We found that the majority of prodynorphin-ir neurons in the rat arcuate nucleus expressed proNKB, whereas nearly all (99%) of the proNKB neurons were immunoreactive for prodynorphin. The arcuate nucleus was the only site in the hypothalamus where neuronal somata coexpressing prodynorphin and proNKB-immunoreactivity were identified. A dense plexus of double-labeled prodynorphin/proNKB-ir fibers was found within the arcuate nucleus extending to the median eminence and throughout the periventricular zone of the hypothalamus. Prodynorphin/proNKB fibers were also identified in the paraventricular nucleus, anterior hypothalamic area, medial preoptic area, median preoptic nucleus, anteroventral periventricular nucleus, and bed nucleus of the stria terminalis in a distribution consistent with previously described arcuate nucleus projections. Interestingly, the majority of prodynorphin-ir neurons in the arcuate nucleus expressed NK3R, and nearly 100% of the prodynorphin-ir neurons contained nuclear ERalpha. Our results suggest that there is a close functional relationship between dynorphin and NKB peptides within the arcuate nucleus of the rat, which may include an autofeedback loop mediated through NK3R. The diverse hypothalamic projections of fibers expressing both prodynorphin and proNKB provide evidence that these neurons may participate in a variety of homeostatic and neuroendocrine processes.
Collapse
Affiliation(s)
- Michelle C Burke
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
10
|
Rawls SM, Hewson JM, Inan S, Cowan A. Brain delta2 opioid receptors mediate SNC-80-evoked hypothermia in rats. Brain Res 2005; 1049:61-9. [PMID: 15936000 DOI: 10.1016/j.brainres.2005.04.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 04/25/2005] [Accepted: 04/26/2005] [Indexed: 01/03/2023]
Abstract
Despite insights into an increasingly significant role for delta opioid receptors in thermoregulation, it is unclear whether delta receptors located in the brain or periphery play the more critical role in body temperature regulation. Moreover, it is not entirely clear which delta receptor phenotype, delta1 or delta2, mediates the hypothermic actions of delta agonists. Because SNC-80 distributes into central and peripheral compartments and produces rapid hypothermia following systemic injection, the nonpeptide delta agonist is particularly useful in discriminating the site of action of delta receptor-mediated hypothermia. To determine the locus and phenotype of delta receptor which mediates SNC-80-induced hypothermia, we injected SNC-80 and phenotype selective delta antagonists to male Sprague-Dawley rats. SNC-80 (10-50 mg/kg, im) evoked hypothermia that peaked 30 min post-injection. Naltrexone (5 mg/kg, sc), an opioid antagonist, or naltrindole (5 mg/kg, sc), a delta antagonist, blocked the hypothermic response to SNC-80 (35 mg/kg, im). The hypothermia caused by SNC-80 (35 mg/kg, im) was blocked by a delta2 antagonist, naltriben (2.5 mg/kg, sc), but was not affected by BNTX (5 and 10 mg/kg, sc), a delta1 antagonist. The administration of naltriben (10 microg/rat, icv) 30 min before SNC-80 (35 mg/kg, im) prevented SNC-80-evoked hypothermia. In contrast, methylnaltrexone (5 mg/kg, sc), a peripherally restricted opioid antagonist, did not affect the hypothermia caused by SNC-80. The present data demonstrate that selective activation of brain delta2 receptors is a major mechanism of SNC-80-evoked hypothermia in rats.
Collapse
Affiliation(s)
- Scott Manning Rawls
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
11
|
Chen X, McClatchy DB, Geller EB, Tallarida RJ, Adler MW. The dynamic relationship between mu and kappa opioid receptors in body temperature regulation. Life Sci 2005; 78:329-33. [PMID: 16257420 DOI: 10.1016/j.lfs.2005.04.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 04/08/2005] [Indexed: 11/25/2022]
Abstract
Previous studies demonstrated that intracerebroventricular (icv) injection of a kappa opioid receptor agonist decreased, and a mu agonist increased, body temperature (Tb) in rats. A dose-response study with the selective kappa antagonist nor-binaltorphimine (nor-BNI) showed that a low dose (1.25 nmol, icv) alone had no effect, although a high dose (25 nmol, icv) increased Tb. It was hypothesized that the hyperthermia induced by nor-BNI was the result of the antagonist blocking the kappa opioid receptor and releasing its inhibition of mu opioid receptor activity. To determine whether the Tb increase caused by nor-BNI was a mu receptor-mediated effect, we administered the selective mu antagonist CTAP (1.25 nmol, icv) 15 min after nor-BNI (25 nmol, icv) and measured rectal Tb in unrestrained rats. CTAP significantly antagonized the Tb increase induced by icv injection of nor-BNI. Injection of 5 or 10 nmol of CTAP alone significantly decreased the Tb, and 1.25 nmol of nor-BNI blocked that effect, indicating that the CTAP-induced hypothermia was kappa-mediated. The findings strongly suggest that mu antagonists, in blocking the basal hyperthermia mediated by mu receptors, can unmask the endogenous kappa receptor-mediated hypothermia, and that there is a tonic balance between mu and kappa opioid receptors that serves as a homeostatic mechanism for maintaining Tb.
Collapse
MESH Headings
- Animals
- Body Temperature Regulation/physiology
- Dose-Response Relationship, Drug
- Drug Antagonism
- Dynorphins/pharmacology
- Injections, Intraventricular
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurotransmitter Agents/pharmacology
- Peptide Fragments
- Peptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Somatostatin
Collapse
Affiliation(s)
- Xiaohong Chen
- Center for Substance Abuse Research, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
12
|
Salmi P, Kela J, Arvidsson U, Wahlestedt C. Functional interactions between delta- and mu-opioid receptors in rat thermoregulation. Eur J Pharmacol 2003; 458:101-6. [PMID: 12498912 DOI: 10.1016/s0014-2999(02)02736-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The selective delta-opioid receptor agonist deltorphin II (25.0-100.0 microg, i.c.v.) produced biphasic effects on core temperature in rats, in which hypothermia was followed by hyperthermia. Pretreatment with the selective delta-opioid receptor antagonist, naltrindole (25.0 microg, i.c.v.), blocked hypothermia produced by deltorphin II and had a tendency to potentiate the hyperthermic effect of deltorphin II. The non-selective opioid receptor antagonist naloxone (1.5 mg kg(-1), s.c.) potentiated hypothermia, and blocked hyperthermia, produced by deltorphin II (100.0 microg). Also, naloxone potentiated hypothermia produced by a lower dose of deltorphin II (25.0 microg), which did not produce hyperthermia. A similar pattern was found for the selective mu-opioid receptor antagonist, beta-funaltrexamine (5.0 microg, i.c.v.), which potentiated and blocked deltorphin II-induced hypo- and hyperthermia, respectively. The selective kappa-opioid receptor antagonist nor-binaltorphimine (20.0 microg, i.c.v.) had no effects on deltorphin II-induced temperature changes. The present results suggest that deltorphin II produces hypothermia through activation of delta-opioid receptors, whereas the hyperthermic effect of deltorphin II involves activation of mu-opioid receptors. This mu-opioid receptor stimulatory effect of deltorphin II is furthermore more pronounced than was anticipated based on the reported in vitro properties of this compound. The biphasic effect of deltorphin II implies a negative interaction between delta- and mu-opioid receptors in thermoregulation in rats.
Collapse
MESH Headings
- Animals
- Body Temperature/drug effects
- Body Temperature Regulation/drug effects
- Body Temperature Regulation/physiology
- Dose-Response Relationship, Drug
- Injections, Intraventricular
- Male
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligopeptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor Cross-Talk/drug effects
- Receptor Cross-Talk/physiology
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Peter Salmi
- Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, SE-171 77, Stockholm, Sweden.
| | | | | | | |
Collapse
|
13
|
Hallbeck M, Larhammar D, Blomqvist A. Neuropeptide expression in rat paraventricular hypothalamic neurons that project to the spinal cord. J Comp Neurol 2001; 433:222-38. [PMID: 11283961 DOI: 10.1002/cne.1137] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paraventricular hypothalamic nucleus (PVH) exerts many of its regulatory functions through projections to spinal cord neurons that control autonomic and sensory functions. By using in situ hybridization histochemistry in combination with retrograde tract tracing, we analyzed the peptide expression among neurons in the rat PVH that send axons to the spinal cord. Projection neurons were labeled by immunohistochemical detection of retrogradely transported cholera toxin subunit B, and radiolabeled long riboprobes were used to identify neurons containing dynorphin, enkephalin, or oxytocin mRNA. Of the spinally projecting neurons in the PVH, approximately 40% expressed dynorphin mRNA, 40% expressed oxytocin mRNA, and 20% expressed enkephalin mRNA. Taken together with our previous findings on the distribution of vasopressin-expressing neurons in the PVH (Hallbeck and Blomqvist [1999] J. Comp. Neurol. 411:201-211), the results demonstrated that the different PVH subdivisions display distinct peptide expression patterns among the spinal cord-projecting neurons. Thus, the lateral parvocellular subdivision contained large numbers of spinal cord-projecting neurons that express any of the four investigated peptides, whereas the ventral part of the medial parvocellular subdivision displayed a strong preponderance for dynorphin- and vasopressin-expressing cells. The dorsal parvocellular subdivision almost exclusively contained dynorphin- and oxytocin-expressing spinal cord-projecting neurons. This parcellation of the peptide-expressing neurons suggested a functional diversity among the spinal cord-projecting subdivisions of the PVH that provide an anatomic basis for its various and distinct influences on autonomic and sensory processing at the spinal level.
Collapse
Affiliation(s)
- M Hallbeck
- Division of Cell Biology, Department of Biomedicine and Surgery, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| | | | | |
Collapse
|
14
|
Kuznetsov IE, Kazakov VN. Integration of thermal and osmotic afferent signals in the preoptic/anterior hypothalamic neurons. Neuroscience 2000; 99:363-71. [PMID: 10938442 DOI: 10.1016/s0306-4522(00)00184-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our in vivo experiments were aimed at studying afferent links of the preoptic/anterior hypothalamus system, which integrates thermal and osmotic homeostasis. Special attention was paid to using stimulation intensities within the normal physiological range. The experiments were carried out on adult cats anesthetized with ketamine (25mg/kg) and inhalation of nitrous oxide (75 vol.%). Short-term shifts in the osmotic pressure within the cerebral vasculature were induced by infusions of 200-500 microl 3.0% or 0.2% NaCl solutions into the homolateral a. carotis (hyper- and hypoosmotic stimulations, respectively). Thermal stimulation was provided by local heating or cooling of the contralateral forelimb pad skin (+/-7.0 degrees C range). Reactions of preoptic/anterior hypothalamus neurons were classified into four types: monophasic activation, monophasic inhibition, and biphasic responses including excitation followed by inhibition or primary inhibition followed by activation. Monophasic activation was a very common occurrence among preoptic/anterior hypothalamus neuronal reactions. The responsiveness of thermosensitive preoptic/anterior hypothalamus neurons to hyperosmotic stimulation turned to be noticeably higher than that to hypoosmotic stimulation. Practically equal proportions of warm- and cold-sensitive neurons demonstrated changes in the firing activity resulting from intracarotid infusions of 3.0% NaCl solution. Infusions of 0.2% NaCl solution induced firing rate modifications in 26% (12/46) of warm-sensitive and in 32% (18/39) of cold-sensitive neurons. Cold-sensitive neurons displayed a higher sensitivity to a short-term osmotic pressure elevation in the cerebral vasculature (63%, 33/52) than warm-sensitive neurons did (43%, 22/52, P<0.05). In our study, a maximum similarity in the response types was observed when hyperosmotic infusion and skin cooling were applied, while a maximum disagreement was found when hyperosmotic stimulations were combined with skin heating. There is no doubt that preoptic/anterior hypothalamus neurons play a crucial role in the maintenance of body temperature. Several studies have also shown that osmoregulation can be affected by shifts in peripheral and hypthalmic temperatures. Information on the neurol mechanisms of interactions between the thermo- and osmoregulatory circuits in the hypothalamus remains limited. We discuss the obtained data considering the "set-point theory" of thermal hameostasis maintenance.
Collapse
Affiliation(s)
- I E Kuznetsov
- Department of Physiology, Donetsk State Medical University, Illych Avenue, 16, 83003, Donetsk, Ukraine.
| | | |
Collapse
|
15
|
Abstract
This paper is the twenty-first installment of our annual review of research concerning the opiate system. It summarizes papers published during 1998 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; eating and drinking; alcohol; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurologic disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunologic responses; and other behaviors.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, LA 70148, USA.
| | | | | | | |
Collapse
|
16
|
Yakimova KS, Pierau FK. Effect of nociceptin and [Phe1psi (CH2-NH) Gly2]-nociceptin-(1-13)-NH2 on tonic activity of rat hypothalamic neurons. Neurosci Lett 1999; 274:87-90. [PMID: 10553944 DOI: 10.1016/s0304-3940(99)00684-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of nociceptin, an endogenous ligand for a unique member of the cloned opioid receptor family ORL1-receptor, on tonic activity of neurons in the preoptic area/anterior hypothalamus (PO/AH) has been examined in rat brain slices using extracellular recordings. Nociceptin (1, 10 and 100 nM) decreased dose-dependently tonic activity of PO/AH neurons. This effect was not significantly different from the effect of [Phe1psi (CH2-NH) Gly2]-nociceptin-(1-13)-NH2 (1, 10 and 100 nM), recently proposed as a selective antagonist of the nociceptin receptor. Thus, [Phe1psi (CH2-NH) Gly2]-nociceptin-(1-13)-NH2 appears to be an agonist rather than an antagonist of nociceptin (ORL1) receptor in rat PO/AH neurons. However, there was neither antagonism nor additive synergism when nociceptin and [Phe1psi (CH2-NH) Gly2]-nociceptin-(1-13)-NH2 were applied simultaneously at equimolar concentrations. The effect of nociceptin on tonic activity of rat PO/AH neurons was not blocked by selective mu-, kappa- and delta-opioid receptor antagonists (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), nor-binaltorphimine and naltrindol, respectively) at 10 times higher concentrations than nociceptin. These data suggest that the effect of nociceptin on tonic activity of PO/AH neurons is not due to an action on mu-, kappa-, or delta-opioid receptors but results from a specific effect on the ORL1-receptor.
Collapse
Affiliation(s)
- K S Yakimova
- Department of Pharmacology, Faculty of Medicine, Sofia, Bulgaria
| | | |
Collapse
|