1
|
Moustafa A. Chronic Exposure to Continuous Brightness or Darkness Modulates Immune Responses and Ameliorates the Antioxidant Enzyme System in Male Rats. Front Vet Sci 2021; 8:621188. [PMID: 33937367 PMCID: PMC8081841 DOI: 10.3389/fvets.2021.621188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 01/02/2023] Open
Abstract
Circadian rhythms are considered vital regulators of immune functions. This study aims to elucidate the effects of chronic circadian disruption on immune functions, clock genes expression, and antioxidant enzymes levels in lymphoid tissues. Adult male Sprague-Dawley rats were subjected to a normal light/dark cycle or either continuous light (LL) or continuous dark (DD) for 8 weeks. The results demonstrated (1) significant decreases in the circulating levels of interleukin 1β, interleukin 6 and tumor necrosis factor alpha (TNF-α) and significant increases in the levels of interleukin 10, interleukin 12, C-reactive protein (CRP) and corticosterone in both LL and DD groups; (2) upregulation in mRNA expression of core clock genes Cry1, Cry2, Per1, Per2, and Per3 in the spleen of the DD group and downregulation in Cry1 and Cry2 genes in the LL group; (3) elevation of total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), nitric oxide (NO) and the lipid peroxidation marker malondialdehyde (MDA) in the spleen, lymph node and bone marrow of both the LL and DD groups and decreases in the levels of the same markers in the thymus of the LL group; (4) decreased numbers of CD4+ and CD8+ cells in lymphoid tissues of both the LL and the DD groups; (5) reduced platelets count and suppressed immunoglobulin (IgM, IgE) in the LL and DD groups with marked erythropenia and leukocytosis in the DD group. Taken together, circadian misalignment leads to hematological disruptions, dysregulation of clock genes, and inflammatory mediators, which further enhances the antioxidant enzyme system that is crucial for an organism's adaptation to stresses.
Collapse
Affiliation(s)
- Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Horkowitz AP, Schwartz AV, Alvarez CA, Herrera EB, Thoman ML, Chatfield DA, Osborn KG, Feuer R, George UZ, Phillips JA. Acetylcholine Regulates Pulmonary Pathology During Viral Infection and Recovery. Immunotargets Ther 2020; 9:333-350. [PMID: 33365281 PMCID: PMC7751717 DOI: 10.2147/itt.s279228] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction This study was designed to explore the role of acetylcholine (ACh) in pulmonary viral infection and recovery. Inflammatory control is critical to recovery from respiratory viral infection. ACh secreted from non-neuronal sources, including lymphocytes, plays an important, albeit underappreciated, role in regulating immune-mediated inflammation. Methods ACh and lymphocyte cholinergic status in the lungs were measured over the course of influenza infection and recovery. The role of ACh was examined by inhibiting ACh synthesis in vivo. Pulmonary inflammation was monitored by Iba1 immunofluorescence, using a novel automated algorithm. Tissue repair was monitored histologically. Results Pulmonary ACh remained constant through the early stage of infection and increased during the peak of the acquired immune response. As the concentration of ACh increased, cholinergic lymphocytes appeared in the BAL and lungs. Cholinergic capacity was found primarily in CD4 T cells, but also in B cells and CD8 T cells. The cholinergic CD4+ T cells bound to influenza-specific tetramers and were retained in the resident memory regions of the lung up to 2 months after infection. Histologically, cholinergic lymphocytes were found in direct physical contact with activated macrophages throughout the lung. Inflammation was monitored by ionized calcium-binding adapter molecule 1 (Iba1) immunofluorescence, using a novel automated algorithm. When ACh production was inhibited, mice exhibited increased tissue inflammation and delayed recovery. Histologic examination revealed abnormal tissue repair when ACh was limited. Conclusion These findings point to a previously unrecognized role for ACh in the transition from active immunity to recovery and pulmonary repair following respiratory viral infection.
Collapse
Affiliation(s)
- Alexander P Horkowitz
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| | - Ashley V Schwartz
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Carlos A Alvarez
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| | - Edgar B Herrera
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| | - Marilyn L Thoman
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| | - Dale A Chatfield
- Department of Chemistry, San Diego State University, San Diego, California, USA
| | - Kent G Osborn
- Office of Animal Research, University of California San Diego, San Diego, California, USA
| | - Ralph Feuer
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Uduak Z George
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Joy A Phillips
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| |
Collapse
|
3
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Can Melatonin Be a Potential "Silver Bullet" in Treating COVID-19 Patients? Diseases 2020; 8:E44. [PMID: 33256258 PMCID: PMC7709121 DOI: 10.3390/diseases8040044] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
The therapeutic potential of melatonin as a chronobiotic cytoprotective agent to counteract the consequences of COVID-19 infections has been advocated. Because of its wide-ranging effects as an antioxidant, anti-inflammatory, and immunomodulatory compound, melatonin could be unique in impairing the consequences of SARS-CoV-2 infection. Moreover, indirect evidence points out to a possible antiviral action of melatonin by interfering with SARS-CoV-2/angiotensin-converting enzyme 2 association. Melatonin is also an effective chronobiotic agent to reverse the circadian disruption of social isolation and to control delirium in severely affected patients. As a cytoprotector, melatonin serves to combat several comorbidities such as diabetes, metabolic syndrome, and ischemic and non-ischemic cardiovascular diseases, which aggravate COVID-19 disease. In view of evidence on the occurrence of neurological sequels in COVID-19-infected patients, another putative application of melatonin emerges based on its neuroprotective properties. Since melatonin is an effective means to control cognitive decay in minimal cognitive impairment, its therapeutic significance for the neurological sequels of SARS-CoV-2 infection should be considered. Finally, yet importantly, exogenous melatonin can be an adjuvant capable of augmenting the efficacy of anti-SARS-CoV-2 vaccines. We discuss in this review the experimental evidence suggesting that melatonin is a potential "silver bullet" in the COVID 19 pandemic.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires 1007, Argentina;
| | - Gregory M. Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada;
| | | |
Collapse
|
4
|
Abstract
Circadian rhythms, which have long been known to play crucial roles in physiology, are emerging as important regulators of specific immune functions. Circadian oscillations of immune mediators coincide with the activity of the immune system, possibly allowing the host to anticipate and handle microbial threats more efficiently. These oscillations may also help to promote tissue recovery and the clearance of potentially harmful cellular elements from the circulation. This Review summarizes the current knowledge of circadian rhythms in the immune system and provides an outlook on potential future implications.
Collapse
|
5
|
Besedovsky L, Lange T, Born J. Sleep and immune function. Pflugers Arch 2011; 463:121-37. [PMID: 22071480 PMCID: PMC3256323 DOI: 10.1007/s00424-011-1044-0] [Citation(s) in RCA: 579] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 12/17/2022]
Abstract
Sleep and the circadian system exert a strong regulatory influence on immune functions. Investigations of the normal sleep–wake cycle showed that immune parameters like numbers of undifferentiated naïve T cells and the production of pro-inflammatory cytokines exhibit peaks during early nocturnal sleep whereas circulating numbers of immune cells with immediate effector functions, like cytotoxic natural killer cells, as well as anti-inflammatory cytokine activity peak during daytime wakefulness. Although it is difficult to entirely dissect the influence of sleep from that of the circadian rhythm, comparisons of the effects of nocturnal sleep with those of 24-h periods of wakefulness suggest that sleep facilitates the extravasation of T cells and their possible redistribution to lymph nodes. Moreover, such studies revealed a selectively enhancing influence of sleep on cytokines promoting the interaction between antigen presenting cells and T helper cells, like interleukin-12. Sleep on the night after experimental vaccinations against hepatitis A produced a strong and persistent increase in the number of antigen-specific Th cells and antibody titres. Together these findings indicate a specific role of sleep in the formation of immunological memory. This role appears to be associated in particular with the stage of slow wave sleep and the accompanying pro-inflammatory endocrine milieu that is hallmarked by high growth hormone and prolactin levels and low cortisol and catecholamine concentrations.
Collapse
Affiliation(s)
- Luciana Besedovsky
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
6
|
Esquifino AI, Cano P, Jiménez-Ortega V, Fernández-Mateos P, Cardinali DP. Neuroendocrine-immune correlates of circadian physiology: studies in experimental models of arthritis, ethanol feeding, aging, social isolation, and calorie restriction. Endocrine 2007; 32:1-19. [PMID: 17992597 DOI: 10.1007/s12020-007-9009-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
Abstract
Virtually all neuroendocrine and immunological variables investigated in animals and humans display biological periodicity. Circadian rhythmicity is revealed for every hormone in circulation as well as for circulating immune cells, lymphocyte metabolism and transformability, cytokines, receptors, and adhesion molecules. Clock genes, notably the three Period (Per1/Per2/Per3) genes and two Cryptochrome (Cry1/Cry2) genes, are present in immune and endocrine cells and are expressed in a circadian manner in human cells. This review discusses the circadian disruption of hormone release and immune-related mechanisms in several animal models in which circulating cytokines are modified including rat adjuvant arthritis, social isolation in rats and rabbits and alcoholism, the aging process and calorie restriction in rats. In every case the experimental manipulation used perturbed the temporal organization by affecting the shape and amplitude of a rhythm or by modifying the intrinsic oscillatory mechanism itself.
Collapse
Affiliation(s)
- Ana I Esquifino
- Departamento de Bioquimica y Biologia Molecular III, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Melatonin is synthesized and secreted during the dark period of the light-dark cycle. Thus, melatonin has an obvious association with sleep, at least in diurnal animals. Rhythmic nocturnal melatonin secretion is directly generated by the circadian clock, located in mammals within the suprachiasmatic nuclei (SCN), and is entrained to a 24-h period by the light-dark cycle. The periodic secretion of melatonin may be used as a circadian mediator to any system than can "read" the message. In addition, direct effects of the hormone on the SCN could explain some of melatonin effects on the circadian system. Duration of melatonin nocturnal secretion is directly proportional to the length of the night and it has been demonstrated experimentally to be the critical parameter for photoperiod integration. The two main hypotheses to explain the action of melatonin are the duration hypothesis (supporting that night length is coded by the duration of the melatonin secretory phase) and the coincidence hypothesis (holding that physiological responses are linked to the existence of a diurnal rhythm in sensitivity to melatonin). The sites and mechanisms of action of melatonin for circadian and photoperiodic responses are far from being elucidated, but action through specific membrane receptor sites is well documented. In view of melatonin s lipophilic nature, interactions with specific intracellular proteins like calmodulin or tubulin, or with nuclear receptor sites, have also been considered, whereas the physiological significance of the documented antioxidant effect of melatonin remains to be settled. Melatonin seems to act as an "arm" of the circadian clock, giving a time-related signal to a number of body functions; one of these, the circadian organization of an organism's defence, is discussed in some detail as an example.
Collapse
Affiliation(s)
- D P Cardinali
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | | |
Collapse
|
8
|
Terrón MP, Paredes SD, Barriga C, Ortega E, Rodríguez AB. Comparative study of the heterophil phagocytic function in young and old ring doves (Streptopelia risoria) and its relationship with melatonin levels. J Comp Physiol B 2004; 174:421-7. [PMID: 15148621 DOI: 10.1007/s00360-004-0429-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
A functional connection between the pineal gland (via the hormone melatonin) and the immune system has been suggested. In our previous results in the ring dove, we observed diurnal oscillations in the levels of this neurohormone in young animals and a decline in its plasma levels with advancing age (which is accompanied by the absence of diurnal rhythm). We also noted enhanced phagocytic activity of heterophils from old animals after in vitro incubation with both physiological and pharmacological doses of melatonin. Here, we evaluate the functional capacity of ring dove (Streptopelia risoria) heterophils in young (2 years of age) and old (8 years and more) animals at different times of day (0:00, 10:00 and 16:00, the times when the maximum, minimum, and mean values, respectively, of melatonin levels are observed in young animals). The phagocytic capacities for the ingestion of latex beads and Candida albicans were evaluated, as well as the oxidative metabolism which accompanies phagocytosis. At all three times of day studied, the heterophil phagocytic function with both latex and C. albicans was significantly greater in the young than in the old animals, and in the young animal cells it was significantly higher at 0:00. In addition, in the presence of latex beads, there was a significant decline at 10:00 and 0:00 of superoxide anion levels in the young animals relative to the old. In the young animals, there was a decline at 0:00 in comparison with both 10:00 and 16:00, and in the old animals there was a decline at both 0:00 and 16:00 compared with 10:00. These results could be due, at least in part, to the absence of a diurnal rhythm of melatonin in old animals, and to an enhancing effect of that hormone on young animals' heterophil phagocytic function, which would also neutralize the oxidative stress deriving from this immune function.
Collapse
Affiliation(s)
- M P Terrón
- Department of Physiology, Faculty of Science, University of Extremadura, Avda. Elvas s/n, 06071, Badajoz, Spain.
| | | | | | | | | |
Collapse
|
9
|
Lafuente A, González-Carracedo A, Romero A, Esquifino AI. Effect of cadmium on lymphocyte subsets distribution in thymus and spleen. J Physiol Biochem 2003; 59:43-8. [PMID: 12903904 DOI: 10.1007/bf03179867] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This work was designed to analyze the possible dose dependent effects of cadmium on the distribution of lymphocyte subsets within the thymus and spleen. Cadmium accumulation was also evaluated in these tissues. For this purpose, adult male rats were exposed for one month to 0, 5, 10, 25, 50 or 100 ppm of cadmium chloride (CdCl2) in the drinking water. In both spleen and thymus, the B lymphocytes increased with the doses of 5 and 10 ppm of CdCl2, and decreased with the doses of 25-100 ppm. In spleen, the doses of 25 and 50 ppm decreased CD4+ cells and the doses of 5 and 10 ppm increased CD8+ cells, while the percentage of thymus T, CD4+, CD8+ and CD4(+)-CD8+ cells was not modified by cadmium treatment at any dose used in this study. After cadmium exposure, the metal was accumulated in the spleen only from the dose of 50 ppm on, and in the thymus, from the dose of 10 ppm on. In conclusion, although the accumulation of the metal is higher in thymus than in spleen, the metal affected CD4+ and CD8+ lymphocytes at the spleen but not at the thymus.
Collapse
Affiliation(s)
- A Lafuente
- Laboratorio de Toxicología, Facultad de Ciencias, Universidad de Vigo, Campus de Orense, Las Lagunas, 32004 Orense, Spain.
| | | | | | | |
Collapse
|
10
|
Cano P, Cardinali DP, Chacon F, Castrillón PO, Reyes Toso CA, Esquifino AI. Age-dependent changes in 24-hour rhythms of catecholamine content and turnover in hypothalamus, corpus striatum and pituitary gland of rats injected with Freund's adjuvant. BMC PHYSIOLOGY 2001; 1:14. [PMID: 11741510 PMCID: PMC61031 DOI: 10.1186/1472-6793-1-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2001] [Accepted: 11/28/2001] [Indexed: 11/10/2022]
Abstract
BACKGROUND Little information is available on the circadian sequela of an immune challenge in the brain of aged rats. To assess them, we studied 24-hour rhythms in hypothalamic and striatal norepinephrine (NE) content, hypothalamic and striatal dopamine (DA) turnover and hypophysial NE and DA content, in young (2 months) and aged (18-20 months) rats killed at 6 different time intervals, on day 18th after Freund's adjuvant or adjuvant's vehicle administration. RESULTS Aging decreased anterior and medial hypothalamic NE content, medial and posterior hypothalamic DA turnover, and striatal NE concentration and DA turnover. Aging also decreased NE and DA content in pituitary neurointermediate lobe and augmented DA content in the anterior pituitary lobe. Immunization by Freund's adjuvant injection caused: (i) reduction of DA turnover in anterior hypothalamus and corpus striatum; (ii) acrophase delay of medial hypothalamic DA turnover in old rats, and of striatal NE content in young rats; (iii) abolition of 24-h rhythm in NE and DA content of neurointermediate pituitary lobe, and in DA content of anterior lobe, of old rats. CONCLUSIONS The decline in catecholamine neurotransmission with aging could contribute to the decrease of gonadotropin and increase of prolactin release reported in similar groups of rats. Some circadian responses to immunization, e.g. suppression of 24-h rhythms of neurointermediate lobe NE and DA and of anterior lobe DA were seen only in aged rats.
Collapse
Affiliation(s)
- Pilar Cano
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Daniel P Cardinali
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Chacon
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Patricia O Castrillón
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Carlos A Reyes Toso
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana I Esquifino
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
11
|
Kubovcáková L, Micutková L, Sabban EL, Krizanová O, Kvetnanský R. Identification of tyrosine hydroxylase gene expression in rat spleen. Neurosci Lett 2001; 310:157-60. [PMID: 11585591 DOI: 10.1016/s0304-3940(01)02126-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was aimed to identify tyrosine hydroxylase (TH) gene expression in the rat spleen under basal and stress conditions. Using the reverse transcription polymerase chain reaction we did not detect TH mRNA in rat spleen either in control, or immobilized animals. Semi-nested PCR revealed a clear signal, demonstrating that TH mRNA is formed in the spleen, although in low abundance. We also detected both, TH immunoreactive protein and TH activity in the rat spleen that were in higher abundance than expected from the mRNA levels. This study identifies, for the first time, TH gene expression in rat spleen. Since TH protein and activity are present in the spleen in much higher abundance compared to corresponding mRNA, the majority of TH protein is most probably supplied by the sympathetic innervation of spleen.
Collapse
Affiliation(s)
- L Kubovcáková
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
12
|
Bonacho MG, Cardinali DP, Castrillón P, Cutrera RA, Esquifino AI. Aging-induced changes in 24-h rhythms of mitogenic responses, lymphocyte subset populations and neurotransmitter and amino acid content in rat submaxillary lymph nodes during Freund's adjuvant arthritis. Exp Gerontol 2001; 36:267-82. [PMID: 11226742 DOI: 10.1016/s0531-5565(00)00211-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In young (two months) and aged (18 months) male rats injected s.c. with Freund's adjuvant or adjuvant's vehicle 18 days earlier, 24-h variations in mitogenic responses, lymphocyte subsets and monoamine and amino acid content were examined in submaxillary lymph nodes. Mitogenic responses to concanavalin A (Con A) and lipopolysaccharide (LPS) were higher during the light phase of daily photoperiod. Old rats exhibited a suppressed or impaired mitogenic response to Con A but not to LPS. Acrophases of 24-h rhythm in lymphocyte subset populations in submaxillary lymph nodes were: 18:37-19:44h (B cells), 09:00-10:08h (T and CD4(+) cells) and 12:19-15:58h (CD8(+) cells). Aging augmented B cells and decreased T, CD4(+) and CD8(+) cells. Significant correlations were found between Con A activity and T cells, between lymph node 5HT content and B, T and CD8(+) lymphocytes, and between lymph node 5HT and taurine and GABA content. Aging increased lymph node 5HT content but did not modify NE content. Lymph node concentration of aspartate, glutamate and taurine was higher at night while that of GABA attained peak values at late afternoon. Old rats injected with Freund's adjuvant showed a higher mean value (glutamate) and smaller amplitude (glutamate, taurine) than their respective young controls. The results further document the effects of aging on the chronobiology of the immune system.
Collapse
Affiliation(s)
- M G Bonacho
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Esquifino AI, Castrillón PO, Chacon F, Cutrera R, Cardinali DP. Effect of local sympathectomy on 24-h changes in mitogenic responses and lymphocyte subset populations in rat submaxillary lymph nodes during the preclinical phase of Freund's adjuvant arthritis. Brain Res 2001; 888:227-234. [PMID: 11150479 DOI: 10.1016/s0006-8993(00)03060-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Wistar male rats received a bilateral superior cervical ganglionectomy or sham-operation and 10 days later were injected with Freund's complete adjuvant or its vehicle. Two days later, rats were killed at six different time intervals throughout a 24-h cycle. The mitogenic effect of lipopolysaccharide (LPS) and concanavalin A (Con A) and the relative size of lymphocyte subset populations were measured in submaxillary lymph nodes. Cells from sympathectomized lymph nodes showed a lower response to Con A. Freund's adjuvant injection decreased amplitude of daily rhythm in Con A response, an effect prevented by denervation. Generally, ganglionectomy increased Con A response at the early phase of arthritis. Acrophases for Con A and LPS effect occurred at early afternoon and did not change after ganglionectomy. Administration of Freund's adjuvant caused a 10-h advance in acrophase of LPS mitogenic activity, an effect prevented by ganglionectomy. Significant 24-h rhythms were observed in relative size of lymph node B and T cells. Denervation augmented amplitude of rhythm in B cells in adjuvant's vehicle-injected rats. As far as T lymphocyte subsets, acrophases occurred at the afternoon (CD4(+) and CD4(+)-CD8(+) cell types) or at night (CD8(+) cell types). Immunization augmented amplitude of 24-h rhythms in CD4(+)-CD8(+) cells regardless of innervation whereas denervation counteracted the suppression of daily rhythm in CD8(+) cells seen in arthritis. The results indicate that some of the changes seen in 24-h organization of immune responses in lymph nodes at an early phase of arthritis are modified by severing the local sympathetic nerves.
Collapse
Affiliation(s)
- A I Esquifino
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
García-Bonacho M, Esquifino AI, Castrillón PO, Toso CR, Cardinali DP. Age-dependent effect of Freund's adjuvant on 24-hour rhythms in plasma prolactin, growth hormone, thyrotropin, insulin, follicle-stimulating hormone, luteinizing hormone and testosterone in rats. Life Sci 2000; 66:1969-77. [PMID: 10821121 DOI: 10.1016/s0024-3205(00)00522-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of Freund's adjuvant administration on 24-hour changes of plasma prolactin, growth hormone (GH), thyrotropin (TSH), insulin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone were studied in young (2 months) and aged (18 months) male Wistar rats. Rats were injected s.c. with Freund's adjuvant or adjuvant's vehicle and, 18 days later, they were killed at 6 different time intervals throughout a 24-hour cycle to measure circulating hormone levels by specific RIAs. Young rats receiving adjuvant's vehicle exhibited significant time-of-day-dependent variations in plasma TSH, LH and testosterone, with maximal levels at 1300 h, 0100 h and 1700 h, respectively. Prolactin and insulin levels, analyzed globally in a factorial ANOVA, showed significant time-of-day changes with maximal levels at 1300 - 1700 h and 2100 h, respectively. The daily rhythms in plasma LH and testosterone found in young rats were not longer observed in Freund's adjuvant-injected rats, while as far as TSH, a second peak was observed at 0100 h after Freund's adjuvant administration. Twenty-four hour rhythms in circulating TSH, LH and testosterone were blunted in old rats receiving either Freund's adjuvant or its vehicle. Aged rats exhibited significantly higher circulating levels of prolactin, and lower levels of GH, TSH, FSH and testosterone. The results indicate that secretion of prolactin, GH, TSH, FSH and testosterone are age-dependent, as are the responses of TSH, LH and testosterone to Freund's adjuvant administration.
Collapse
Affiliation(s)
- M García-Bonacho
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
15
|
Esquifino AI, Castrillón P, García-Bonacho M, Vara E, Cardinali DP. Effect of melatonin treatment on 24-hour rhythms of serum ACTH, growth hormone, prolactin, luteinizing hormone and insulin in rats injected with Freund's adjuvant. J Pineal Res 1999; 27:15-23. [PMID: 10451020 DOI: 10.1111/j.1600-079x.1999.tb00592.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of melatonin injection on Freund's adjuvant-induced changes in levels and 24-hr rhythms of circulating ACTH, growth hormone (GH), prolactin (PRL), luteinizing hormone (LH), and insulin was assessed in rats. Animals received subcutaneous (s.c.) injections of melatonin (30 microg) or vehicle, 1 hr before lights off for 12 days. Ten days after melatonin treatment, they were injected with Freund's complete adjuvant or its vehicle s.c., and after 3 days, rats were killed at six different time intervals throughout a 24-hr cycle to measure the different hormones by radioimmunoassay (RIA). Following Freund's adjuvant injection, an increase in serum ACTH, with maintenance of ACTH diurnal rhythm was found. Acrophases of the ACTH rhythm varied from 13:39 to 17:12 hr and the amplitude of rhythm was augmented after immunization. In immunized rats, melatonin treatment increased the amplitude of serum ACTH rhythm. For GH, a depressive effect of immunization on circulating levels, together with absence of diurnal rhythmicity were found. Immunization augmented circulating PRL, while conserving its diurnal rhythmicity. Melatonin-injected rats showed significant diurnal variations of serum PRL after immunization only. Acrophases of the serum PRL rhythm varied from 19:37 to 22:04 hr. Immunization decreased circulating LH and suppressed its 24-hr rhythmicity pattern. The effect of immunization on LH was counteracted by melatonin injection. Acrophases of serum LH rhythm varied from 00:44 to 03:53 hr. Significant effects of immunization and time of day on circulating insulin were detected; immunization increased serum insulin levels with a shift in acrophase from early afternoon to midnight. The data indicate that several early changes in levels and 24-hr rhythms of circulating ACTH, PRL, and LH in Freund's adjuvant-injected rats were sensitive to treatment with pharmacological amounts of melatonin.
Collapse
Affiliation(s)
- A I Esquifino
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Brusco LI, García-Bonacho M, Esquifino AI, Cardinali DP. Diurnal rhythms in norepinephrine and acetylcholine synthesis of sympathetic ganglia, heart and adrenals of aging rats: effect of melatonin. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 74:49-61. [PMID: 9858124 DOI: 10.1016/s0165-1838(98)00134-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of aging and melatonin on 24-h rhythms in tyrosine hydroxylase activity and 3H - choline conversion into 3H - acetylcholine were examined in cervical, stellate, coeliac-mesenteric and hypogastric ganglia, and in the adrenal medulla and heart of rats. Young (50 days old) and old (18 months old) rats received evening injections of 10 or 100 microg of melatonin or its vehicle for 17 days. In superior cervical, stellate and coeliac-superior mesenteric ganglia, as well as in the adrenal medulla, norepinephrine and acetylcholine synthesis attained maximal values at night (c.a. 2030-0100 h). In the hypogastric ganglion, maximal tyrosine hydroxylase activity occurred at night at both studied ages. Two maxima in acetylcholine synthesis were detected in hypogastric ganglion of young rats (c.a. 1300 h and 0100 h, respectively) while in old rats a single maximum was observed at noon. Cardiac tyrosine hydroxylase activity peaked at early night (c.a. 2200-2300 h) while cardiac acetylcholine synthesis peaked at the afternoon (c.a. 1700-1900 h). Old rats exhibited a significant decrease of rhythm amplitude and increase of mean values in tyrosine hydroxylase activity in autonomic ganglia and adrenal medulla, and abolition of tyrosine hydroxylase rhythm in the heart. Twenty-four hour rhythmicity in acetylcholine synthesis was impaired or abolished in aged rats. Treatment of old rats with 10 or 100 microg melatonin generally augmented amplitude of rhythms and reinduced the nocturnal peak of acetylcholine synthesis in the hypogastric ganglion. Only the high melatonin dose significantly augmented rhythm amplitude of tyrosine hydroxylase activity (superior cervical and coeliac-superior mesenteric ganglia) and acetylcholine synthesis (superior cervical, stellate and coeliac-superior mesenteric ganglia) in young rats. The results indicate that the activity of the central oscillator, driven to the organs in part via the autonomic nervous system, deteriorates significantly with aging and that melatonin may restore partially such a deterioration.
Collapse
Affiliation(s)
- L I Brusco
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|