1
|
Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer. Neurochem Res 2020; 45:1268-1286. [DOI: 10.1007/s11064-019-02934-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
2
|
Pathway analysis of glutamate-mediated, calcium-related signaling in glioma progression. Biochem Pharmacol 2020; 176:113814. [PMID: 31954716 DOI: 10.1016/j.bcp.2020.113814] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
Brain tumors, particularly high-grade glioblastomas, are a crucial public health issue due to poor prognosis and an extremely low survival rate. The glioblastoma multiforme (GBM) grows rapidly within its unique microenvironment that is characterized by active neural communications. Therefore, diverse neurotransmitters not only maintain normal brain functions but also influence glioma progression. To fully appreciate the relationship between neurotransmitters and glioma progression, we reviewed potential neurotransmitter contributors in human GBM and the much less aggressive Low-grade glioma (LGG) by combining previously published data from gene-mutation/mRNA sequencing databases together with protein-protein interaction (PPI) network analysis results. The summarized results indicate that glutamatergic and calcium signaling may provide positive feedback to promote glioma formation through 1) metabolic reprogramming and genetic switching to accelerate glioma duplication and progression; 2) upregulation of cytoskeleton proteins and elevation of intracellular Ca2+ levels to increase glutamate release and facilitate formation of synaptic-like connections with surrounding cells in their microenvironment. The upregulated glutamatergic neuronal activities in turn stimulate glioma growth and signaling. Importantly, the enhanced electrical and molecular signals from both neurons and glia propagate out to enable glioma symptoms such as epilepsy and migraine. The elevated intracellular Ca2+ also activates nitric oxide synthase to produce nitric oxide (NO) that can either promote or inhibit tumorigenesis. By analyzing the network effects for complex interaction among neurotransmitters such as glutamate, Ca2+ and NO in brain tumor progression, especially GBM, we identified the glutamatergic signaling as the potential therapeutic targets and suggest manipulation of glutamatergic signaling may be an effective treatment strategy for this aggressive brain cancer.
Collapse
|
3
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019; 161:107559. [PMID: 30851309 PMCID: PMC6731169 DOI: 10.1016/j.neuropharm.2019.03.002] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
4
|
3-aminoglutarate is a “silent” false transmitter for glutamate neurons. Neuropharmacology 2015; 97:436-46. [DOI: 10.1016/j.neuropharm.2015.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/25/2015] [Accepted: 05/08/2015] [Indexed: 11/27/2022]
|
5
|
Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 2013; 71:1839-54. [PMID: 24281762 DOI: 10.1007/s00018-013-1521-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 12/11/2022]
Abstract
Malignant gliomas are relentless tumors that offer a dismal clinical prognosis. They develop many biological advantages that allow them to grow and survive in the unique environment of the brain. The glutamate transporters system x c (-) and excitatory amino acid transporters (EAAT) are emerging as key players in the biology and malignancy of these tumors. Gliomas manipulate glutamate transporter expression and function to alter glutamate homeostasis in the brain, which supports their own growth, invasion, and survival. As a consequence, malignant cells are able to quickly destroy and invade surrounding normal brain. Recent findings are painting a larger picture of these transporters in glioma biology, and as such are providing opportunities for clinical intervention for patients. This review will detail the current understanding of glutamate transporters in the biology of malignant gliomas and highlight some of the unique aspects of these tumors that make them so devastating and difficult to treat.
Collapse
|
6
|
Chao XD, Fei F, Fei Z. The role of excitatory amino acid transporters in cerebral ischemia. Neurochem Res 2010; 35:1224-30. [PMID: 20440555 DOI: 10.1007/s11064-010-0178-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 04/20/2010] [Indexed: 12/28/2022]
Abstract
Glutamate is an excitatory neurotransmitter that plays a major role in the pathogenesis of ischemia brain injury. The regulation of glutamate neurotransmission is carried out by excitatory amino acid transporters (EAATs) that act through reuptake of glutamate into cells. EAATs may also release glutamate into the extracellular space in a calcium-independent manner during ischemia and dysfunction of EAATs is specifically implicated in the pathology of cerebral ischemia. Recent studies show that up-regulation of EAAT2 provides neuroprotection during ischemic insult. This review summarizes current knowledge regarding the role of EAATs in cerebral ischemia.
Collapse
Affiliation(s)
- Xiao-dong Chao
- Department of Neurosurgery, Xi Jing Hospital, Fourth Military Medical University, Xi'an, China.
| | | | | |
Collapse
|
7
|
Bull ND, Wood JP, Osborne NN, Barnett NL. Protein Kinase C-Mediated Modulation of Glutamate Transporter Activity in Rat Retina. Curr Eye Res 2009; 32:123-31. [PMID: 17364745 DOI: 10.1080/02713680601139200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It has previously been shown that inhibitors of protein kinase C (PKC) attenuate retinal glutamate uptake in situ. The aim of the current study was to determine whether PKCdelta-mediated inhibition differentially reduces the transport of glutamate into retinal Müller cells when compared with retinal neurons. The influence of two different types of PKC inhibitors on the uptake of [3H]D-aspartate was therefore compared in the intact retina, mixed retinal cultures, and Müller cell-enriched retinal cultures. It was found that 25 microM of the pan-isoform PKC inhibitor, chelerythrine, reduced [3H]D-aspartate uptake by 78%, 71%, and 68% in isolated retinas, mixed neuronal/glial cultures, and Müller cell-enriched cultures, respectively. Importantly, 20 microM of the PKCdelta-selective inhibitor rottlerin also reduced the uptake of D-aspartate to similar extents in all three systems, and the reductions were statistically similar to those found for the pan-specific PKC inhibitor. Neither pan-isoform nor PKCdelta-selective activators stimulated glutamate uptake in either culture system or the intact retina. The current results suggest that specific PKC inhibitors are quantitatively similar in reducing the uptake of glutamate into retinal neurons and Müller cells.
Collapse
Affiliation(s)
- Natalie D Bull
- Vision, Touch and Hearing Research Centre, School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
8
|
Shin JW, Nguyen KTD, Pow DV, Knight T, Buljan V, Bennett MR, Balcar VJ. Distribution of glutamate transporter GLAST in membranes of cultured astrocytes in the presence of glutamate transport substrates and ATP. Neurochem Res 2009; 34:1758-66. [PMID: 19440835 DOI: 10.1007/s11064-009-9982-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/20/2009] [Indexed: 11/27/2022]
Abstract
Neurotransmitter L-glutamate released at central synapses is taken up and "recycled" by astrocytes using glutamate transporter molecules such as GLAST and GLT. Glutamate transport is essential for prevention of glutamate neurotoxicity, it is a key regulator of neurotransmitter metabolism and may contribute to mechanisms through which neurons and glia communicate with each other. Using immunocytochemistry and image analysis we have found that extracellular D-aspartate (a typical substrate for glutamate transport) can cause redistribution of GLAST from cytoplasm to the cell membrane. The process appears to involve phosphorylation/dephosphorylation and requires intact cytoskeleton. Glutamate transport ligands L-trans-pyrrolidine-2,4-dicarboxylate and DL-threo-3-benzyloxyaspartate but not anti,endo-3,4-methanopyrrolidine dicarboxylate have produced similar redistribution of GLAST. Several representative ligands for glutamate receptors whether of ionotropic or metabotropic type, were found to have no effect. In addition, extracellular ATP induced formation of GLAST clusters in the cell membranes by a process apparently mediated by P2 receptors. The present data suggest that GLAST can rapidly and specifically respond to changes in the cellular environment thus potentially helping to fine-tune the functions of astrocytes.
Collapse
Affiliation(s)
- Jae-Won Shin
- Anatomy and Histology, School of Medical Sciences and Bosch Institute for Biomedical Research, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
9
|
Excitatory amino acid transporter expression by astrocytes is neuroprotective against microglial excitotoxicity. Brain Res 2008; 1210:11-9. [DOI: 10.1016/j.brainres.2008.03.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 02/25/2008] [Accepted: 03/03/2008] [Indexed: 11/20/2022]
|
10
|
Bull ND, Barnett NL. Retinal glutamate transporter activity persists under simulated ischemic conditions. J Neurosci Res 2005; 78:590-9. [PMID: 15468177 DOI: 10.1002/jnr.20301] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Elevated extracellular concentrations of the neurotransmitter glutamate are neurotoxic and directly contribute to CNS damage as a result of ischemic pathologies. However, the main contributors to this uncontrolled rise in glutamate are still unconfirmed. It has been reported that the reversal of high-affinity glutamate transporters is a significant contributing factor. Conversely, it has also been observed that these transporters continue to take up glutamate, albeit at a reduced saturation concentration, under ischemic conditions. We sought to determine whether glutamate transporters continue to remove glutamate from the extracellular space under ischemic conditions by pharmacologically modulating the activity of high-affinity retinal glutamate transporters during simulated ischemia in vitro. Retinal glutamate transporter activity was significantly reduced under these ischemic conditions. The suppression of retinal glutamate transporter activity, with the protein kinase C inhibitor chelerythrine, significantly reduced ischemic glutamate uptake and enhanced retinal neurodegeneration. These findings imply a limited but protective role for retinal glutamate transporters under certain ischemic conditions, suggesting that pharmacological enhancement of high-affinity glutamate transporter activity may reduce tissue damage and loss of function resulting from toxic extracellular glutamate concentrations.
Collapse
Affiliation(s)
- Natalie D Bull
- Vision, Touch and Hearing Research Centre, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
11
|
Maragakis NJ, Rothstein JD. Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 2004; 15:461-73. [PMID: 15056453 DOI: 10.1016/j.nbd.2003.12.007] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 12/02/2003] [Accepted: 12/09/2003] [Indexed: 12/23/2022] Open
Abstract
Glutamate is the primary excitatory amino acid neurotransmitter in the central nervous system and its activity is carefully modulated in the synaptic cleft by glutamate transporters. A number of glutamate transporters have been identified in the central nervous system and each has a unique physiologic property and distribution. Glutamate transporter dysfunction may either be an initiating event or part of a cascade leading to cellular dysfunction and ultimately cell death. Animal models of glutamate transporter dysfunction have revealed a significant role for these proteins in pathologic conditions such as neurodegenerative diseases, epilepsy, stroke, and central nervous system tumors. Recent work has focused on glutamate transporter biology in human diseases with an emphasis on how manipulation of these transporter proteins may lead to therapeutic interventions in neurologic disease.
Collapse
|
12
|
Zoia C, Cogliati T, Tagliabue E, Cavaletti G, Sala G, Galimberti G, Rivolta I, Rossi V, Frattola L, Ferrarese C. Glutamate transporters in platelets: EAAT1 decrease in aging and in Alzheimer's disease. Neurobiol Aging 2004; 25:149-57. [PMID: 14749132 DOI: 10.1016/s0197-4580(03)00085-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Platelets release glutamate upon activation and are an important clearance system of the amino acid from blood, through high-affinity glutamate uptake, similar to that described in brain synaptosomes. Since platelet glutamate uptake is decreased in neurodegenerative disorders, we performed a morphological and molecular characterization of platelet glutamate transporters. The three major brain glutamate transporters EAAT1, EAAT2 and EAAT3 are expressed in platelets, with similar molecular weight, although at lower density than brain. A Na(+)-dependent-high-affinity glutamate uptake was competitively inhibited by known inhibitors but not by dihydrokainic acid, suggesting platelet EAAT2 does not play a major role in glutamate uptake at physiological conditions. We observed decreased glutamate uptake V(max), without modification of transporter affinity, in aging, which could be linked to the selective decrease of EAAT1 expression and mRNA. Moreover, in AD patients we found a further EAAT1 reduction compared to age-matched controls, which could explain the decrease of platelet uptake previously described. Platelet glutamate transporters may be used as peripheral markers to investigate the role of glutamate in patients with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chiara Zoia
- Department of Neuroscience and Biomedical Technology, University of Milano-Bicocca, 20052 (Mi), Monza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Toimela T, Mäenpää H, Mannerström M, Tähti H. Development of an in vitro blood–brain barrier model—cytotoxicity of mercury and aluminum. Toxicol Appl Pharmacol 2004; 195:73-82. [PMID: 14962507 DOI: 10.1016/j.taap.2003.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 11/06/2003] [Indexed: 11/15/2022]
Abstract
In this study, in vitro blood-brain barrier (BBB) models composed of two different cell types were compared. The aim of our study was to find an alternative human cell line that could be used in BBB models. Inorganic and organic mercury and aluminum were studied as model chemicals in the testing of the system. BBB models were composed of endothelial RBE4 cell line or retinal pigment epithelial (RPE) cell line ARPE-19 and neuronal SH-SY5Y cells as target cells. Glial U-373 MG cells were included in part of the tests to induce the formation of a tighter barrier. Millicell CM filter inserts were coated with rat-tail collagen, and RBE4 or ARPE-19 cells were placed on the filters at the density of 3.5-4 x 10(5) cells/filter. During culture, the state of confluency was microscopically observed and confirmed by the measurement of electrical resistance caused by the developing cell layer. The target cells, SH-SY5Y neuroblastoma cells, were plated on the bottom of cell culture wells at the density of 100000 cells/cm(2). In part of the studies, glial U-373 MG cells were placed on the under side of the membrane filter. When confluent filters with ARPE-19 or RBE4 cells were placed on top of the SH-SY5Y cells, different concentrations of mercuric chloride, methyl mercury chloride, and aluminum chloride were added into the filter cups along with a fluorescent tracer. Exposure time was 24 h, after which the cytotoxicity in the SH-SY5Y cell layer, as well as in the ARPE-19 or RBE4 cell layer, was evaluated by the luminescent measurement of total ATP. The leakage of the fluorescent tracer was also monitored. The results showed that both barrier cell types were induced by glial cells. Inorganic and organic mercury caused a leakage of the dye and cytotoxicity in SH-SY5Y cells. Especially, methyl mercury chloride could exert an effect on target cells before any profound cytotoxicity in barrier cells could be seen. Aluminum did not cause any leakage in the barrier cell layer, and even the highest concentration (1 mM) of aluminum did not cause any cytotoxicity in the SH-SY5Y cells. In conclusion, BBB models composed of RBE4 and ARPE-19 cells were able to distinguish between different toxicities, and ARPE-19 cells are thus promising candidates for studies of drug penetration through the blood-brain barrier.
Collapse
Affiliation(s)
- Tarja Toimela
- University of Tampere, Medical School, 33014 University of Tampere, Tampere, Finland.
| | | | | | | |
Collapse
|
14
|
Kanai Y, Hediger MA. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch 2003; 447:469-79. [PMID: 14530974 DOI: 10.1007/s00424-003-1146-4] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Indexed: 12/21/2022]
Abstract
The solute carrier family 1 (SLC1) includes five high-affinity glutamate transporters, EAAC1, GLT-1, GLAST, EAAT4 and EAAT5 (SLC1A1, SLC1A2, SLC1A3, SLC1A6, and SLC1A7, respectively) as well as the two neutral amino acid transporters, ASCT1 and ASCT2 (SLC1A4 and ALC1A5, respectively). Although each of these transporters have similar predicted structures, they exhibit distinct functional properties which are variations of a common transport mechanism. The high-affinity glutamate transporters mediate transport of l-Glu, l-Asp and d-Asp, accompanied by the cotransport of 3 Na(+) and 1 H(+), and the countertransport of 1 K(+), whereas ASC transporters mediate Na(+)-dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr. The unique coupling of the glutamate transporters allows uphill transport of glutamate into cells against a concentration gradient. This feature plays a crucial role in protecting neurons against glutamate excitotoxicity in the central nervous system. During pathological conditions, such as brain ischemia (e.g. after a stroke), however, glutamate exit can occur due to "reversed glutamate transport", which is caused by a reversal of the electrochemical gradients of the coupling ions. Selective inhibition of the neuronal glutamate transporter EAAC1 (SLC1A1) may be of therapeutic interest to block glutamate release from neurons during ischemia. On the other hand, upregulation of the glial glutamate transporter GLT1 (SLC1A2) may help protect motor neurons in patients with amyotrophic lateral sclerosis (ALS), since loss of function of GLT1 has been associated with the pathogenesis of certain forms of ALS.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, 181-8611, Tokyo, Japan.
| | | |
Collapse
|
15
|
Hu WH, Walters WM, Xia XM, Karmally SA, Bethea JR. Neuronal glutamate transporter EAAT4 is expressed in astrocytes. Glia 2003; 44:13-25. [PMID: 12951653 DOI: 10.1002/glia.10268] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-affinity excitatory amino acid transporters (EAATs) are essential to terminate glutamatergic neurotransmission and to prevent excitotoxicity. To date, five distinct EAATs have been cloned from animal and human tissues: GLAST (EAAT1), GLT-1 (EAAT2), EAAC1 (EAAT3), EAAT4, and EAAT5. EAAT1 and EAAT2 are commonly known as glial glutamate transporters, whereas EAAT3, EAAT4, and EAAT5 are neuronal. EAAT4 is largely expressed in cerebellar Purkinje cells. In this study, using immunohistochemistry and Western blotting, we found that EAAT4-like immunoreactivity (ir) is enriched in the spinal cord and forebrain. Double-labeled fluorescent immunostaining and confocal image analysis indicated that EAAT4-like ir colocalizes with an astrocytic marker, glial fibrillary acidic protein (GFAP). The astrocytic localization of EAAT4 was further confirmed in astrocyte cultures by double-labeled fluorescent immunocytochemistry and Western blotting. Reverse transcriptase-polymerase chain reaction analysis demonstrated mRNA expression of EAAT4 in astrocyte cultures. Sequencing confirmed the specificity of the amplified fragment. These results demonstrate that EAAT4 is expressed in astrocytes. This astrocytic localization of neuronal EAAT4 may reveal a new function of EAAT4 in the central nervous system.
Collapse
Affiliation(s)
- Wen-Hui Hu
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
16
|
Kanai Y, Hediger MA. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur J Pharmacol 2003; 479:237-47. [PMID: 14612154 DOI: 10.1016/j.ejphar.2003.08.073] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The solute carrier family 1 (SLC1) is composed of five high affinity glutamate transporters, which exhibit the properties of the previously described system XAG-, as well as two Na+-dependent neutral amino acid transporters with characteristics of the so-called "ASC" (alanine, serine and cysteine). The SLC1 family members are structurally similar, with almost identical hydropathy profiles and predicted membrane topologies. The transporters have eight transmembrane domains and a structure reminiscent of a pore loop between the seventh and eighth domains [Neuron 21 (1998) 623]. However, each of these transporters exhibits distinct functional properties. Glutamate transporters mediate transport of L-Glu, L-Asp and D-Asp, accompanied by the cotransport of 3 Na+ and one 1 H+, and the countertransport of 1 K+, whereas ASC transporters mediate Na+-dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr. Given the high concentrating capacity provided by the unique ion coupling pattern of glutamate transporters, they play crucial roles in protecting neurons against glutamate excitotoxicity in the central nervous system (CNS). The regulation and manipulation of their function is a critical issue in the pathogenesis and treatment of CNS disorders involving glutamate excitotoxicity. Loss of function of the glial glutamate transporter GLT1 (SLC1A2) has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), resulting in damage of adjacent motor neurons. The importance of glial glutamate transporters in protecting neurons from extracellular glutamate was further demonstrated in studies of the slc1A2 glutamate transporter knockout mouse. The findings suggest that therapeutic upregulation of GLT1 may be beneficial in a variety of pathological conditions. Selective inhibition of the neuronal glutamate transporter EAAC1 (SLC1A1) but not the glial glutamate transporters may be of therapeutic interest, allowing blockage of glutamate exit from neurons due to "reversed glutamate transport" of EAAC1, which will occur during pathological conditions, such as during ischemia after a stroke.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | | |
Collapse
|
17
|
Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Leenstra S, Troost D. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 2003; 17:2106-18. [PMID: 12786977 DOI: 10.1046/j.1460-9568.2003.02657.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the regulation of glutamate transporter protein expression after stimulation with selective metabotropic glutamate receptor (mGluR) agonists in cultured human glial cells. mGluR3 and mGluR5 are expressed in human astrocytes and in human glioma cells in vivo as well as in vitro, as shown by either RT-PCR or western blot analysis. The selective group I agonist (S)-3,5-dihydroxyphenylglycine produced a significant down-regulation of both GLAST and GLT-1 protein expression in astrocytes cultured in the presence of growth factors. This condition mimics the morphology of reactive glial cells in vivo including an increased expression of mGluR5 protein (observed in pathological conditions). In contrast, (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine, a selective agonist of group II metabotropic glutamate receptors, positively modulates the expression of GLAST and GLT-1 proteins. A similar opposite effect of (S)-3,5-dihydroxyphenylglycine and (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine was observed for the expression of EAAT3 protein in U373 glioblastoma cell line. Selective group I and II antagonists prevented these effects. Pharmacological inhibition of mitogen-activated protein kinase and phosphatidylinositol-3-K pathways reduces the induction of GLT-1 observed in response to the group II metabotropic glutamate receptor agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine. Thus, mGluR3 and mGluR5 can critically and differentially modulate the expression of glutamate transporters and may represent interesting pharmacological targets to regulate the extracellular levels of glutamate in pathological conditions.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
18
|
Fathallah-Shaykh HM, Rigen M, Zhao LJ, Bansal K, He B, Engelhard HH, Cerullo L, Roenn KV, Byrne R, Munoz L, Rosseau GL, Glick R, Lichtor T, DiSavino E. Mathematical modeling of noise and discovery of genetic expression classes in gliomas. Oncogene 2002; 21:7164-74. [PMID: 12370806 DOI: 10.1038/sj.onc.1205654] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Revised: 05/30/2002] [Accepted: 05/31/2002] [Indexed: 12/18/2022]
Abstract
The microarray array experimental system generates noisy data that require validation by other experimental methods for measuring gene expression. Here we present an algebraic modeling of noise that extracts expression measurements true to a high degree of confidence. This work profiles the expression of 19 200 cDNAs in 35 human gliomas; the experiments are designed to generate four replicate spots/gene with switching of probes. The validity of the extracted measurements is confirmed by: (1) cluster analysis that generates a molecular classification differentiating glioblastoma from lower-grade tumors and radiation necrosis; (2) By what other investigators have reported in gliomas using paradigms for assaying molecular expression other than gene profiling; and (3) Real-time RT-PCR. The results yield a genetic analysis of gliomas and identify classes of genetic expression that link novel genes to the biology of gliomas.
Collapse
Affiliation(s)
- Hassan M Fathallah-Shaykh
- Department of Neurological Sciences, Rush Presbyterian-St. Lukes Medical Center, Chicago, Illinois, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chishty M, Reichel A, Begley DJ, Abbott NJ. Glial induction of blood-brain barrier-like L-system amino acid transport in the ECV304 cell line. Glia 2002; 39:99-104. [PMID: 12112361 DOI: 10.1002/glia.10090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The blood-brain barrier (BBB) is formed by the presence of tight junction complexes between brain endothelial cells that restrict paracellular permeability. As a consequence, a number of transport proteins are expressed on cerebral endothelial cells to facilitate the transport of nutrients into the brain. Although the modulation of barrier tight junction properties by glial-conditioned medium and by second messengers is well established, little is known about the effects of these factors on carrier-mediated BBB transport processes. The ECV304 cell line shows an endothelial phenotype and can be induced to upregulate certain BBB features in the presence of glial factors. In the present study, we have examined the effect of conditioned medium derived from rat C6-glioma cells (C6CM) on the function of the L-system amino acid transporter in ECV304 cells, using L-leucine as the model substrate, and have determined whether the changes observed can be mimicked by modulating intracellular cAMP levels. ECV304 cells exposed to C6CM exhibited a significant increase in both the affinity of leucine transport and the diffusional constant (Michaelis-Menten), while the maximal transport capacity remained unchanged. Conversely, acute exposure to modulators of the PKA and PKC second messenger pathways was found to reduce significantly the maximal transport capacity and diffusion constants, while transport affinity remained unchanged. In both cases, the maximal flux of leucine was increased, indicating transport of greater efficiency. This study indicates that exposure of ECV304 cells to C6CM provides an influence inducing L-system transport properties characteristic of brain endothelial cells. Furthermore, it appears that L-system-mediated transport of amino acids can be modulated by several distinct pathways.
Collapse
Affiliation(s)
- M Chishty
- Blood-Brain Barrier Research Group, Centre for Neuroscience Research, GKT School of Biomedical Sciences, King's College, London, United Kingdom.
| | | | | | | |
Collapse
|
20
|
Balcar VJ. Molecular pharmacology of the Na+-dependent transport of acidic amino acids in the mammalian central nervous system. Biol Pharm Bull 2002; 25:291-301. [PMID: 11913521 DOI: 10.1248/bpb.25.291] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na+-dependent transport of L-glutamate (GluT) has been identified in brain tissue more than thirty years ago. Neurochemical studies, performed in various experimental models during 1970's, defined the basic rules for the selection or synthesis of GluT-specific substrates and inhibitors. The protein molecules (transporters) that mediate the translocation of the substrates across the plasma membrane have been cloned and studied during the last ten years. The sites on the transporters that bind the substrates favour glutamate-like or aspartate-like molecules with one positively charged and two negatively charged ionised groups. Substituents at C3 and C4 are often tolerated but substitutions at C2 or alterations of the ionisable groups usually impede the binding. The substrate binding sites display an "anomalous" selectivity towards stereoisomers. These structural requirements are shared by all Na+-dependent glutamate transporters thus making the design of transporter-selective ligands a challenging task. Moreover, the molecular mechanisms of the transport have not yet been adequately elucidated. Data from a wide variety of experimental studies strongly indicate that Na+-dependent GluT regulates the functioning of the glutamatergic excitatory synapses-the most important rapid inter-neuronal signalling system in the mammalian brain. Altered structural and/or functional properties of the Na+-dependent glutamate transporters have been implicated in the damage to the brain tissue following cerebral ischaemia and in the progressive loss of neurons in conditions such as Alzheimer dementia and amyotrophic lateral sclerosis. Furthermore, it seems that fine-tuning of glutamatergic neurotransmission by regulating the Na+-dependent GluT could be useful in the therapy of schizophrenia.
Collapse
Affiliation(s)
- Vladimir Josef Balcar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
21
|
Moussa CEH, Mitrovic AD, Vandenberg RJ, Provis T, Rae C, Bubb WA, Balcar VJ. Effects of L-glutamate transport inhibition by a conformationally restricted glutamate analogue (2S,1'S,2'R)-2-(carboxycyclopropyl)glycine (L-CCG III) on metabolism in brain tissue in vitro analysed by NMR spectroscopy. Neurochem Res 2002; 27:27-35. [PMID: 11926273 DOI: 10.1023/a:1014842303583] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
(2S,1'S,2'R)-2-(Carboxycyclopropyl)glycine (L-CCG III) was a substrate of Na(+)-dependent glutamate transporters (GluT) in Xenopus laevis oocytes (IC50 to approximately 13 and to approximately 2 microM for, respec tively, EAAT 1 and EAAT 2) and caused an apparent inhibition of [3H]L-glutamate uptake in "mini-slices" of guinea pig cerebral cortex (IC50 to approximately 12 microM). In slices (350 microM) of guinea pig cerebral cortex, 5 microM L-CCG III increased both the flux of label through pyruvate carboxylase and the fractional enrichment of glutamate, GABA, glutamine and lactate, but had no effect on total metabolite pool sizes. At 50 microM L-CCG III decreased incorporation of 13C from [3-13C]-pyruvate into glutamate C4, glutamine C4, lactate C3 and alanine C3. The total metabolite pool sizes were also decreased with no change in the fractional enrichment. Furthermore, L-CCG III was accumulated in the tissue, probably via GluT. At lower concentration, L-CCG III would compete with L-glutamate for GluT and the changes probably reflect a compensation for the "missing" L-glutamate. At 50 microM, intracellular L-CCG III could reach > 10 mM and metabolism might be affected directly.
Collapse
|
22
|
Trotti D, Peng JB, Dunlop J, Hediger MA. Inhibition of the glutamate transporter EAAC1 expressed in Xenopus oocytes by phorbol esters. Brain Res 2001; 914:196-203. [PMID: 11578612 DOI: 10.1016/s0006-8993(01)02802-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent evidence indicates that second messengers and protein kinases regulate the activity and expression of glutamate transporters. The aim of the present study was to determine if direct activation of protein kinases C or A modulates the activity of the sodium-dependent glutamate transporter EAAC1. EAAC1 modulation was studied in cRNA-injected Xenopus oocytes by measuring [3H]L-glutamate uptake or glutamate-evoked uptake currents. We found that activation of PKA was ineffective, whereas treatment with the PKC agonist phorbol 12-myristate 13-acetate (PMA) caused a significant decrease in EAAC1 transport activity (IC(50)=44.7+/-12 nM). PMA-induced EAAC1 inhibition was PKC-mediated because the inhibition could be blocked by specific PKC inhibitors and incubation with the inactive 4alpha-phorbol-12,13-didecanoate (4alpha-PDD) did not affect EAAC1. Saturation studies of glutamate-evoked uptake currents showed that PMA-mediated inhibition was due to a decrease in I(max) with no change in K(m). PMA simultaneously decreased membrane capacitance (C(m)) and transport-associated current and increased cytosolic accumulation of EAAC1 protein, compared to control. These results suggest that PKC activation inhibits EAAC1 by promoting its retrieval from the plasma membrane. PMA also significantly decreased glutamate uptake in a Madin-Darby canine kidney (MDCK) cell line stably transfected with EAAC1 but enhanced EAAC1-mediated glutamate uptake in the rat C6 glioma cells, consistent with previous observations. Because activation of PKC by phorbol esters leads to opposite effects on EAAC1 activity in different culture models, we conclude that the PKC-mediated regulation of EAAC1 is cell-type specific.
Collapse
Affiliation(s)
- D Trotti
- Membrane Biology Program, Brigham & Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
23
|
Pow DV. Visualising the activity of the cystine-glutamate antiporter in glial cells using antibodies to aminoadipic acid, a selectively transported substrate. Glia 2001; 34:27-38. [PMID: 11284017 DOI: 10.1002/glia.1037] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cystine-glutamate antiporter is a transport system that facilitates the uptake of cystine, concomitant with the release of glutamate. The cystine accumulated by this transporter is generally considered for use in the formation of the cysteine-containing antioxidant glutathione, which is abundant in many glial cells. This study used the simple strategy of generating an antibody to aminoadipic acid, a selective substrate for the cystine-glutamate antiporter. Stereospecific accumulation of aminoadipic acid into specific cell types in rat brain slice preparations was detected immunocytochemically. Strong accumulation was detected in astroglial cells in all brain regions studied including those in white matter tracts. Strong accumulation into radial glial cells, including the retinal Müller cells and the Bergmann glial cells was also observed. Glial accumulation was observed not only in cells within the blood brain barrier, but also outside such; anterior pituitary folliculostellate cell and intermediate lobe pituitary glial cells exhibited strong accumulation of aminoadipic acid. Interestingly, some glial cells such as the posterior pituitary glial cells (pituicytes) exhibited very little if any accumulation of aminoadipic acid. Within the brain labelling was not uniform. Particularly strong labelling was noted in some regions, such as the glial cells surrounding the CA1 pyramidal cells. By contrast, neurons never exhibited uptake of aminoadipic acid. Because cystine uptake is associated with glutamate release, it is suggested that this antiporter might contribute to release of glutamate from glial cells under some pathophysiological conditions.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
24
|
Abstract
We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Molecular and Cellular Physiology, University of Cincinnati, OH 45267, USA
| | | |
Collapse
|
25
|
Balcar VJ, Takamoto A, Yoneda Y. Neurochemistry of L-Glutamate Transport in the CNS: A Review of Thirty Years of Progress. ACTA ACUST UNITED AC 2001. [DOI: 10.1135/cccc20011315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The review highlights the landmark studies leading from the discovery and initial characterization of the Na+-dependent "high affinity" uptake in the mammalian brain to the cloning of individual transporters and the subsequent expansion of the field into the realm of molecular biology. When the data and hypotheses from 1970's are confronted with the recent developments in the field, we can conclude that the suggestions made nearly thirty years ago were essentially correct: the uptake, mediated by an active transport into neurons and glial cells, serves to control the extracellular concentrations of L-glutamate and prevents the neurotoxicity. The modern techniques of molecular biology may have provided additional data on the nature and location of the transporters but the classical neurochemical approach, using structural analogues of glutamate designed as specific inhibitors or substrates for glutamate transport, has been crucial for the investigations of particular roles that glutamate transport might play in health and disease. Analysis of recent structure/activity data presented in this review has yielded a novel insight into the pharmacological characteristics of L-glutamate transport, suggesting existence of additional heterogeneity in the system, beyond that so far discovered by molecular genetics. More compounds that specifically interact with individual glutamate transporters are urgently needed for more detailed investigations of neurochemical characteristics of glutamatergic transport and its integration into the glutamatergic synapses in the central nervous system. A review with 162 references.
Collapse
|