1
|
Kacar S, Tomsuk O. Morphological analysis and cytotoxicity of acrylamide on SPC212 human mesothelioma cells: Do low doses induce proliferation, while high doses cause toxicity? J Cell Mol Med 2024; 28:e70190. [PMID: 39516185 PMCID: PMC11548975 DOI: 10.1111/jcmm.70190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Acrylamide is broadly utilized in numerous areas with different purposes including being an additive, flocculating, sealing, dry strength improver and polymerizing agent, and so forth. Furthermore, it forms in certain food products at high temperatures. It poses serious hazard since its readily water-soluble and very reactive nature. Besides in vivo studies, several in vitro studies with various cell lines are carried out to evaluate its toxicity. However, of these cell line studies, there are no mesothelium or mesothelioma cell lines. To fill this lacuna, we aimed at examining various dose range of acrylamide on SPC212 human mesothelioma cell line. First, we executed MTT and neutral red cytotoxicity tests and ascertained IC50 dose. Next, we performed inverted, light (haematoxylin-eosin and May Grünwald), fluorescent (DAPI) and confocal microscope (AO/EB) analyses as well as immunohistochemistry for Bax, Bcl-2 and PCNA proteins. As a result, we found IC50 of acrylamide at 2.65 mM. Starting from 3.13 mM of acrylamide dose, a deep decrease in cell proliferation was observed. Particularly in MTT assay, a proliferative action of acrylamide was detected at 0.39 and 0.78 mM, supported with inverted microscope images. In light microscope analysis, several cellular degenerations, including condensed and kidney-shaped nucleus were evident. In AO/EB staining, cells with apoptotic characteristics augmented dose-dependently, being upheld by a parallel uptick in Bax and a dimunition in Bcl-2 staining. Besides, PCNA decreased at IC50 dose of acrylamide. This is the acrylamide-associated first study conducted on SPC212 mesothelioma cells encompassing advanced morphological analysis. We believe this study to be an incentive for future studies.
Collapse
Affiliation(s)
- Sedat Kacar
- Department of Histology and Embryology, Faculty of MedicineEskisehir Osmangazi UniversityEskisehirTurkey
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Ozlem Tomsuk
- Department of Histology and Embryology, Faculty of MedicineEskisehir Osmangazi UniversityEskisehirTurkey
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied SciencesEskisehir Osmangazi UniversityEskisehirTurkey
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM)Eskişehir Osmangazi UniversityEskişehirTurkey
| |
Collapse
|
2
|
An L, Li G, Si J, Zhang C, Han X, Wang S, Jiang L, Xie K. Acrylamide Retards the Slow Axonal Transport of Neurofilaments in Rat Cultured Dorsal Root Ganglia Neurons and the Corresponding Mechanisms. Neurochem Res 2015; 41:1000-9. [PMID: 26721510 DOI: 10.1007/s11064-015-1782-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/02/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023]
Abstract
Chronic acrylamide (ACR) exposure induces peripheral-central axonopathy in occupational workers and laboratory animals, but the underlying mechanisms remain unclear. In this study, we first investigated the effects of ACR on slow axonal transport of neurofilaments in cultured rat dorsal root ganglia (DRG) neurons through live-cell imaging approach. Then for the underlying mechanisms exploration, the protein level of neurofilament subunits, motor proteins kinesin and dynein, and dynamitin subunit of dynactin in DRG neurons were assessed by western blotting and the concentrations of ATP was detected using ATP Assay Kit. The results showed that ACR treatment results in a dose-dependent decrease of slow axonal transport of neurofilaments. Furthermore, ACR intoxication significantly increases the protein levels of the three neurofilament subunits (NF-L, NF-M, NF-H), kinesin, dynein, and dynamitin subunit of dynactin in DRG neurons. In addition, ATP level decreased significantly in ACR-treated DRG neurons. Our findings indicate that ACR exposure retards slow axonal transport of NF-M, and suggest that the increase of neurofilament cargoes, motor proteins, dynamitin of dynactin, and the inadequate ATP supply contribute to the ACR-induced retardation of slow axonal transport.
Collapse
Affiliation(s)
- Lihong An
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China.,Institute of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Guozhen Li
- Beijing Municipal Institute of Labour Protection, Taoranting Road, Xicheng District, Beijing, 100054, China
| | - Jiliang Si
- Institute of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Cuili Zhang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Xiaoying Han
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shuo Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
|
4
|
Shipp A, Lawrence G, Gentry R, McDonald T, Bartow H, Bounds J, Macdonald N, Clewell H, Allen B, Van Landingham C. Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects. Crit Rev Toxicol 2006; 36:481-608. [PMID: 16973444 DOI: 10.1080/10408440600851377] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Acrylamide (ACR) is used in the manufacture of polyacrylamides and has recently been shown to form when foods, typically containing certain nutrients, are cooked at normal cooking temperatures (e.g., frying, grilling or baking). The toxicity of ACR has been extensively investigated. The major findings of these studies indicate that ACR is neurotoxic in animals and humans, and it has been shown to be a reproductive toxicant in animal models and a rodent carcinogen. Several reviews of ACR toxicity have been conducted and ACR has been categorized as to its potential to be a human carcinogen in these reviews. Allowable levels based on the toxicity data concurrently available had been developed by the U.S. EPA. New data have been published since the U.S. EPA review in 1991. The purpose of this investigation was to review the toxicity data, identify any new relevant data, and select those data to be used in dose-response modeling. Proposed revised cancer and noncancer toxicity values were estimated using the newest U.S. EPA guidelines for cancer risk assessment and noncancer hazard assessment. Assessment of noncancer endpoints using benchmark models resulted in a reference dose (RfD) of 0.83 microg/kg/day based on reproductive effects, and 1.2 microg/kg/day based on neurotoxicity. Thyroid tumors in male and female rats were the only endpoint relevant to human health and were selected to estimate the point of departure (POD) using the multistage model. Because the mode of action of acrylamide in thyroid tumor formation is not known with certainty, both linear and nonlinear low-dose extrapolations were conducted under the assumption that glycidamide or ACR, respectively, were the active agent. Under the U.S. EPA guidelines (2005), when a chemical produces rodent tumors by a nonlinear or threshold mode of action, an RfD is calculated using the most relevant POD and application of uncertainty factors. The RfD was estimated to be 1.5 microg/kg/day based on the use of the area under the curve (AUC) for ACR hemoglobin adducts under the assumption that the parent, ACR, is the proximate carcinogen in rodents by a nonlinear mode of action. When the mode of action in assumed to be linear in the low-dose region, a risk-specific dose corresponding to a specified level of risk (e.g., 1 x 10-5) is estimated, and, in the case of ACR, was 9.5 x 10-2 microg ACR/kg/day based on the use of the AUC for glycidamide adduct data. However, it should be noted that although this review was intended to be comprehensive, it is not exhaustive, as new data are being published continuously.
Collapse
Affiliation(s)
- A Shipp
- ENVIRON International Corporation, 602 East Georgia Street, Ruston, LA 07290, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chico Galdo V, Massart C, Jin L, Vanvooren V, Caillet-Fauquet P, Andry G, Lothaire P, Dequanter D, Friedman M, Van Sande J. Acrylamide, an in vivo thyroid carcinogenic agent, induces DNA damage in rat thyroid cell lines and primary cultures. Mol Cell Endocrinol 2006; 257-258:6-14. [PMID: 16859826 DOI: 10.1016/j.mce.2006.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 06/02/2006] [Accepted: 06/06/2006] [Indexed: 11/30/2022]
Abstract
Chronic treatment of rats with acrylamide induces various tumors among which thyroid tumors are the most frequent. The aim of the present study was to develop an in vitro model of acrylamide action on thyroid cells to allow the investigation of the mechanism of this tumorigenic action. The first part of the study considered as targets, characteristics of thyroid metabolism, which could explain the thyroid specificity of acrylamide action: the cAMP mitogenic effect and the important H2O2 generation by thyroid cells. However, acrylamide did not modulate H2O2 or cAMP generation in the thyroid cell models studied. No effect on thyroid cell proliferation was observed in the rat thyroid cell line FRTL5. On the other hand, as shown by the comet assay, acrylamide induced DNA damage, as the positive control H2O2 in the PC Cl3 and FRTL5 rat thyroid cell lines, as well as in thyroid cell primary cultures. The absence of effect of acrylamide on H2AX histone phosphorylation suggests that this effect does not reflect the induction of DNA double strand breaks. DNA damage leads to the generation of mutations. It is proposed that such mutations could play a role in the carcinogenic effect of acrylamide. The mechanism of this effect can now be studied in this in vitro model.
Collapse
Affiliation(s)
- V Chico Galdo
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme CP602, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yu S, Zhao X, Zhang T, Yu L, Li S, Cui N, Han X, Zhu Z, Xie K. Acrylamide-Induced Changes in the Neurofilament Protein of Rat Cerebrum Fractions. Neurochem Res 2005; 30:1079-85. [PMID: 16292499 DOI: 10.1007/s11064-005-7413-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
Acrylamide (ACR) is known to produce central-peripheral distal axonopathy, which is characterized by distal swellings and secondary degeneration both in experimental animals and human. Ultrastructurally, excessive accumulation of neurofilaments (NFs) in the distal swollen axon is a major pathological hallmark. However, the mechanisms of ACR axonopathy remain unknown. Twenty seven male Wistar rats were randomly divided into three groups. Lower and higher ACR groups were received 20 and 40 mg/kg ACR by i.p. injection respectively. The control group received physiological saline. All rats were sacrificed after 8 weeks of treatment and their cerebrums were dissected, homogenized and used for the determination of the NF proteins. In general, the levels of light NF (NF-L) and medium NF (NF-M) subunits increased consistently in the supernatant, whereas they decreased consistently in the pellet from rats treated with ACR. Compared to that of the control group, the levels of NF-L increased respectively by 104% and 45% (P<0.01) in the supernatant and decreased by 16% and 11% (P<0.01) in the pellet of rat cerebrums in lower and higher groups. The enhancement of NF-M was 76% and 147% (P<0.05, P<0.01) in supernatant, and the reduction was 26% and 36% (P<0.01) in pellet in lower and higher group respectively. The heavy NF (NF-H) level changed slightly. The present results suggested that the change of NF-L and NF-M levels in cerebrum might be relevant to the mechanisms of the neurofilamentous axonopathies induced by ACR.
Collapse
Affiliation(s)
- Sufang Yu
- Institute of Toxicology, Shandong University, 250012, Jinan, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ho WH, Wang SM, Yin HS. Acrylamide disturbs the subcellular distribution of GABAA receptor in brain neurons. J Cell Biochem 2002; 85:561-71. [PMID: 11967996 DOI: 10.1002/jcb.10159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mechanisms underlying the action of acrylamide on neurons were studied by monitoring the expression of GABA(A) receptor (R) in cultured brain neurons derived from chicken embryos. In situ trypsinization of the neurons and 3H-flunitrazepam binding assay were employed to examine the subcellular distribution of GABA(A)R. A 3-h exposure of the cultured neurons to 10 mM of acrylamide raised reversibly the proportion of intracellular (trypsin-resistant) 3H-flunitrazepam binding sites by about 48% and decreased cell surface binding 24% from respective control values, without altering total cellular binding and the affinity of the ligand. Moreover, the acrylamide treatment induced more intense perikaryal immunostaining of GABA(A)R alpha subunit proteins than that in control neurons but did not change the total level of cellular alpha immunostain, in accordance with the binding data. In the cell bodies of acrylamide-treated neurons, the level of neurofilament-200 kDa proteins was similar to control, whereas the tubulin protein content was significantly lowered approximately 51% from control, as revealed by quantifying the immunostained cytoskeletal elements. In addition, electron microscopic observations found reductions in the numbers of microtubules and neurofilaments in the perikarya of acrylamide-treated neurons. As exhibited by the 3H-leucine and 3H-monosaccharide incorporation experiments, the exposure to acrylamide inhibited the rate of general protein synthesis in the culture by 21%, while the rate of glycosylation remained unaltered. Furthermore, in situ hybridization analysis showed that acrylamide did not modify the expression of GABA(A)R alpha subunit mRNAs. Taken together, these data suggest that acrylamide may downregulate the microtubular system and disintegrate neurofilaments, and thereby block the intracellular transport of GABA(A)R, resulting in the accumulation of intracellular receptors.
Collapse
Affiliation(s)
- Wen-Hsin Ho
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|