1
|
Gray TE, Labasan KB, Daskhan GC, Bui DT, Joe M, Kumawat D, Schmidt EN, Klassen JS, Macauley MS. Synthesis of 4-azido sialic acid for testing against Siglec-7 and in metabolic oligosaccharide engineering. RSC Chem Biol 2025:d5cb00030k. [PMID: 40309065 PMCID: PMC12038855 DOI: 10.1039/d5cb00030k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
An important approach for tracking and visualizing sialic acid-containing glycans involves using sialic acid reporters functionalized with bioorthogonal handles. More specifically, metabolic oligosaccharide engineering (MOE) commonly employs monosaccharides with an alkyne or azide handle for incorporation into cellular glycans, followed by a subsequent click reaction to elaborate with a biotin or fluorophore handle. For sialic acid, this has been carried out extensively, with an azide or alkyne appended to the C5 N-acetamido group being the most common location for the handle. However, circumstances may require the handle to be at different positions and, to date, the C7 and C9 positions have been shown to work to varying degrees. Herein, we synthesized protected 4AzNeu5Ac that could be incorporated into cellular glycans nearly as efficiently as Neu5Az and targeted with DBCO-biotin through strain promoted azide-alkyne cycloaddition. Owing to the good incorporation of 4AzNeu5Ac into cellular glycans, we followed up this ability by first synthesizing the deprotected form of 4AzNeu5Ac, using a thioglycoside to lock the anomeric center during deprotection of the acetyl groups. Activation of 4AzNeu5Ac to CMP-4AzNeu5Ac then enabled the use of this donor by human sialyltransferase ST3GAL1 to transfer CMP-4AzNeu5Ac to β-Galp-(1→3)-α-GalpNAc. With purified α-4AzNeup5Ac-(2→3)-β-Galp-(1→3)-α-GalpNAc in hand, we tested it as a ligand for Siglec-7 and found that the C4-Az modification is tolerated, opening future possibilities to exploit this position to generate high affinity and selective ligands. These findings expand the repertoire of metabolic oligosaccharide engineering agents and show that azide modifications are tolerated at the C4 position of sialic acid.
Collapse
Affiliation(s)
- Taylor E Gray
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Kristin B Labasan
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Gour C Daskhan
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Duong T Bui
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Maju Joe
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Dhanraj Kumawat
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton T6G 2E1 Canada
| |
Collapse
|
2
|
Scalabrini M, Loquet D, Rochard C, Baudin Marie M, Assailly C, Brissonnet Y, Daligault F, Saumonneau A, Lambert A, Grandjean C, Deniaud D, Lottin P, Pascual S, Fontaine L, Balloy V, Gouin SG. Multivalent inhibition of the Aspergillus fumigatus KDNase. Org Biomol Chem 2024; 22:5783-5789. [PMID: 38938184 DOI: 10.1039/d4ob00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Aspergillus fumigatus is a saprophytic fungus and opportunistic pathogen often causing fatal infections in immunocompromised patients. Recently AfKDNAse, an exoglycosidase hydrolyzing 3-deoxy-D-galacto-D-glycero-nonulosonic acid (KDN), a rare sugar from the sialic acid family, was identified and characterized. The principal function of AfKDNAse is still unclear, but a study suggests a critical role in fungal cell wall morphology and virulence. Potent AfKDNAse inhibitors are required to better probe the enzyme's biological role and as potential antivirulence factors. In this work, we developed a set of AfKDNAse inhibitors based on enzymatically stable thio-KDN motifs. C2, C9-linked heterodi-KDN were designed to fit into unusually close KDN sugar binding pockets in the protein. A polymeric compound with an average of 54 KDN motifs was also designed by click chemistry. Inhibitory assays performed on recombinant AfKDNAse showed a moderate and strong enzymatic inhibition for the two classes of compounds, respectively. The poly-KDN showed more than a nine hundred fold improved inhibitory activity (IC50 = 1.52 ± 0.37 μM, 17-fold in a KDN molar basis) compared to a monovalent KDN reference, and is to our knowledge, the best synthetic inhibitor described for a KDNase. Multivalency appears to be a relevant strategy for the design of potent KDNase inhibitors. Importantly, poly-KDN was shown to strongly decrease filamentation when co-cultured with A. fumigatus at micromolar concentrations, opening interesting perspectives in the development of antivirulence factors.
Collapse
Affiliation(s)
| | - Denis Loquet
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Camille Rochard
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | | | - Coralie Assailly
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Yoan Brissonnet
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Franck Daligault
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Amélie Saumonneau
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Annie Lambert
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Cyrille Grandjean
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - David Deniaud
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Paul Lottin
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Viviane Balloy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | | |
Collapse
|
3
|
Ionescu C, Huseynova F, Barragan-Montero V. Pathways in the synthesis of functionalized glycolipids for liposomal preparations. Chem Phys Lipids 2021; 242:105161. [PMID: 34818525 DOI: 10.1016/j.chemphyslip.2021.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022]
Abstract
We describe in this paper the synthesis of two glycolipids containing a mannosyl residue functionalized with malonic acid and azide groups at the C6 position. Two synthetic routes have been successfully implemented: the first one involves Schmidt's glycosylation procedure using functionalized carbohydrates, whereas the second one involves nucleophilic substitutions in the C6 position of an iodinated intermediate obtained using Koenigs-Knorr reaction. A comparative discussion of reactions and yields is realized. The two glycolipids served as material for the preparation of liposomes.
Collapse
Affiliation(s)
- Cătălina Ionescu
- University of Craiova, Faculty of Sciences, Department of Chemistry, 107i Calea București, 200144 Craiova, Romania.
| | - Fidan Huseynova
- LBN, University of Montpellier, Montpellier, France; Institute of Molecular Biology and Biotechnologies ANAS, Baku, Azerbaijan
| | | |
Collapse
|
4
|
Beswick L, Ahmadipour S, Hofman GJ, Wootton H, Dimitriou E, Reynisson J, Field RA, Linclau B, Miller GJ. Exploring anomeric glycosylation of phosphoric acid: Optimisation and scope for non-native substrates. Carbohydr Res 2020; 488:107896. [PMID: 31887633 DOI: 10.1016/j.carres.2019.107896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Laura Beswick
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Sanaz Ahmadipour
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Gert-Jan Hofman
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Hannah Wootton
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Eleni Dimitriou
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Jóhannes Reynisson
- Hornbeam Building, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom.
| |
Collapse
|
5
|
Cheng B, Dong L, Zhu Y, Huang R, Sun Y, You Q, Song Q, Paton JC, Paton AW, Chen X. 9-Azido Analogues of Three Sialic Acid Forms for Metabolic Remodeling of Cell-Surface Sialoglycans. ACS Chem Biol 2019; 14:2141-2147. [PMID: 31584261 DOI: 10.1021/acschembio.9b00556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neu5Ac, Neu5Gc, and KDN are three forms of sialic acids in vertebrates that possess distinct biological functions. Herein, we report the synthesis and metabolic incorporation of the 9-azido analogues of three sialic acid forms in mammalian cells. The incorporated sialic acid analogues enable fluorescent imaging of cell-surface sialoglycans and proteomic profiling of sialoglycoproteins. Furthermore, we apply them to metabolically engineer cell surfaces with sialoglycans terminated with distinct sialic acids or their 9-azido analogues. The remodeled cells expressing specific cell-surface sialoglycoforms show distinct binding affinity toward subtilase cytotoxin (SubAB), a toxin secreted by Shiga toxigenic Escherichia coli. The 9-azido analogues of sialic acid forms developed in this work provide a versatile tool for metabolic remodeling of cell-surface properties and modulating pathogen-host interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia
| | | |
Collapse
|
6
|
Ligeour C, Dupin L, Angeli A, Vergoten G, Vidal S, Meyer A, Souteyrand E, Vasseur JJ, Chevolot Y, Morvan F. Importance of topology for glycocluster binding to Pseudomonas aeruginosa and Burkholderia ambifaria bacterial lectins. Org Biomol Chem 2015; 13:11244-54. [PMID: 26412676 DOI: 10.1039/c5ob01445j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudomonas aeruginosa (PA) and Burkholderia ambifaria (BA) are two opportunistic Gram negative bacteria and major infectious agents involved in lung infection of cystic fibrosis patients. Both bacteria can develop resistance to conventional antibiotherapies. An alternative strategy consists of targeting virulence factors in particular lectins with high affinity ligands such as multivalent glycoclusters. LecA (PA-IL) and LecB (PA-IIL) are two tetravalent lectins from PA that recognise galactose and fucose respectively. BambL lectin from BA is trimeric with 2 binding sites per monomer and is also specific for fucose. These three lectins are potential therapeutic targets in an anti-adhesive anti-bacterial approach. Herein, we report the synthesis of 18 oligonucleotide pentofuranose-centered or mannitol-centered glycoclusters leading to tri-, penta- or decavalent clusters with different topologies. The linker arm length between the core and the carbohydrate epitope was also varied leading to 9 galactoclusters targeting LecA and 9 fucoclusters targeting both LecB and BambL. Their dissociation constants (Kd) were determined using a DNA-based carbohydrate microarray technology. The trivalent xylo-centered galactocluster and the ribo-centered fucocluster exhibited the best affinity for LecA and LecB respectively while the mannitol-centered decafucocluster displayed the best affinity to BambL. These data demonstrated that the topology and nature of linkers were the predominant factors for achieving high affinity rather than valency.
Collapse
Affiliation(s)
- Caroline Ligeour
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, place Eugène Bataillon, CC1704, 34095 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Komizo K, Ikedo H, Sato S, Takenaka S. Metallization of Double-Stranded DNA Triggered by Bound Galactose-Modified Naphthalene Diimide. Bioconjug Chem 2014; 25:1547-55. [DOI: 10.1021/bc500263b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kohei Komizo
- Department of Applied Chemistry and ‡Research Center for Biomicrosensing
Technology, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
| | - Hideyuki Ikedo
- Department of Applied Chemistry and ‡Research Center for Biomicrosensing
Technology, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
| | - Shinobu Sato
- Department of Applied Chemistry and ‡Research Center for Biomicrosensing
Technology, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
| | - Shigeori Takenaka
- Department of Applied Chemistry and ‡Research Center for Biomicrosensing
Technology, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
| |
Collapse
|
8
|
Peng W, Nycholat CM, Razi N. Glycan microarray screening assay for glycosyltransferase specificities. Methods Mol Biol 2013; 1022:1-14. [PMID: 23765649 DOI: 10.1007/978-1-62703-465-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Glycan microarrays represent a high-throughput approach to determining the specificity of glycan-binding proteins against a large set of glycans in a single format. This chapter describes the use of a glycan microarray platform for evaluating the activity and substrate specificity of glycosyltransferases (GTs). The methodology allows simultaneous screening of hundreds of immobilized glycan acceptor substrates by in situ incubation of a GT and its appropriate donor substrate on the microarray surface. Using biotin-conjugated donor substrate enables direct detection of the incorporated sugar residues on acceptor substrates on the array. In addition, the feasibility of the method has been validated using label-free donor substrate combined with lectin-based detection of product to assess enzyme activity. Here, we describe the application of both procedures to assess the specificity of a recombinant human α2-6 sialyltransferase. This technique is readily adaptable to studying other glycosyltransferases.
Collapse
Affiliation(s)
- Wenjie Peng
- Glycan Microarray Synthesis Core, Consortium for Functional Glycomics, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
9
|
Williams GJ, Woodhall T, Nelson A, Berry A. Structure-guided saturation mutagenesis of N-acetylneuraminic acid lyase for the synthesis of sialic acid mimetics. Protein Eng Des Sel 2005; 18:239-46. [PMID: 15897188 DOI: 10.1093/protein/gzi027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Analogues of N-acetylneuraminic acid (sialic acid, NANA, Neu5Ac), including 6-dipropylcarboxamides, have been found to be selective and potent inhibitors of influenza sialidases. Sialic acid analogues are, however, difficult to synthesize by traditional chemical methods and the enzyme N-acetylneuraminic acid lyase (NAL) has previously been used for the synthesis of a number of analogues. The activity of this enzyme towards 6-dipropylcarboxamides is, however, low. Here, we used structure-guided saturation mutagenesis to produce variants of NAL with improved activity and specificity towards 6-dipropylcarboxamides. Three residues were targeted for mutagenesis, Asp191, Glu192 and Ser208. Only substitution at position 192 produced significant improvements in activity towards the dipropylamide. One variant, E192N, showed a 49-fold improvement in catalytic efficiency towards the target analogue and a 690-fold shift in specificity from sialic acid towards the analogue. These engineering efforts provide a scaffold for the further tailoring of NAL for the synthesis of sialic acid mimetics.
Collapse
Affiliation(s)
- G J Williams
- Astbury Centre for Structural Biology, School of Biochemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
10
|
Kiefelt MJ, Wilson JC, Bennett S, Gredley M, von Itzstein M. Synthesis and evaluation of C-9 modified N-acetylneuraminic acid derivatives as substrates for N-acetylneuraminic acid aldolase. Bioorg Med Chem 2000; 8:657-64. [PMID: 10732983 DOI: 10.1016/s0968-0896(99)00325-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several C-9 modified N-acetylneuraminic acid derivatives have been synthesised and evaluated as substrates of N-acetylneuraminic acid aldolase. Simple C-9 acyl or ether modified derivatives of N-acetylneuraminic acid were found to be accepted as substrates by the enzyme, albeit being transformed more slowly than Neu5Ac itself. 1H NMR spectroscopy was used to evaluate the extent of the enzyme catalysed transformation of these compounds. Interestingly, the chain-extended Neu5Ac derivative 16 is not a substrate for N-acetylneuraminate lyase and behaves as an inhibitor of the enzyme.
Collapse
Affiliation(s)
- M J Kiefelt
- Department of Medicinal Chemistry, Monash University, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|