1
|
The Role of Emission Sources and Atmospheric Sink in the Seasonal Cycle of CH4 and δ13-CH4: Analysis Based on the Atmospheric Chemistry Transport Model TM5. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study investigates the contribution of different CH4 sources to the seasonal cycle of δ13C during 2000–2012 by using the TM5 atmospheric transport model, including spatially varying information on isotopic signatures. The TM5 model is able to produce the background seasonality of δ13C, but the discrepancies compared to the observations arise from incomplete representation of the emissions and their source-specific signatures. Seasonal cycles of δ13C are found to be an inverse of CH4 cycles in general, but the anti-correlations between CH4 and δ13C are imperfect and experience a large variation (p=−0.35 to −0.91) north of 30° S. We found that wetland emissions are an important driver in the δ13C seasonal cycle in the Northern Hemisphere and Tropics, and in the Southern Hemisphere Tropics, emissions from fires contribute to the enrichment of δ13C in July–October. The comparisons to the observations from 18 stations globally showed that the seasonal cycle of EFMM emissions in the EDGAR v5.0 inventory is more realistic than in v4.3.2. At northern stations (north of 55° N), modeled δ13C amplitudes are generally smaller by 12–68%, mainly because the model could not reproduce the strong depletion in autumn. This indicates that the CH4 emission magnitude and seasonal cycle of wetlands may need to be revised. In addition, results from stations in northern latitudes (19–40° N) indicate that the proportion of biogenic to fossil-based emissions may need to be revised, such that a larger portion of fossil-based emissions is needed during summer.
Collapse
|
2
|
Nisbet EG, Dlugokencky EJ, Fisher RE, France JL, Lowry D, Manning MR, Michel SE, Warwick NJ. Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200457. [PMID: 34565227 PMCID: PMC8473950 DOI: 10.1098/rsta.2020.0457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The causes of methane's renewed rise since 2007, accelerated growth from 2014 and record rise in 2020, concurrent with an isotopic shift to values more depleted in 13C, remain poorly understood. This rise is the dominant departure from greenhouse gas scenarios that limit global heating to less than 2°C. Thus a comprehensive understanding of methane sources and sinks, their trends and inter-annual variations are becoming more urgent. Efforts to quantify both sources and sinks and understand latitudinal and seasonal variations will improve our understanding of the methane cycle and its anthropogenic component. Nationally declared emissions inventories under the UN Framework Convention on Climate Change (UNFCCC) and promised contributions to emissions reductions under the UNFCCC Paris Agreement need to be verified independently by top-down observation. Furthermore, indirect effects on natural emissions, such as changes in aquatic ecosystems, also need to be quantified. Nitrous oxide is even more poorly understood. Despite this, options for mitigating methane and nitrous oxide emissions are improving rapidly, both in cutting emissions from gas, oil and coal extraction and use, and also from agricultural and waste sources. Reductions in methane and nitrous oxide emission are arguably among the most attractive immediate options for climate action. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
Collapse
Affiliation(s)
- Euan G. Nisbet
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
- NCAS, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Edward J. Dlugokencky
- US National Oceanic and Atmospheric Administration, Global Monitoring Laboratory, 325 Broadway, Boulder, CO 80305, USA
| | - Rebecca E. Fisher
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - James L. France
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - David Lowry
- Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Martin R. Manning
- New Zealand Climate Change Research Institute, School of Geography Environment and Earth Studies, Victoria University of Wellington, Wellington, New Zealand
| | - Sylvia E. Michel
- Institute of Arctic and Antarctic Research, Univ. of Colorado, Boulder, CO 80309-0450, USA
| | - Nicola J. Warwick
- NCAS, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
3
|
Bunkan AJC, Srinivasulu G, Amedro D, Vereecken L, Wallington TJ, Crowley JN. Products and mechanism of the OH-initiated photo-oxidation of perfluoro ethyl vinyl ether, C 2F 5OCF[double bond, length as m-dash]CF 2. Phys Chem Chem Phys 2018; 20:11306-11316. [PMID: 29637965 DOI: 10.1039/c8cp01392f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The OH-initiated photo-oxidation of perfluoro ethyl vinyl ether (C2F5OCF[double bond, length as m-dash]CF2, PEVE) in air (298 K, 50 and 750 Torr total pressure) was studied in a photochemical reactor using in situ detection of PEVE and its products by Fourier transform IR absorption spectroscopy. The relative rate technique was used to derive the rate coefficient, k1, for the reaction of PEVE with OH as k1 = (2.8 ± 0.3) × 10-12 cm3 molecule-1 s-1. The photo-oxidation of PEVE in the presence of NOx at 1 bar results in formation of C2F5OCFO, FC(O)C(O)F and CF2O in molar yields of 0.50 ± 0.07, 0.46 ± 0.07 and 1.50 ± 0.22, respectively. FC(O)C(O)F and CF2O are formed partially in secondary, most likely heterogeneous processes. At a reduced pressure of 50 Torr, the product distribution is shifted towards formation of FC(O)C(O)F, indicating the important role of collisional quenching of initially formed association complexes, and enabling details of the reaction mechanism to be elucidated. An atmospheric photo-oxidation mechanism for PEVE is presented and the environmental implications of PEVE release and degradation are discussed.
Collapse
Affiliation(s)
- A J C Bunkan
- Division of Atmospheric Chemistry, Max-Planck-Institut für Chemie, Mainz 55128, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Srinivasulu G, Bunkan AJC, Amedro D, Crowley JN. Absolute and relative-rate measurement of the rate coefficient for reaction of perfluoro ethyl vinyl ether (C 2F 5OCF[double bond, length as m-dash]CF 2) with OH. Phys Chem Chem Phys 2018; 20:3761-3767. [PMID: 29349468 DOI: 10.1039/c7cp08056e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rate coefficient (k1) for the reaction of OH radicals with perfluoro ethyl vinyl ether (PEVE, C2F5OCF[double bond, length as m-dash]CF2) has been measured as a function of temperature (T = 207-300 K) using the technique of pulsed laser photolysis with detection of OH by laser-induced fluorescence (PLP-LIF) at pressures of 50 or 100 Torr N2 bath gas. In addition, the rate coefficient was measured at 298 K and in one atmosphere of air by the relative-rate technique with loss of PEVE and reference reactant monitored in situ by IR absorption spectroscopy. The rate coefficient has a negative temperature dependence which can be parameterized as: k1(T) = 6.0 × 10-13 exp[(480 ± 38/T)] cm3 molecule-1 s-1 and a room temperature value of k1 (298 K) = (3.0 ± 0.3) × 10-12 cm3 molecule-1 s-1. Highly accurate rate coefficients from the PLP-LIF experiments were achieved by optical on-line measurements of PEVE and by performing the measurements at two different apparatuses. The large rate coefficient and the temperature dependence indicate that the reaction proceeds via OH addition to the C[double bond, length as m-dash]C double bond, the high pressure limit already being reached at 50 Torr N2. Based on the rate coefficient and average OH levels, the atmospheric lifetime of PEVE was estimated to be a few days.
Collapse
Affiliation(s)
- G Srinivasulu
- Division of Atmospheric Chemistry, Max-Planck-Institut für Chemie, 55128 Mainz, Germany.
| | | | | | | |
Collapse
|
5
|
Rangel C, Espinosa-Garcia J. Full-dimensional analytical potential energy surface describing the gas-phase Cl + C2H6 reaction and kinetics study of rate constants and kinetic isotope effects. Phys Chem Chem Phys 2018; 20:3925-3938. [DOI: 10.1039/c7cp07592h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Within the Born–Oppenheimer approximation a full-dimensional analytical potential energy surface, PES-2017, was developed for the gas-phase hydrogen abstraction reaction between the chlorine atom and ethane, which is a nine body system.
Collapse
Affiliation(s)
- Cipriano Rangel
- Departamento de Química Física and Instituto de Computación Científica Avanzada
- Universidad de Extremadura
- 06071 Badajoz
- Spain
| | - Joaquin Espinosa-Garcia
- Departamento de Química Física and Instituto de Computación Científica Avanzada
- Universidad de Extremadura
- 06071 Badajoz
- Spain
| |
Collapse
|
6
|
Sauer F, Portmann RW, Ravishankara AR, Burkholder JB. Temperature dependence of the Cl atom reaction with deuterated methanes. J Phys Chem A 2015; 119:4396-407. [PMID: 25470739 DOI: 10.1021/jp508721h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinetic isotope effect (KIE) and reaction rate coefficients, k1-k4, for the gas-phase reaction of Cl atoms with (12)CH3D (k1), (12)CH2D2 (k2), (12)CHD3 (k3), and (12)CD4 (k4) over the temperature range 223-343 K in 630 Torr of synthetic air are reported. Rate coefficients were measured using a relative rate technique with (12)CH4 as the primary reference compound. Fourier transform infrared spectroscopy was used to monitor the methane isotopologue loss. The obtained KIE values were (12)CH3D: KIE1(T) = (1.227 ± 0.004) exp((43 ± 5)/T); (12)CH2D2: KIE2(T) = (1.14 ± 0.20) exp((191 ± 60)/T); (12)CHD3: KIE3(T) = (1.73 ± 0.34) exp((229 ± 60)/T); and (12)CD4: KIE4(T) = (1.01 ± 0.3) exp((724 ± 19)/T), where KIEx(T) = kCl+(12)CH4(T)/kx(T). The quoted uncertainties are at the 2σ (95% confidence) level and represent the precision of our data. The following Arrhenius expressions and 295 K rate coefficient values (in units of cm(3) molecule(-1) s(-1)) were derived from the above KIE using a rate coefficient of 7.3 × 10(-12) exp(-1280/T) cm(3) molecule(-1) s(-1) for the reaction of Cl with (12)CH4: k1(T) = (5.95 ± 0.70) × 10(-12) exp(-(1323 ± 50)/T), k1(295 K) = (6.7 ± 0.8) × 10(-14); k2(T) = (6.4 ± 1.3) × 10(-12) exp(-(1471 ± 60)/T), k2(295 K) = (4.4 ± 0.9) × 10(-14); k3(T) = (4.2 ± 1.0) × 10(-12) exp(-(1509 ± 60)/T), k3(295 K) = (2.53 ± 0.6) × 10(-14); and k4(T) = (7.13 ± 2.3) × 10(-12) exp(-(2000 ± 120)/T), k4(295 K) = (0.81 ± 0.26) × 10(-14). The reported uncertainties in the pre-exponential factors are 2σ and include estimated systematic errors in our measurements and the uncertainty in the reference reaction rate coefficient. The results from this study are compared with previously reported room-temperature rate coefficients for each of the deuterated methanes as well as the available temperature dependent data for the Cl atom reactions with CH3D and CD4. A two-dimensional atmospheric chemistry model was used to examine the implications of the present results to the atmospheric lifetime and vertical variation in the loss of the deuterated methane isotopologues. The relative contributions of the reactions of OH, Cl, and O((1)D) to the loss of the isotopologues in the stratosphere were also examined. The results of the calculations are described and discussed.
Collapse
Affiliation(s)
- Frank Sauer
- †Chemical Sciences Division, Earth System Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305, United States.,‡Cooperative Institutes for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Robert W Portmann
- †Chemical Sciences Division, Earth System Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305, United States
| | - A R Ravishankara
- †Chemical Sciences Division, Earth System Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305, United States
| | - James B Burkholder
- †Chemical Sciences Division, Earth System Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305, United States
| |
Collapse
|
7
|
Joelsson L, Forecast R, Schmidt J, Meusinger C, Nilsson E, Ono S, Johnson M. Relative rate study of the kinetic isotope effect in the 13CH3D+Cl reaction. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Barker JR, Nguyen TL, Stanton JF. Kinetic Isotope Effects for Cl + CH4 ⇌ HCl + CH3 Calculated Using ab Initio Semiclassical Transition State Theory. J Phys Chem A 2012; 116:6408-19. [DOI: 10.1021/jp212383u] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John R. Barker
- Department of Atmospheric,
Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143, United States
| | - Thanh Lam Nguyen
- Department of Atmospheric,
Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143, United States
| | - John F. Stanton
- Department of Chemistry
and Biochemistry, The University of Texas, Austin, Texas 78712-0165, United States
| |
Collapse
|
9
|
Taylor MS, Ivanic SA, Wood GPF, Easton CJ, Bacskay GB, Radom L. Hydrogen Abstraction by Chlorine Atom from Small Organic Molecules Containing Amino Acid Functionalities: An Assessment of Theoretical Procedures. J Phys Chem A 2009; 113:11817-32. [DOI: 10.1021/jp9029437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mark S. Taylor
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Sandra A. Ivanic
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Geoffrey P. F. Wood
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Christopher J. Easton
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - George B. Bacskay
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Leo Radom
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
10
|
Anderson RS, Huang L, Iannone R, Rudolph J. Measurements of the 12C/13C Kinetic Isotope Effects in the Gas-Phase Reactions of Light Alkanes with Chlorine Atoms. J Phys Chem A 2006; 111:495-504. [PMID: 17228898 DOI: 10.1021/jp064634p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The carbon kinetic isotope effects (KIEs) of the reactions of several light non-methane hydrocarbons (NMHC) with Cl atoms were determined at room temperature and ambient pressure. All measured KIEs, defined as the ratio of the Cl reaction rate constants of the light isotopologue over that of the heavy isotopologue (Clk12/Clk13) are greater than unity or normal KIEs. For simplicity, measured KIEs are reported in per mil according to Clepsilon=(Clk12/Clk13 -1)x1000 per thousand unless noted otherwise. The following average KIEs were obtained (all in per thousand): 10.73+/-0.20 (ethane), 6.44+/-0.14 (propane), 6.18+/-0.18 (methylpropane), 3.94+/-0.01 (n-butane), 1.79+/-0.42 (methylbutane), 3.22+/-0.17 (n-pentane), 2.02+/-0.40 (n-hexane), 2.06+/-0.19 (n-heptane), 1.54+/-0.15 (n-octane), 3.04+/-0.09 (cyclopentane), 2.30+/-0.09 (cyclohexane), and 2.56+/-0.25 (methylcyclopentane). Measurements of the 12C/13C KIEs for the Cl atom reactions of the C2-C8 n-alkanes were also made at 348 K, and no significant temperature dependence was observed. To our knowledge, these 12C/13C KIE measurements for alkanes+Cl reactions are the first of their kind. Simultaneous to the KIE measurement, the rate constant for the reaction of each alkane with Cl atoms was measured using a relative rate method. Our measurements agree with published values within+/-20%. The measured rate constant for methylcyclopentane, for which no literature value is available, is (2.83+/-0.11)x10-10 cm3 molecule-1 s-1, 1sigma standard error. The Clepsilon values presented here for the C2-C8 alkanes are an order of magnitude smaller than reported methane Clepsilon values (Geophys. Res. Lett., 2000, 27, 1715), in contrast to reported OHepsilon values for methane (J. Geophys. Res. (Atmos.), 2001, 106, 23, 127) and C2-C8 alkanes (J. Phys. Chem. A, 2004, 108, 11537), which are all smaller than 10 per thousand. This has important implications for atmospheric modeling of saturated NMHC stable carbon isotope ratios. 13C-structure reactivity relationship values (13C-SRR) for alkane-Cl reactions have been determined and are similar to previously reported values for alkane-OH reactions.
Collapse
Affiliation(s)
- Rebecca S Anderson
- Centre for Atmospheric Chemistry and Chemistry Department, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | | | | | | |
Collapse
|
11
|
Rangel C, Navarrete M, Corchado JC, Espinosa-García J. Potential energy surface, kinetics, and dynamics study of the Cl+CH4→HCl+CH3 reaction. J Chem Phys 2006; 124:124306. [PMID: 16599673 DOI: 10.1063/1.2179067] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A modified and recalibrated potential energy surface for the gas-phase Cl+CH4-->HCl+CH3 reaction is reported and tested. It is completely symmetric with respect to the permutation of the four methane hydrogen atoms and is calibrated with respect to updated experimental and theoretical stationary point properties and experimental forward thermal rate constants. From the kinetics point of view, the forward and reverse thermal rate constants and the activation energies were calculated using the variational transition-state theory with semiclassical transmission coefficients over a wide temperature range of 150-2500 K. The theoretical results reproduce the available experimental data, with a small curvature of the Arrhenius plot which indicates the role of tunneling in this hydrogen abstraction reaction. A dynamics study was also performed on this PES using quasiclassical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories. First, we found a noticeable internal energy in the coproduct methyl radical, both in the ground-state [CH4 (v=0)] and vibrationally excited [CH4 (v=1)] reactions. This CH3 internal energy was directly precluded in some experiments or oversimplified in previous theoretical studies using pseudotriatomic models. Second, our QCT calculations give HCl rotational distributions slightly hotter than those in experiment, but correctly describing the experimental trend of decreasing the HCl product rotation excitation in going from HCl (v'=0) to HCl (v'=1) for the CH4 (v=1) reaction. Third, the state specific scattering distributions present a reasonable agreement with experiment, although they tend to make the reaction more forward and backward scattered than found experimentally probably because of the hotter rotational distribution and the deficiencies of the QCT methods.
Collapse
Affiliation(s)
- Cipriano Rangel
- Departamento de Química Física, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
12
|
Griffith DWT, Jamie I, Esler M, Wilson SR, Parkes SD, Waring C, Bryant GW. Real-time field measurements of stable isotopes in water and CO2 by Fourier transform infrared spectrometry. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2006; 42:9-20. [PMID: 16500751 DOI: 10.1080/10256010500503098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Continuous records of isotope behaviour in the environment are invaluable to understanding mass and energy fluxes. Although techniques such as isotope ratio mass spectrometry provide high precision data, they are not well suited to the analysis of a large number of samples and are currently restricted to use in the laboratory. Fourier transform infrared spectrometers are relatively cheap and sufficiently portable and robust to be taken into the field to collect continuous records of gas-phase isotope behaviour. Several examples of the application of this technique will be presented. One data set provides half-hourly determinations of vertical profiles of D/H in water vapour above agricultural fields over a 3-week period; the same infrared spectra can also be used to determine 13C/12C in CO2. The technique has also been applied to the study of CO2 in ambient air and in a limestone cave system. Some of the features and complications associated with the method will also be considered.
Collapse
Affiliation(s)
- David W T Griffith
- Atmospheric Chemistry Research Group, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sellevåg SR, Nyman G, Nielsen CJ. Study of the Carbon-13 and Deuterium Kinetic Isotope Effects in the Cl and OH Reactions of CH4 and CH3Cl. J Phys Chem A 2005; 110:141-52. [PMID: 16392849 DOI: 10.1021/jp0549778] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Relative rate experiments have been carried out for three isotopologues of chloromethane and their reactions with Cl atoms and OH radicals. The OH and Cl reaction rates of CH2DCl and CHD2Cl were measured by long-path FTIR spectroscopy relative to CH3Cl at 298+/-2 K and 1013+/-10 hPa in purified air. The FTIR spectra were fitted using a nonlinear least squares spectral fitting method including measured high-resolution infrared spectra as references. The relative reaction rates defined by alpha=klight/kheavy were determined to be kOH+CH3Cl/kOH+CH2DCl=1.41+/-0.05, kOH+CH3Cl/kOH+CHD2Cl=2.03+/-0.05, kCl+CH3Cl/kCl+CH2DCl=1.42+/-0.04, and kCl+CH3Cl/kCl+CHD2Cl=2.27+/-0.04. The carbon-13 and deuterium kinetic isotope effects in the OH and Cl reactions of CH3Cl were investigated further using variational transition state theory, and the results were compared to similar calculations performed for the CH4+OH/Cl reaction systems. The calculations show that the order of magnitude difference for the carbon-13 kinetic isotope effect in the OH reaction of CH3Cl compared to CH4 reported by Gola et al. (Atmos. Chem. Phys. 2005, 5, 2395) can be explained by the lower barrier to internal rotation of the OH radical in the transition state of the CH4+OH reaction than in the CH3Cl+OH reaction. The deuterium kinetic isotope effects can be explained in terms of combined variational effects and tunneling.
Collapse
Affiliation(s)
- Stig R Sellevåg
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | | | | |
Collapse
|
14
|
Feilberg KL, Griffith DWT, Johnson MS, Nielsen CJ. The13C and D kinetic isotope effects in the reaction of CH4 with Cl. INT J CHEM KINET 2004. [DOI: 10.1002/kin.20058] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Brenninkmeijer CAM, Janssen C, Kaiser J, Röckmann T, Rhee TS, Assonov SS. Isotope Effects in the Chemistry of Atmospheric Trace Compounds. Chem Rev 2003; 103:5125-62. [PMID: 14664646 DOI: 10.1021/cr020644k] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Muñoz-Caro C, Niño A, Dávalos JZ, Quintanilla E, Abboud JL. Experimental and Theoretical Study of the Secondary Equilibrium Isotope Effect (SEIE) in the Proton Transfer between the Pyridinium-d5 Cation and Pyridine. J Phys Chem A 2003. [DOI: 10.1021/jp035109i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
McCarthy MC. Carbon and hydrogen isotopic compositions of stratospheric methane: 2. Two-dimensional model results and implications for kinetic isotope effects. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd003183] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Rice AL. Carbon and hydrogen isotopic compositions of stratospheric methane: 1. High-precision observations from the NASA ER-2 aircraft. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd003042] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Troya D, Millán J, Baños I, González M. Ab initio, kinetics, and dynamics study of Cl+CH4→HCl+CH3. J Chem Phys 2002. [DOI: 10.1063/1.1497681] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Saueressig G, Crowley JN, Bergamaschi P, Brühl C, Brenninkmeijer CAM, Fischer H. Carbon 13 and D kinetic isotope effects in the reactions of CH4with O(1D) and OH: New laboratory measurements and their implications for the isotopic composition of stratospheric methane. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd000120] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Michelsen HA. Carbon and hydrogen kinetic isotope effects for the reaction of Cl with CH4: Consolidating chemical kinetics and molecular dynamics measurements. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd900689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Bréas O, Guillou C, Reniero F, Wada E. The global methane cycle: isotopes and mixing ratios, sources and sinks. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2001; 37:257-379. [PMID: 12723792 DOI: 10.1080/10256010108033302] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A review of the global cycle of methane is presented with emphasis on its isotopic composition. The history of methane mixing ratios, reconstructed from measurements of air trapped in ice-cores is described. The methane record now extends back to 420 kyr ago in the case of the Vostok ice cores from Antarctica. The trends in mixing ratios and in delta13C values are reported for the two Hemispheres. The increase of the atmospheric methane concentration over the past 200 years, and by 1% per year since 1978, reaching 1.7 ppmv in 1990 is underlined. The various methane sources are presented. Indeed the authors describe the methane emissions by bacterial activity under anaerobic conditions in wet environments (wetlands, bogs, tundra, rice paddies), in ruminant stomachs and termite guts, and that originating from fossil carbon sources, such as biomass burning, coal mining, industrial losses, automobile exhaust, sea floor vent, and volcanic emissions. Furthermore, the main sinks of methane in the troposphere, soils or waters via oxidation are also reported, and the corresponding kinetic isotope effects.
Collapse
Affiliation(s)
- O Bréas
- European Commission Joint Research Centre, Institute for Reference Materials and Measurements, Isotope Measurements Unit, B-2440 Geel, Belgium
| | | | | | | |
Collapse
|
23
|
Michelsen HA, Simpson WR. Relating State-Dependent Cross Sections to Non-Arrhenius Behavior for the Cl + CH4 Reaction. J Phys Chem A 2000. [DOI: 10.1021/jp0016784] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hope A. Michelsen
- Combustion Research Facility, Sandia National Laboratories, MS 9055, P.O. Box 969, Livermore, California 94551
| | | |
Collapse
|
24
|
Boone GD, Agyin F, Robichaud DJ, Tao FM, Hewitt SA. Rate Constants for the Reactions of Chlorine Atoms with Deuterated Methanes: Experiment and Theory. J Phys Chem A 2000. [DOI: 10.1021/jp0027290] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gwen D. Boone
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, California 92834-6866
| | - Frederick Agyin
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, California 92834-6866
| | - David J. Robichaud
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, California 92834-6866
| | - Fu-Ming Tao
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, California 92834-6866
| | - Scott A. Hewitt
- Department of Chemistry and Biochemistry, California State University, Fullerton, Fullerton, California 92834-6866
| |
Collapse
|