1
|
Hu CW, Chang YJ, Chen JL, Hsu YW, Chao MR. Sensitive Detection of 8-Nitroguanine in DNA by Chemical Derivatization Coupled with Online Solid-Phase Extraction LC-MS/MS. Molecules 2018. [PMID: 29517997 PMCID: PMC6017919 DOI: 10.3390/molecules23030605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
8-Nitroguanine (8-nitroG) is a major mutagenic nucleobase lesion generated by peroxynitrite during inflammation and has been used as a potential biomarker to evaluate inflammation-related carcinogenesis. Here, we present an online solid-phase extraction (SPE) LC-MS/MS method with 6-methoxy-2-naphthyl glyoxal hydrate (MTNG) derivatization for a sensitive and precise measurement of 8-nitroG in DNA. Derivatization optimization revealed that an excess of MTNG is required to achieve complete derivatization in DNA hydrolysates (MTNG: 8-nitroG molar ratio of 3740:1). The use of online SPE effectively avoided ion-source contamination from derivatization reagent by washing away all unreacted MTNG before column chromatography and the ionization process in mass spectrometry. With the use of isotope-labeled internal standard, the detection limit was as low as 0.015 nM. Inter- and intraday imprecision was <5.0%. This method was compared to a previous direct LC-MS/MS method without derivatization. The comparison showed an excellent fit and consistency, suggesting that the present method has satisfactory effectiveness and reliability for 8-nitroG analysis. This method was further applied to determine the 8-nitroG in human urine. 8-NitroG was not detectable using LC-MS/MS with derivatization, whereas a significant false-positive signal was detected without derivatization. It highlights the use of MTNG derivatization in 8-nitroG analysis for increasing the method specificity.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Jian-Lian Chen
- School of Pharmacy, China Medical University, Taichung 404, Taiwan.
| | - Yu-Wen Hsu
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Optometry, Da-Yeh University, Changhua 515, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Kuska MS, Majdi Yazdi M, Witham AA, Dahlmann HA, Sturla SJ, Wetmore SD, Manderville RA. Influence of Chlorine Substitution on the Hydrolytic Stability of Biaryl Ether Nucleoside Adducts Produced by Phenolic Toxins. J Org Chem 2013; 78:7176-85. [DOI: 10.1021/jo401122j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael S. Kuska
- Departments of Chemistry and
Toxicology, University of Guelph, Guelph,
Ontario, N1G 2W1, Canada
| | - Mohadeseh Majdi Yazdi
- Department of Chemistry and
Biochemistry, University of Lethbridge,
Lethbridge, Alberta, T1K 3M4, Canada
| | - Aaron A. Witham
- Departments of Chemistry and
Toxicology, University of Guelph, Guelph,
Ontario, N1G 2W1, Canada
| | - Heidi A. Dahlmann
- Institute of Food, Nutrition and
Health, ETH Zürich, 8006 Zürich,
Switzerland
| | - Shana J. Sturla
- Institute of Food, Nutrition and
Health, ETH Zürich, 8006 Zürich,
Switzerland
| | - Stacey D. Wetmore
- Department of Chemistry and
Biochemistry, University of Lethbridge,
Lethbridge, Alberta, T1K 3M4, Canada
| | - Richard A. Manderville
- Departments of Chemistry and
Toxicology, University of Guelph, Guelph,
Ontario, N1G 2W1, Canada
| |
Collapse
|
3
|
Exposure to alcohol and tobacco smoke causes oxidative stress in rats. Pharmacol Rep 2013; 65:906-13. [DOI: 10.1016/s1734-1140(13)71072-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 03/11/2013] [Indexed: 11/23/2022]
|
4
|
Capillary electrophoretic determination of DNA damage markers: content of 8-hydroxy-2'-deoxyguanosine and 8-nitroguanine in urine. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3818-22. [PMID: 22098717 DOI: 10.1016/j.jchromb.2011.10.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/19/2011] [Accepted: 10/23/2011] [Indexed: 11/21/2022]
Abstract
A sensitive and low-cost analytical method has been developed to determine 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NO(2)Gua) based on capillary electrophoresis with amperometric detection (CE-AD) after solid phase extraction (SPE). Under optimized condition, these two markers were well separated from other components coexisting in urine, exhibiting a linear calibration over the concentration range of 0.1-50.0 μg/mL with the detection limits ranging from 0.02 to 0.06 μg/mL. The relative standard deviations (RSDs) were in the range of 0.1-2.1% for peak area, 0.1-1.5% for migration time, respectively. The average recovery and RSD were within the range of 100.0-108.0% and 0.1-1.7%, respectively. It was found that the urinary contents of 8-OHdG and 8-NO(2)Gua in cancer patients were significantly higher than those in healthy ones.
Collapse
|
5
|
Hare JM, Beigi F, Tziomalos K. Nitric oxide and cardiobiology-methods for intact hearts and isolated myocytes. Methods Enzymol 2008; 441:369-92. [PMID: 18554546 DOI: 10.1016/s0076-6879(08)01221-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cross talk between reactive oxygen species (ROS) and reactive nitrogen species (RNS) plays a pivotal role in the regulation of myocardial and vascular function. Both nitric oxide and redox-based signaling involve the posttranslational modification of proteins through S-nitrosylation and oxidation of specific cysteine residues. Disruption of this cross talk between ROS and RNS contributes to the pathogenesis of heart failure. Therefore, the elucidation of these complex chemical interactions may improve our understanding of cardiovascular pathophysiology. This chapter discusses the significant role of spatial confinement of nitric oxide synthases, NADPH oxidase, and xanthine oxidoreductase in the regulation of myocardial excitation-contraction coupling. This chapter describes techniques for assessing oxidative and nitrosative stress. A variety of assays have been developed that quantify S-nitrosylated proteins. Among them, the biotin-switch method directly evaluates endogenously nitrosylated proteins in a reproducible way. Identification of the biotinylated or S-nitrosylated proteins subjected to the biotin-switch assay are described and evaluated with a one-dimensional gel (Western blot) or with the newly developed two-dimensional fluorescence difference gel electrophoresis proteomic analysis. Quantifying the number of free thiols with the monobromobimane assay in a protein of interest allows estimation of cysteine oxidation and, in turn, the state of nitroso-redox balance of effector molecules. In summary, this chapter reviews the biochemical methods that assess the impact of nitroso/redox signaling in the cardiovascular system.
Collapse
Affiliation(s)
- Joshua M Hare
- Division of Cardiology and Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | |
Collapse
|
6
|
Lima PHO, Sinzato YK, de Souza MDSS, Braz MG, Rudge MVC, Damasceno DC. Evaluation of level of DNA damage in blood leukocytes of non-diabetic and diabetic rat exposed to cigarette smoke. Mutat Res 2006; 628:117-22. [PMID: 17258498 DOI: 10.1016/j.mrgentox.2006.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
The objective of the present study was to use the comet assay to evaluate the steady-state level of DNA damage in peripheral blood leukocytes from diabetic and non-diabetic female Wistar rats exposed to air or to cigarette smoke. A total of 20 rats were distributed into four experimental groups (n=5 rats/group): non-diabetic (control) and diabetic exposed to filtered air; non-diabetic and diabetic exposed to cigarette smoke. A pancreatic beta (beta)-cytotoxic agent, streptozotocin (40 mg/kg b.w.) was used to induce experimental diabetes in rats. Rats placed into whole-body exposure chambers were exposed for 30 min to filtered air (control) or to tobacco smoke generated from 10 cigarettes, twice a day, for 2 months. At the end of the 2-month exposure period, each rat was anesthetized and humanely killed to obtain blood samples for genotoxicity analysis using the alkaline comet assay. Blood leukocytes sampled from diabetic rats presented higher DNA damage values (tail moment=0.57+/-0.05; tail length=19.92+/-0.41, p<0.05) compared to control rats (tail moment=0.34+/-0.02; tail length=17.42+/-0.33). Non-diabetic (tail moment=0.43+/-0.04, p>0.05) and diabetic rats (tail moment=0.41+/-0.03, p>0.05) exposed to cigarette smoke presented non-significant increases in DNA damage levels compared to control group. In conclusion, our data show that the exposure of diabetic rats to cigarette smoke produced no additional genotoxicity in peripheral blood cells of female Wistar rats.
Collapse
Affiliation(s)
- Paula Helena Ortiz Lima
- Laboratory of Experimental Research of Gynecology and Obstetrics, Department of Gynecology and Obstetrics, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Ishii Y, Ogara A, Okamura T, Umemura T, Nishikawa A, Iwasaki Y, Ito R, Saito K, Hirose M, Nakazawa H. Development of quantitative analysis of 8-nitroguanine concomitant with 8-hydroxydeoxyguanosine formation by liquid chromatography with mass spectrometry and glyoxal derivatization. J Pharm Biomed Anal 2006; 43:1737-43. [PMID: 17240101 DOI: 10.1016/j.jpba.2006.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 12/02/2006] [Accepted: 12/06/2006] [Indexed: 12/30/2022]
Abstract
Under inflammatory conditions, both 8-nitroguanine (NO2Gua) and 8-hydroxydeoxyguanosine (8-OHdG) are found in tissues. Measurements of the two types of damaged bases on nucleotides are expected to provide information pointing to the possible correlation between inflammation and carcinogenesis. For the establishment of an in vivo model, in this study, a sensitive and precise method for the determination of NO2Gua, which uses liquid chromatography with mass spectrometry (LC-MS) and 6-methoxy-2-naphthyl glyoxal (MTNG) derivatization, was developed in vitro. The procedure for DNA digestion in this method is identical to that widely used for 8-OHdG measurement, which enables us to detect the two damaged bases in the same DNA sample. In order to validate our method, we measured NO2Gua levels in DNA sample using LC-MS. A mass spectrometer equipped with an electrospray atmospheric pressure ionization source and operated in the negative ion mode (ESI-) was set up with selective ion monitoring at m/z 391 and 394 for NO2Gua-MTNG and [13C, 15N2]-NO2Gua-MTNG as surrogate standard, respectively. The average recoveries from DNA samples spiked with 25, 50 and 250 nM NO2Gua were 99.4, 99.8 and 99.1% with correction using the added surrogate standard, respectively. The limit of quantification was 3.0 nM for NO2Gua. To ascertain the applicability of our method to DNA samples harboring the two damaged bases, we measured NO2Gua and 8-OHdG levels in calf thymus DNA treated with ONOO-. As a result, both NO2Gua and 8-OHdG levels were clearly increased with ONOO- dose dependency, the amount of NO2Gua at the high dose ONOO- being almost the same as those of 8-OHdG. LC-MS was able to determine NO2Gua in a small amount of DNA sample, and is therefore expected to be a very powerful tool for the evaluation of DNA damage induced by reactive nitrogen species.
Collapse
Affiliation(s)
- Yuji Ishii
- Department of Analytical Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wu CH, Lin HH, Yan FP, Wu CH, Wang CJ. Immunohistochemical detection of apoptotic proteins, p53/Bax and JNK/FasL cascade, in the lung of rats exposed to cigarette smoke. Arch Toxicol 2006; 80:328-36. [PMID: 16341695 DOI: 10.1007/s00204-005-0050-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 11/07/2005] [Indexed: 01/08/2023]
Abstract
Lung disease is the leading and second-leading cause of death in women and men in Taiwan, respectively. Epidemiological studies conducted in Taiwan have shown that cigarette smoking is the principal risk factor of lung disease, but little is known about the association between apoptosis and cigarette smoke (CS)-induced lung pathogenesis. We designed an animal exposure system to study signal proteins involved in the process of apoptosis induced by smoking in rat terminal bronchiole. Rats were exposed to CS in doses of 5, 10, and 15 cigarettes, respectively, and the exposure lasted for 30 min, twice a day, 6 days a week for 1 month. Following which the rats were sacrificed and the lung tissues were analyzed by histopathological methods. The terminal bronchioles revealed mild to severe inflammation according to the doses of CS and marked lipid peroxidation, lymphocyte infiltration, congestion, and epithelial emphysema of alveolar spaces were also noted. Using an in situ cell death detection kit (TA300), the association of CS with apoptosis was determined in a concentration-dependent manner. Immunohistochemical evaluation showed that CS treatment produced an increase in the cellular levels of Bax, t-Bid, cleaved caspase-3, phospho-p53, phospho-JNK, and FasL but a decline in Bcl-2 and Mcl-1 (p<0.001 for all) in rat terminal bronchioles. The results provided evidences suggesting that exposure to CS not only induced apoptosis, but also involved p53/Bax and JNK/FasL cascade pathway.
Collapse
Affiliation(s)
- Cheng-Hsun Wu
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Ohshima H, Sawa T, Akaike T. 8-nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: formation, occurrence, and implications in inflammation and carcinogenesis. Antioxid Redox Signal 2006; 8:1033-45. [PMID: 16771693 DOI: 10.1089/ars.2006.8.1033] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The authors review studies on 8-nitroguanine (8-NO(2)-G) formed by reactions of guanine, guanosine, and 2 - deoxyguanosine, either free or in DNA or RNAwith reactive nitrogen species (RNS) generated from peroxynitrite, the myeloperoxidase-H(2)O(2)-nitrite system, and others. Use of antibodies against 8-NO(2)-G has revealed increased formation of 8-NO(2)-G in various pathological conditions, including RNA virus-induced pneumonia in mice, intrahepatic bile ducts of hamsters infected with the liver fluke Opisthorchis viverrini, and gastric mucosa of patients with Helicobacter pylori-induced gastritis. Immunoreactivity has been found in the cytosol as well as in the nucleus of inflammatory cells and epithelial cells in inflamed tissues, but not in normal tissues. 8- NO(2)-G in DNA is potentially mutagenic, yielding G:C to T:A transversion, possibly through its rapid depurination to form an apurinic site and/or miscoding with adenine. 8-NO(2)-G in RNA may interfere with RNA functions and metabolism. Nitrated guanine nucleosides and nucleotides in the nucleotide pool may contribute to oxidative stress via production of superoxide mediated by various reductases and may disturb or modulate directly various important enzymes such as GTP-binding proteins and cGMP-dependent enzymes. Further studies are warranted to establish the roles of 8-NO(2)-G in various pathophysiological conditions and inflammation-associated cancer.
Collapse
|
10
|
Sawa T, Tatemichi M, Akaike T, Barbin A, Ohshima H. Analysis of urinary 8-nitroguanine, a marker of nitrative nucleic acid damage, by high-performance liquid chromatography-electrochemical detection coupled with immunoaffinity purification: association with cigarette smoking. Free Radic Biol Med 2006; 40:711-20. [PMID: 16458202 DOI: 10.1016/j.freeradbiomed.2005.09.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 08/30/2005] [Accepted: 09/16/2005] [Indexed: 12/12/2022]
Abstract
We have developed an analytical method to quantitate urinary 8-nitroguanine, a product of nitrative nucleic acid damage caused by reactive nitrogen species such as peroxynitrite and nitrogen dioxide. 8-Nitroguanine was purified from human urine using immunoaffinity columns with an anti-8-nitroguanine antibody, followed by quantitation by high-performance liquid chromatography-electrochemical detection. Four sequential electrodes were used to (a) oxidize interfering compounds (+250 mV), (b) reduce nitrated bases (two online electrodes at -1000 mV), and (c) quantitate reduced derivatives (+150 mV). Using this system 8-nitroxanthine can also be detected, with the detection limits being 25 and 50 fmol/injection for 8-nitroguanine and 8-nitroxanthine, respectively. The method was used to analyze both adducts in the urine of smokers (n=12) and nonsmokers (n=17). We found that smokers excrete more 8-nitroguanine [median, 6.1 fmol/mg creatinine; interquartile range (IQR), 23.8] than nonsmokers (0; IQR, 0.90) (p=0.018), and although 8-nitroxanthine was detected in human urine, its level was not related to smoking status. This is the first report to show that 8-nitroguanine is present in human urine and the methodology developed can be used to study the pathogenic roles of this adduct in the etiology of cancers associated with cigarette smoking and inflammation.
Collapse
Affiliation(s)
- Tomohiro Sawa
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France.
| | | | | | | | | |
Collapse
|
11
|
Chang HR, Lai CC, Lian JD, Lin CC, Wang CJ. Formation of 8-nitroguanine in blood of patients with inflammatory gouty arthritis. Clin Chim Acta 2005; 362:170-5. [PMID: 16023632 DOI: 10.1016/j.cccn.2005.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/17/2005] [Accepted: 06/17/2005] [Indexed: 11/21/2022]
Abstract
BACKGROUND NOx causes DNA damage due to an inflammatory effect of gouty arthritis. We investigated the concentration of 8-nitroguanine (8-NO(2)-G) in the blood of patients with arthritis. METHODS Subjects were divided into 3 groups: (1) high inflammatory (HI) group (n = 21) with hyperuricemia (mean, 8.9 mg/dl) and leukocytosis, (2) low inflammatory (LI) group (n = 14) with mild hyperuricemia (mean, 7.6 mg/dl) but normal leukocyte count, (3) non-inflammatory (NI) healthy control (n = 19) with mean serum uric acid concentration 5.3 mg/dl and normal leukocyte count. Serum C-reactive protein (CRP) concentrations were measured by a visual agglutination method. The blood concentrations of 8-NO(2)-G were determined by high performance liquid chromatography-electrochemical detection and were compared between groups. RESULTS There was significant difference in percentage of positive CRP (NI: 55.6%, LI: 64.3%, HI: 100%, p = 0.003) between the 3 groups. The leukocyte count (mean +/- S.E., NI: 7400 +/- 528, LI: 7686 +/- 433, HI: 10952 +/- 691/mm(3), p < 0.001), uric acid (NI: 5.3 +/- 0.24, LI: 7.6 +/- 0.4, HI: 8.9 +/- 0.36 mg/dl, p < 0.001), NO(2) (NI: 6.5 +/- 1.2, LI: 11.1 +/- 2.9, HI: 35.6 +/- 5.1 microg/ml, p < 0.001) and the 8-NO(2)-G (NI: 0.08 +/- 0.03; LI: 0.34 +/- 0.13; HI: 0.59 +/- 0.09 ng/microg DNA, p = 0.002) were significantly increased by inflammation. CONCLUSION Gouty inflammation induces DNA damage by increasing 8-NO(2)-G through endogenous NO and ROS formation.
Collapse
Affiliation(s)
- Horng-Rong Chang
- Division of Nephrology, Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Suzuki N, Yasui M, Geacintov NE, Shafirovich V, Shibutani S. Miscoding events during DNA synthesis past the nitration-damaged base 8-nitroguanine. Biochemistry 2005; 44:9238-45. [PMID: 15966748 DOI: 10.1021/bi050276p] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
8-Nitro-2'-deoxyguanosine (8-NO(2)-dG) DNA adducts are induced by the reactive nitrogen species and may be associated with the development of cancer in inflammatory tissues. To explore the miscoding potential of 8-NO(2)-dG adduct, an oligodeoxynucleotide containing a single 8-NO(2)-dG adduct was prepared by photochemical synthesis and used as a template in primer extension reactions catalyzed by mammalian DNA polymerases (pol). Primer extension reactions catalyzed by pol alpha or beta were strongly retarded at the 8-NO(2)-dG lesion; a fraction of primers was extended past the lesion by incorporating preferentially dCMP, the correct base, opposite the lesion, accompanied by lesser amounts of dAMP and dGMP incorporation. In contrast, primer extension reactions catalyzed by pol eta or a truncated form of pol kappa (pol kappaDeltaC) readily extended past the 8-NO(2)-dG lesion. Pol eta and kappaDeltaC showed more broad miscoding spectra; direct incorporations of dCMP and dAMP were observed, along with lesser amounts of dGMP and dTMP incorporations and deletions. The miscoding frequencies induced by pol eta and kappaDeltaC were at least 8 times higher than that of pol alpha or beta. Miscoding frequency and specificity of 8-NO(2)-dG varied depending on the DNA polymerases used. These observations were supported by steady-state kinetic studies. 8-NO(2)-dG adduct may play an important role in initiating inflammation driven carcinogenesis.
Collapse
Affiliation(s)
- Naomi Suzuki
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | | | | | |
Collapse
|
13
|
Kuo WH, Chen JH, Lin HH, Chen BC, Hsu JD, Wang CJ. Induction of apoptosis in the lung tissue from rats exposed to cigarette smoke involves p38/JNK MAPK pathway. Chem Biol Interact 2005; 155:31-42. [PMID: 15970277 DOI: 10.1016/j.cbi.2005.04.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/13/2005] [Accepted: 04/13/2005] [Indexed: 11/16/2022]
Abstract
Smoking is a major cause of human lung cancer. Past studies suggest that apoptosis might influence the malignant phenotype, but little is known about the association between apoptosis and cigarette smoke (CS)-induced lung pathogenesis. Using an in situ cell death detection kit (TA300), the association of CS with apoptosis was determined in a concentration-dependent manner. Furthermore, the expression of related proteins were investigated in the terminal bronchiole areas of the lung tissue from rats exposed to CS. Results showed that the expression of phosphotyrosine proteins was increased significantly in lung tissue of rats exposed to CS from 5 to 15 cigarettes. Using Western blotting and immunoprecipitation assay, Fas, a death receptor, was proved just be one of these phosphotyrosine proteins. CS triggered activation of MAP kinase (p38/JNK or ERK2) pathway, which led to Jun or p53 phosphorylation and FasL induction links Fas phosphorylation. Further, smoke treatment produced an increase in the level of proapoptotic proteins (Bax, t-Bid, cytochrome c and caspase-3), but a decline in Bcl-2, procaspase-8 and procaspase-9 proteins. Thus, CS-induced apoptosis may result from two main mechanisms, one is the activation of p38/JNK-Jun-FasL signaling, and the other is stimulated by the stabilization of p53, increase in the ratio of Bax/Bcl-2, release of cytochrome c; thus, leading to activation of caspase cascade.
Collapse
Affiliation(s)
- Wu-Hsien Kuo
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Road, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142:231-55. [PMID: 15155533 PMCID: PMC1574951 DOI: 10.1038/sj.bjp.0705776] [Citation(s) in RCA: 1554] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 02/06/2023] Open
Abstract
Free radicals and other reactive species (RS) are thought to play an important role in many human diseases. Establishing their precise role requires the ability to measure them and the oxidative damage that they cause. This article first reviews what is meant by the terms free radical, RS, antioxidant, oxidative damage and oxidative stress. It then critically examines methods used to trap RS, including spin trapping and aromatic hydroxylation, with a particular emphasis on those methods applicable to human studies. Methods used to measure oxidative damage to DNA, lipids and proteins and methods used to detect RS in cell culture, especially the various fluorescent "probes" of RS, are also critically reviewed. The emphasis throughout is on the caution that is needed in applying these methods in view of possible errors and artifacts in interpreting the results.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, MD 7 #03-08, 8 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
15
|
Chen HJC, Wu SB, Chang CM. Biological and dietary antioxidants protect against DNA nitration induced by reaction of hypochlorous acid with nitrite. Arch Biochem Biophys 2003; 415:109-16. [PMID: 12801519 DOI: 10.1016/s0003-9861(03)00220-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nitryl chloride, formed by reaction of hypochlorous acid with nitrite, might contribute to nitrative damage of biomolecules in addition to peroxynitrite. Damage of DNA by these reactive nitrogen oxide species is implicated in carcinogenesis associated with chronic infections and inflammation. Nitrated DNA adducts, such as 8-nitroguanine and 8-nitroxanthine, are not stable in DNA since they undergo spontaneous depurination, leading to apurinic site formation. In this report, we investigate the protective effect of biological and dietary antioxidants in inhibiting DNA nitration induced by nitryl chloride. The effect of inhibition was evaluated by decrease of 8-nitroxanthine and 8-nitroguanine formation. Among the 21 compounds examined, dihydrolipoic acid is the most effective in preventing DNA nitration, followed by N-acetyl-L-cysteine and folic acid. For sulfur-containing compounds, the more highly reduced compounds are stronger inhibitors of DNA nitration. The major product of N-acetyl-L-cysteine reaction with nitryl chloride is characterized as the (R)-2-acetylamino-3-sulfopropionic acid, a physiologically irreversible product, suggesting that nitryl chloride is a strong oxidizing agent.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 160 San-Hsing, Ming-Hsiung, Chia-Yi 62142, Taiwan.
| | | | | |
Collapse
|
16
|
Chen HJC, Chang CM, Chen YM. Hemoprotein-mediated reduction of nitrated DNA bases in the presence of reducing agents. Free Radic Biol Med 2003; 34:254-68. [PMID: 12521607 DOI: 10.1016/s0891-5849(02)01246-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA damages by reactive nitrogen oxide species may contribute to the multistage carcinogenesis processes associated with chronic infections and inflammation. The nitrated DNA adducts 8-nitroguanine (8NG) and 8-nitroxanthine (8NX) have been shown to derive from these reactive nitrogen oxide species, but they are not stable in DNA since they undergo spontaneous depurination. We herein report that hemin and hemoproteins, including hemoglobin and cytochrome c, mediate reduction of 8NG and 8NX to their corresponding amino analogues in the presence of reducing agents under physiologically relevant conditions. This reaction is believed to involve the reduced heme moiety produced from the reduction of oxidized hemoglobin or cytochrome c by reducing agents. The combination of hemoglobin and dihydrolipoic acid generated the reduced products in high yields. Ascorbate, quercetin, and glutathione are also capable of reducing these nitrated DNA adducts. The hemoglobin macromolecule reduces 8NG and 8NX formed in nitryl chloride-treated calf thymus DNA, as evidenced by the formation of the amino adducts using reversed-phase HPLC with photodiode array detection. Hemin is more efficient than equal molar of heme on hemoglobin in reducing 8NG-containing DNA, indicating the role of protein in impeding the reaction. Furthermore, we also show that the reduction product 8-aminoguanine is persistent on DNA. These findings suggest that reduction of nitrated DNA by the heme/antioxidant system might represent a possible in vivo pathway to modify DNA nitration.
Collapse
Affiliation(s)
- Hauh Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, Taiwan.
| | | | | |
Collapse
|
17
|
Lohani M, Dopp E, Becker HH, Seth K, Schiffmann D, Rahman Q. Smoking enhances asbestos-induced genotoxicity, relative involvement of chromosome 1: a study using multicolor FISH with tandem labeling. Toxicol Lett 2002; 136:55-63. [PMID: 12368057 DOI: 10.1016/s0378-4274(02)00260-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several experimental and epidermological studies have indicated augmentation of asbestos induced diseases by cigarette smoke by the mechanisms, which are still unknown. To determine whether smoking affects genetic system of the cells and further modifies asbestos induced genotoxicity, whole blood from non-smokers and smokers was exposed to asbestos fibres separately in vitro and micronucleus test was performed. The number of micronuclei was found to be significantly higher (P<0 05) in cases of smoker's lymphocytes, asbestos exposed non-smokers lymphocytes as well as asbestos exposed smokers lymphocytes, as compared with unexposed non-smokers lymphocytes. Further we investigated involvement of chromosome 1 in the damaging process using multicolor FISH technique. FISH is fast and reliable method, distinguishing both structural and numerical alterations. The centric/pericentric regions of chromosome 1 (cen-q12) were labeled, as the pericentric heterochromatin region 1 (q12) is quite large, highly repetitive and prone to breakage. Multicolor FISH assay suggested that the genetic damage by asbestos fibres mainly involve chromosome 1 but in case of cigarette smoking the damage is not strictly connected to chromosome 1 only, but also involves damage to other chromosomes. Further the study suggested that smoking makes genetic system of the cells more vulnerable to the deleterious effects of asbestos.
Collapse
Affiliation(s)
- M Lohani
- Division of Fibre Toxicology, Industrial Toxicology Research Center, M.G. Marg, Lucknow, India
| | | | | | | | | | | |
Collapse
|