1
|
Wang Y, Xia T, Li C, Zeng D, Xu L, Song L, Yu H, Chen S, Zhao J, Bao X. Promoting Nucleic Acid Synthesis in Saccharomyces cerevisiae through Enhanced Expression of Rrn7p, Rrn11p, IMPDH, and Pho84p. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15224-15236. [PMID: 37811818 DOI: 10.1021/acs.jafc.3c05035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Saccharomyces cerevisiae has emerged as a preferred source for industrial production of ribonucleic acids (RNAs) and their derivatives, which find wide applications in the food and pharmaceutical sectors. In this study, we employed a modified RNA polymerase I-mediated green fluorescent protein expression system, previously developed by our team, to screen and identify an industrial S. cerevisiae strain with an impressive 18.2% increase in the RNA content. Transcriptome analysis revealed heightened activity of genes and pathways associated with rRNA transcription, purine metabolism, and phosphate transport in the high nucleic acid content mutant strains. Our findings highlighted the crucial role of the transcription factor Sfp1p in enhancing the expression of two key components of the transcription initiation factor complex, Rrn7p and Rrn11p, thereby promoting rRNA synthesis. Moreover, elevated expression of 5'-inosine monophosphate dehydrogenases, regardless of the specific isoform (IMD2, 3, or 4), resulted in increased rRNA synthesis through heightened GTP levels. Additionally, exogenous phosphate application, coupled with overexpression of the phosphate transporter PHO84, led to a 61.4% boost in the RNA yield, reaching 2050.4 mg/L. This comprehensive study provides valuable insights into the mechanism of RNA synthesis and serves as a reference for augmenting RNA production in the food industry.
Collapse
Affiliation(s)
- Yun Wang
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Tianqing Xia
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Chenhao Li
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Duwen Zeng
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Lili Xu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
- Shandong Sunkeen Biological Company, 6789 Xingfuhe Road, Jining 273517, China
| | - Liyun Song
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Hengsong Yu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Shichao Chen
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Jianzhi Zhao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Xiaoming Bao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| |
Collapse
|
2
|
Liquid chromatographic methods in the determination of inosine monophosphate dehydrogenase enzyme activity: a review. Bioanalysis 2022; 14:1453-1470. [PMID: 36705020 DOI: 10.4155/bio-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a crucial enzyme involved in the de novo synthesis of purine nucleotides. IMPDH activity is used to evaluate the pharmacodynamics/pharmacokinetics of immunosuppressant drugs such as mycophenolic acid and thiopurines. These drugs are often used to prevent organ transplant rejection and as steroid-sparing agents in autoinflammatory diseases such as inflammatory bowel disease and rheumatoid arthritis. Numerous analytical techniques have been employed to evaluate IMPDH activity in biological matrices. However, hyphenated LC techniques were most widely used in the literature. This review focuses on hyphenated LC methods used to measure IMPDH activity and provides detailed insight into the sample preparation techniques, chromatographic conditions, enzymatic assay conditions, detectors and normalization factors employed in those methods.
Collapse
|
3
|
Inosine 5'-Monophosphate Dehydrogenase Activity for the Longitudinal Monitoring of Mycophenolic Acid Treatment in Kidney Allograft Recipients. Transplantation 2021; 105:916-927. [PMID: 32496356 DOI: 10.1097/tp.0000000000003336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mycophenolic acid (MPA) is a standard immunosuppressant in organ transplantation. A simple monitoring biomarker for MPA treatment has not been established so far. Here, we describe inosine 5'-monophosphate dehydrogenase (IMPDH) monitoring in erythrocytes and its application to kidney allograft recipients. METHODS IMPDH activity measurements were performed using a high-performance liquid chromatography assay. Based on 4203 IMPDH measurements from 1021 patients, we retrospectively explored the dynamics early after treatment start. In addition, we analyzed the influence of clinically relevant variables on IMPDH activity in a multivariate model using data from 711 stable patients. Associations between IMPDH activity and clinical events were evaluated in hospitalized patients. RESULTS We found that IMPDH activity reflects MPA exposure after 8 weeks of constant dosing. In addition to dosage, body mass index, renal function, and coimmunosuppression affected IMPDH activity. Significantly lower IMPDH activities were found in patients with biopsy-proven acute rejection as compared to patients without rejection (median [interquartile range]: 696 [358-1484] versus 1265 [867-1618] pmol xanthosine-5'-monophosphate/h/mg hemoglobin, P < 0.001). The highest IMPDH activities were observed in hospitalized patients with clinically evident MPA toxicity as compared to patients with hospitalization not related to MPA treatment (1548 [1021-2270] versus 1072 [707-1439] pmol xanthosine-5'-monophosphate/h/mg hemoglobin; P < 0.001). Receiver operating characteristic curve analyses underlined the usefulness of IMPDH to predict rejection episodes (area, 0.662; confidence interval, 0.584-0.740; P < 0.001) and MPA-associated adverse events (area, 0.632; confidence interval, 0.581-0.683; P < 0.001), respectively. CONCLUSIONS IMPDH measurement in erythrocytes is a novel and useful strategy for the longitudinal monitoring of MPA treatment.
Collapse
|
4
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Neuberger M, Sommerer C, Böhnisch S, Metzendorf N, Mehrabi A, Stremmel W, Gotthardt D, Zeier M, Weiss KH, Rupp C. Effect of mycophenolic acid on inosine monophosphate dehydrogenase (IMPDH) activity in liver transplant patients. Clin Res Hepatol Gastroenterol 2020; 44:543-550. [PMID: 31924555 DOI: 10.1016/j.clinre.2019.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Due to the development of immunosuppressants, the focus in transplanted patients has shifted from short-term to long-term survival as well as a better adjustment of these drugs in order to prevent over- and under-immunosuppression. Mycophenolic acid (MPA) is a noncompetitive inhibitor of inosine monophosphate dehydrogenase (IMPDH) and approved for prophylaxis of acute rejection after kidney, heart, and liver transplantation, where it has become a part of the standard therapy. Targeting inosine monophosphate IMPDH activity as a surrogate pharmacodynamic marker of MPA-induced immunosuppression may allow a more accurate assessment of efficacy and aid in limiting toxicity in liver transplanted patients. AIM Assess IMPDH-inhibition in liver transplant recipients and its impact on biliary/infectious complications, acute cellular rejection (ACR) and liver dependent survival. METHODS This observational cohort study comprises 117 liver transplanted patients that were treated with mycophenolate mofetil (MMF) for at least 3 months. Blood samples (BS) were collected and MPA serum level and IMPDH activity were measured before (t(0)), 30minutes (t(30)) and 2h after (t(120)) MMF morning dose administration. Regarding MPA, we assessed the area under the curve (AUC). Patients were prospectively followed up for one year and assessed for infectious and biliary complications, episodes of ACR and liver dependent survival. RESULTS The MPA levels showed a broad interindividual variability at t(0) (2.0±1.8ng/ml), t(30) (12.7±9.0ng/ml) and t(120) (7.5±4.3ng/ml). Corresponding IMPDH activity was at t(o) (23.2±9.5 nmol/h/mg), at t(30) (16.3±8.8 nmol/h/mg) and t(120) (18.2±8.7 nmol/h/mg). With regard to MPA level we found no correlation with infectious or biliary complications within the follow-up period. Patients with baseline IMPDH(a) below the median had significant more viral infections (6 (10.2%) vs. 17 (29.3%); P=0.009) with especially more cytomegalovirus (CMV) infections (1 (3.4%) vs. 6 (21.4%); P=0.03)). Furthermore, patients with baseline IMPDH(a) above the median developed more often non-anastomotic biliary strictures (8 (13.6%) vs. 1 (1.7%), P=0.03). We found the group reaching the combined clinical endpoint of death and re-transplantation showing significantly lower MPA baseline values (t(0) 0.9±0.7 vs. 2.1±1.8μg/ml Mann-Whitney-U: P=0.02). We calculated a simplified MPA(AUC) with the MPA level at baseline, 30 and 120minutes after MPA administration. Whereas we found no differences with regard to baseline characteristics at entry into the study patients with MPA (AUC) below the median experienced significantly more often the combined clinical endpoint (12.1% (7/58) vs. 0.0% (0/57); P=0.002) and had a reduced actuarial re-transplantation-free survival (1.0 year vs. 0.58 years; Log-rank: P=0.007) during the prospective one-year follow-up period. In univariate and multivariate analysis including gender, age, BMI, ACR, MPA (AUC) and IMPDH(a) only BMI, MPA (AUC) and IMPDH(a) were independently associated with reduced actuarial re-transplantation-free survival. CONCLUSION MPA-levels and IMPDH-activity in liver transplanted patients allows individual risk assessment. Patients with higher IMPDH inhibition acquire more often viral infections. Insufficient IMPDH inhibition is associated with development of non-anastomotic bile duct strictures and reduced re-transplantation-free survival.
Collapse
Affiliation(s)
- M Neuberger
- University Hospital Heidelberg, Internal Medicine IV, 69120 Heidelberg, Germany
| | - C Sommerer
- University Hospital Heidelberg, Division of Nephrology, 69120 Heidelberg, Germany
| | - S Böhnisch
- University Hospital Heidelberg, Division of Nephrology, 69120 Heidelberg, Germany
| | - N Metzendorf
- University Hospital Heidelberg, Division of Nephrology, 69120 Heidelberg, Germany
| | - A Mehrabi
- University of Heidelberg, Department of General, Visceral, and Transplantation Surgery, 69120 Heidelberg, Germany
| | - W Stremmel
- University Hospital Heidelberg, Internal Medicine IV, 69120 Heidelberg, Germany
| | - D Gotthardt
- University Hospital Heidelberg, Internal Medicine IV, 69120 Heidelberg, Germany
| | - M Zeier
- University Hospital Heidelberg, Division of Nephrology, 69120 Heidelberg, Germany
| | - K H Weiss
- University Hospital Heidelberg, Internal Medicine IV, 69120 Heidelberg, Germany
| | - C Rupp
- University Hospital Heidelberg, Internal Medicine IV, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Pharmacodynamic Monitoring of Mycophenolic Acid Therapy: Improved Liquid Chromatography–Tandem Mass Spectrometry Method for Measuring Inosin-5′-Monophosphate Dehydrogenase Activity. Ther Drug Monit 2020; 42:282-288. [DOI: 10.1097/ftd.0000000000000688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Cilião HL, Camargo-Godoy RBO, Souza MFD, Zanuto A, Delfino VDA, Cólus IMDS. Polymorphisms in IMPDH2, UGT2B7, and CES2 genes influence the risk of graft rejection in kidney transplant recipients taking mycophenolate mofetil. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:97-102. [DOI: 10.1016/j.mrgentox.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 04/11/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023]
|
8
|
Optimization and application of an HPLC method for quantification of inosine-5'-monophosphate dehydrogenase activity as a pharmacodynamic biomarker of mycophenolic acid in Chinese renal transplant patients. Clin Chim Acta 2018; 485:333-339. [PMID: 29964005 DOI: 10.1016/j.cca.2018.06.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND The immunosuppressive agent mycophenolic acid (MPA) is a non-competitive, reversible inhibitor of inosine-5'-monophosphate dehydrogenase (IMPDH). Thus, IMPDH activity can serve as a potential pharmacodynamic biomarker to optimize dosing of MPA. METHODS Peripheral blood mononuclear cells were isolated from 2 mL blood samples and an in vitro enzymatic reaction was subsequently performed for 120 min. To determine IMPDH activity in Chinese healthy volunteers and renal transplant patients, a high performance liquid chromatography assay was established and validated by subtracting adenosine monophosphate (AMP) from blank samples for eliminating exogenous AMP interference. RESULTS The accuracy of our method ranged between -0.8% and 12.5%, and the precision ranged between 0.7% and 6.3%. The mean value of IMPDH activity across 11 healthy volunteers was 46.60 ± 14.28 μmol/s/mol AMP. A negative relationship between MPA concentration and IMPDH activity was observed in four renal transplant patients treated with MPA 13 days post-transplantation, while the inhibitory rate of IMPDH activity ranged from 24% to 42%. CONCLUSION A bioanalytical assay for IMPDH quantification was optimized and evaluated. The differences in the pharmacodynamics of MPA between Asians and Caucasians may provide some evidence for dosing differences among ethnicities.
Collapse
|
9
|
Zhu A, Leto A, Shaked A, Keating B. Immunologic Monitoring to Personalize Immunosuppression After Liver Transplant. Gastroenterol Clin North Am 2018; 47:281-296. [PMID: 29735024 DOI: 10.1016/j.gtc.2018.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Although immunosuppressive drugs have enhanced patient outcomes in transplantation, the liver transplant community has made significant research efforts into the discovery of more accurate and precise methods of posttransplant monitoring and diagnosing. Current research in biomarkers reveals many promising approaches.
Collapse
Affiliation(s)
- Andrew Zhu
- Division of Transplantation, Department of Surgery, Penn Transplant Institute, The University of Pennsylvania, 3400 Spruce Street, Two Dulles Pavilion, Philadelphia, PA 19104, USA
| | - Alexandra Leto
- Division of Transplantation, Department of Surgery, Penn Transplant Institute, The University of Pennsylvania, 3400 Spruce Street, Two Dulles Pavilion, Philadelphia, PA 19104, USA
| | - Abraham Shaked
- Division of Transplantation, Department of Surgery, Penn Transplant Institute, The University of Pennsylvania, 3400 Spruce Street, Two Dulles Pavilion, Philadelphia, PA 19104, USA.
| | - Brendan Keating
- Division of Transplantation, Department of Surgery, Penn Transplant Institute, The University of Pennsylvania, 3400 Spruce Street, Two Dulles Pavilion, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Combination treatment with 6-mercaptopurine and allopurinol in HepG2 and HEK293 cells - Effects on gene expression levels and thiopurine metabolism. PLoS One 2017; 12:e0173825. [PMID: 28278299 PMCID: PMC5344510 DOI: 10.1371/journal.pone.0173825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/26/2017] [Indexed: 12/13/2022] Open
Abstract
Combination treatment with low-dose thiopurine and allopurinol (AP) has successfully been used in patients with inflammatory bowel disease with a so called skewed thiopurine metabolite profile. In red blood cells in vivo, it reduces the concentration of methylated metabolites and increases the concentration of the phosphorylated ones, which is associated with improved therapeutic efficacy. This study aimed to investigate the largely unknown mechanism of AP on thiopurine metabolism in cells with an active thiopurine metabolic pathway using HepG2 and HEK293 cells. Cells were treated with 6-mercaptopurine (6MP) and AP or its metabolite oxypurinol. The expression of genes known to be associated with thiopurine metabolism, and the concentration of thiopurine metabolites were analyzed. Gene expression levels were only affected by AP in the presence of 6MP. The addition of AP to 6MP affected the expression of in total 19 genes in the two cell lines. In both cell lines the expression of the transporter SLC29A2 was reduced by the combined treatment. Six regulated genes in HepG2 cells and 8 regulated genes in HEK293 cells were connected to networks with 18 and 35 genes, respectively, present at known susceptibility loci for inflammatory bowel disease, when analyzed using a protein-protein interaction database. The genes identified as regulated as well as the disease associated interacting genes represent new candidates for further investigation in the context of combination therapy with thiopurines and AP. However, no differences in absolute metabolite concentrations were observed between 6MP+AP or 6MP+oxypurinol vs. 6MP alone in either of the two cell lines. In conclusion; the effect of AP on gene expression levels requires the presence of 6MP, at least in vitro. Previously described AP-effects on metabolite concentrations observed in red blood cells in vivo could not be reproduced in our cell lines in vitro. AP’s effects in relation to thiopurine metabolism are complex. The network-identified susceptibility genes represented biological processes mainly associated with purine nucleotide biosynthetic processes, lymphocyte proliferation, NF-KB activation, JAK-STAT signaling, and apoptotic signaling at oxidative stress.
Collapse
|
11
|
Beringer A, Citterio-Quentin A, Otero RO, Gustin C, Clarke R, Salvi JP, Boulieu R. Determination of inosine 5'-monophosphate dehydrogenase activity in red blood cells of thiopurine-treated patients using HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:194-199. [PMID: 28110955 DOI: 10.1016/j.jchromb.2017.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 01/25/2023]
Abstract
Thiopurine drugs are commonly used in immune diseases and to a lesser extent, in transplant rejection prophylaxis: however interindividual variability in drug response and in the occurrence of adverse events is observed. Genetic variation in thiopurine S-methyltransferase (TPMT) doesn't completely explain the occurrence of all adverse events and drug response variability. The potential implication of other enzymes involved in thiopurine metabolism, such as ITPA, has been investigated over the last decade but little data is available on inosine 5'-monophosphate dehydrogenase (IMPDH) in patients treated with thiopurine drugs. The authors reported a HPLC method to determine IMPDH activity in the red blood cells (RBCs) of thiopurine-treated patients. IMPDH activity was evaluated by enzymatic conversion of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP). The XMP formed was analyzed on a Luna® NH2 stationary phase, a weak anion exchange phase that exhibits both ionic and hydrophobic properties. XMP was eluted below 15min. Intra-assay and inter-assay precisions were below 9% for RBCs supplemented with 2, 40 and 80μmol/L of XMP. IMPDH activity was measured in adults without thiopurine treatment as well as in adult and paediatric patients treated with thiopurines. A wide interindividual variability in IMPDH activity in RBCs was observed. No difference in IMPDH activity was found between untreated subjects and adult and paediatric patients on thiopurine therapy (median value 11.8, 7.9 and 7.7nmol XPM/g Hb/h respectively). The method described is useful in the determination of IMPDH phenotype from patients on thiopurine therapy and in the investigation of the potential relationship between IMPDH activity in RBCs and the occurrence of adverse events and drug response variability.
Collapse
Affiliation(s)
- Audrey Beringer
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France
| | - Antony Citterio-Quentin
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France
| | - Rebeca Obenza Otero
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France
| | - Clémence Gustin
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France
| | - Rebecca Clarke
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; School of Pharmacy and Pharmaceuticals Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jean-Paul Salvi
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France
| | - Roselyne Boulieu
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France.
| |
Collapse
|
12
|
Ku YM, McCartan M, Collier D. Clinical Pharmacokinetic and Pharmacodynamic Monitoring for Mycophenolate Mofetil. J Pharm Pract 2016. [DOI: 10.1177/0897190005282360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of mycophenolate mofetil (MMF), in combination with cyclosporine (CsA) or tacrolimus (FK) and corticosteroids, has been shown to improve clinical outcomes through significant reduction in the incidence of acute rejection in solid organ transplant patients. A fixed oral dosing regimen of 1 or 1.5 g MMF twice daily received Food and Drug Administration approval in 1995 with no recommendations for concentration monitoring at that time. Subsequent evidence has generated substantial debate on the need of clinical monitoring for MMF. This article summarizes the rationale, evidence, and approaches of clinical monitoring for MMF. Mycophenolic acid (MPA), the active moiety of MMF, noncompetitively inhibits the enzyme inosine monophosphate dehydrogenase (IMPDH), which is the target enzyme for MPA. Pharmacokinetic monitoring, by use of MPA predose or MPA area under the concentration-time curve (AUC) values, and pharmacodynamic monitoring by analysis of inhibition of IMPDH have been evaluated in organ transplant patients. The possibility of drug interactions between other immunosuppressive agents has also received attention recently. The clinical implications of drug interactions are discussed in this article.
Collapse
Affiliation(s)
- Yi-Min Ku
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, Bristol-Myers Squibb company, P.O. Box 865122 Plano, TX 75086-5122
| | - Megan McCartan
- Department of Pharmacy, Pharmaceutical and Nutrition Care, Nebraska Medical Center, Omaha, Nebraska
| | - Dean Collier
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
13
|
López-Cruz RI, Crocker DE, Gaxiola-Robles R, Bernal JA, Real-Valle RA, Lugo-Lugo O, Zenteno-Savín T. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines. Front Physiol 2016; 7:213. [PMID: 27375492 PMCID: PMC4898134 DOI: 10.3389/fphys.2016.00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/23/2016] [Indexed: 02/04/2023] Open
Abstract
Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.
Collapse
Affiliation(s)
- Roberto I. López-Cruz
- Programa de Planeación Ambiental y Conservación, Laboratorio de Estrés Oxidativo, Centro de Investigaciones Biológicas del Noroeste, S.C.La Paz, México
| | | | - Ramón Gaxiola-Robles
- Programa de Planeación Ambiental y Conservación, Laboratorio de Estrés Oxidativo, Centro de Investigaciones Biológicas del Noroeste, S.C.La Paz, México
- Instituto Mexicano del Seguro Social, Hospital General de Zona No. 1La Paz, México
| | | | | | - Orlando Lugo-Lugo
- Programa de Planeación Ambiental y Conservación, Laboratorio de Estrés Oxidativo, Centro de Investigaciones Biológicas del Noroeste, S.C.La Paz, México
| | - Tania Zenteno-Savín
- Programa de Planeación Ambiental y Conservación, Laboratorio de Estrés Oxidativo, Centro de Investigaciones Biológicas del Noroeste, S.C.La Paz, México
| |
Collapse
|
14
|
Del Castillo Velasco-Martínez I, Hernández-Camacho CJ, Méndez-Rodríguez LC, Zenteno-Savín T. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus). Comp Biochem Physiol A Mol Integr Physiol 2015; 191:196-201. [PMID: 26506131 DOI: 10.1016/j.cbpa.2015.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022]
Abstract
In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise.
Collapse
Affiliation(s)
- Iris Del Castillo Velasco-Martínez
- Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, México.
| | - Claudia J Hernández-Camacho
- Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional, Laboratorio de Ecología de Pinnípedos, Av. Instituto Politécnico Nacional s/n, Playa Palo Santa Rita, La Paz, Baja California Sur C.P. 23096, México.
| | - Lía C Méndez-Rodríguez
- Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, México.
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, México.
| |
Collapse
|
15
|
Bergan S, Bremer S, Vethe NT. Drug target molecules to guide immunosuppression. Clin Biochem 2015; 49:411-8. [PMID: 26453533 DOI: 10.1016/j.clinbiochem.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/25/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
The individual and interindividual variability of response to immunosuppressants combined with the prevailing concept of lifelong immunosuppression following any organ transplantation motivates the search for methods to further individualize such therapy. Traditional therapeutic drug monitoring, adapting dose according to concentrations in blood, targets the pharmacokinetic variability. It has been increasingly recognized, however, that there is also a considerable variability in the response to a given concentration. Attempts to overcome this variability in response include the efforts to identify relevant targets and methods for pharmacodynamic monitoring. For several of the currently used immunosuppressants there is experimental data suggesting markers that are relevant as indicators for individual monitoring of the effects of these drugs. There are also some clinical data to support these approaches; however what is generally missing, are studies that in a prospective manner demonstrates the benefits and effects on outcome. The monitoring of antithymocyte globulin by lymphocyte subset counts is actually the only well established example of pharmacodynamic monitoring. For drugs such as MPA and mTOR inhibitors, there are candidates such as IMPDH activity expression and p70SK6 phosphorylation status, respectively. The monitoring of CNIs using assays for NFAT RGE, either alone or combined with concentration measurements, is already well documented. Even here, some further investigations relating to the categories of organ transplant, combination of immunosuppressants etc. will be requested. Although some further standardization of the assay is warranted and there is a need for specific recommendations of target levels and how to adjust dose, the NFAT RGE approach to pharmacodynamic monitoring of CNIs may be close to implementation in clinical routine.
Collapse
Affiliation(s)
- Stein Bergan
- Oslo University Hospital, Department of Pharmacology, Oslo, Norway; University of Oslo, School of Pharmacy, Oslo, Norway.
| | - Sara Bremer
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway
| | - Nils Tore Vethe
- Oslo University Hospital, Department of Pharmacology, Oslo, Norway
| |
Collapse
|
16
|
Barjau Pérez-Milicua M, Zenteno-Savín T, Crocker DE, Gallo-Reynoso JP. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa). Front Physiol 2015; 6:212. [PMID: 26283971 PMCID: PMC4518566 DOI: 10.3389/fphys.2015.00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/14/2015] [Indexed: 11/13/2022] Open
Abstract
Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5′-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5′-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), ATP, guanosine 5′-diphosphate (GDP), guanosine 5′-triphosphate (GTP), and xanthosine 5′-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.
Collapse
Affiliation(s)
- Myrna Barjau Pérez-Milicua
- Programa de Planeación Ambiental y Conservación, Laboratorio de Estrés Oxidativo, Centro de Investigaciones Biológicas del Noroeste La Paz, Mexico
| | - Tania Zenteno-Savín
- Programa de Planeación Ambiental y Conservación, Laboratorio de Estrés Oxidativo, Centro de Investigaciones Biológicas del Noroeste La Paz, Mexico
| | - Daniel E Crocker
- Department of Biology, Sonoma State University Rohnert Park, CA, USA
| | - Juan P Gallo-Reynoso
- Laboratorio de Ecofisiología, Centro de Investigación en Alimentación y Desarrollo Guaymas, Mexico
| |
Collapse
|
17
|
Schaier M, Scholl C, Scharpf D, Schmitt WH, Schwenger V, Zeier M, Sommerer C. High interpatient variability in response to mycophenolic acid maintenance therapy in patients with ANCA-associated vasculitis. Nephrol Dial Transplant 2015; 30 Suppl 1:i138-45. [PMID: 25805745 DOI: 10.1093/ndt/gfv065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mycophenolic acid (MPA) is used in the maintenance therapy of antineutrophil cytoplasm antibody-associated systemic vasculitis (AASV). MPA exerts its immunosuppression by inhibiting inosine 5'-monophosphate dehydrogenase (IMPDH), depleting activated lymphocytes of guanine nucleotides and retarding their proliferation. The purpose of our study was to examine the correlation between clinical outcome and pharmacokinetic-pharmacodynamic (PD) relationships of MPA in patients with AASV. METHODS We studied 358 Caucasian control patients without any MPA therapy to examine basal IMPDH activity. Thirty Caucasian patients with AASV under maintenance therapy with mycophenolate mofetil (MMF) underwent therapeutic drug monitoring. RESULTS We observed a high interindividual variability with regard to basal IMPDH activity in patients without any MPA treatment (0.8-35 nmol/mg protein/h). Patients were followed for a mean (±SD) period of 22 ± 8 months. During the observation period, seven patients had a relapse with an elevated Birmingham Vasculitis Activity Score of 9.2 ± 6. The basal IMPDH activity (Abasal) in patients who subsequently relapsed was raised at baseline, before receiving their first dose of MMF, and further increased at the time of relapse, when compared with stable patients. Patients with a relapse during the maintenance therapy had significantly higher levels of IMPDH activity [IMPDH enzyme activity curve (AEC) (0-12)] than stable patients (P = 0.001), indicating inadequate IMPDH suppression. MPA-AUC (0-12) was significantly decreased in relapse patients, in contrast to stable patients (P < 0.05). CONCLUSIONS Due to the highly variable response to maintenance therapy with MPA, PD drug monitoring is a new tool for detecting inadequate immunosuppression in AASV patients.
Collapse
Affiliation(s)
- Matthias Schaier
- Department of Nephrology, University of Heidelberg, University Hospital Heidelberg and Mannheim, Heidelberg, Germany
| | - Christian Scholl
- Department of Nephrology, University of Heidelberg, University Hospital Heidelberg and Mannheim, Heidelberg, Germany
| | - Dominik Scharpf
- Department of Nephrology, University of Heidelberg, University Hospital Heidelberg and Mannheim, Heidelberg, Germany
| | - Wilhelm H Schmitt
- Department of Nephrology, University of Heidelberg, University Hospital Heidelberg and Mannheim, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg, University Hospital Heidelberg and Mannheim, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, University Hospital Heidelberg and Mannheim, Heidelberg, Germany
| | - Claudia Sommerer
- Department of Nephrology, University of Heidelberg, University Hospital Heidelberg and Mannheim, Heidelberg, Germany
| |
Collapse
|
18
|
Plasma and intracellular pharmacokinetic–pharmacodynamic analysis of mycophenolic acid in de novo kidney transplant patients. Clin Biochem 2015; 48:401-5. [DOI: 10.1016/j.clinbiochem.2014.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 11/20/2022]
|
19
|
Kawanishi M, Yano I, Yoshimura K, Yamamoto T, Hashi S, Masuda S, Kondo T, Takaori-Kondo A, Matsubara K. Sensitive and validated LC-MS/MS methods to evaluate mycophenolic acid pharmacokinetics and pharmacodynamics in hematopoietic stem cell transplant patients. Biomed Chromatogr 2015; 29:1309-16. [DOI: 10.1002/bmc.3423] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Misaki Kawanishi
- Department of Clinical Pharmacy and Education, Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
- Department of Clinical Pharmacology and Therapeutics; Kyoto University Hospital; Kyoto Japan
| | - Ikuko Yano
- Department of Clinical Pharmacy and Education, Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
- Department of Clinical Pharmacology and Therapeutics; Kyoto University Hospital; Kyoto Japan
| | - Kazuaki Yoshimura
- Department of Clinical Pharmacy and Education, Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto Japan
- Department of Clinical Pharmacology and Therapeutics; Kyoto University Hospital; Kyoto Japan
| | - Takashi Yamamoto
- Department of Clinical Pharmacology and Therapeutics; Kyoto University Hospital; Kyoto Japan
| | - Sachiyo Hashi
- Department of Clinical Pharmacology and Therapeutics; Kyoto University Hospital; Kyoto Japan
| | - Satohiro Masuda
- Department of Clinical Pharmacology and Therapeutics; Kyoto University Hospital; Kyoto Japan
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics; Kyoto University Hospital; Kyoto Japan
| |
Collapse
|
20
|
Bemer MJ, Risler LJ, Phillips BR, Wang J, Storer BE, Sandmaier BM, Duan H, Raccor BS, Boeckh MJ, McCune JS. Recipient pretransplant inosine monophosphate dehydrogenase activity in nonmyeloablative hematopoietic cell transplantation. Biol Blood Marrow Transplant 2014; 20:1544-52. [PMID: 24923537 PMCID: PMC4163086 DOI: 10.1016/j.bbmt.2014.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation but not with chronic GVHD, relapse, nonrelapse mortality, or overall mortality. We conclude that quantitation of the recipient's pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient's sensitivity to MMF. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients.
Collapse
Affiliation(s)
- Meagan J Bemer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington
| | - Linda J Risler
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington
| | - Brian R Phillips
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington
| | - Joanne Wang
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Barry E Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Brenda M Sandmaier
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Medicine, University of Washington, Seattle, Washington
| | - Haichuan Duan
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Brianne S Raccor
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Michael J Boeckh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Medicine, University of Washington, Seattle, Washington
| | - Jeannine S McCune
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington.
| |
Collapse
|
21
|
Abstract
The transplantation literature includes numerous papers that report associations between polymorphisms in genes encoding metabolizing enzymes and drug transporters, and pharmacokinetic data on immunosuppressive drugs. Most of these studies are retrospective in design, and although a substantial number report significant associations, pharmacogenetic tests are hardly used in clinical practice. One of the reasons for this poor implementation is the current lack of evidence of improved clinical outcome with pharmacogenetic testing. Furthermore, with efficient therapeutic drug monitoring it is possible to rapidly correct for the effect of genotypic deviations on pharmacokinetics, thereby decreasing the utility of genotype-based dosing. The future of pharmacogenetics will be in treatment models in which patient characteristics are combined with data on polymorphisms in multiple genes. These models should focus on pharmacodynamic parameters, variations in the expression of drug transporter proteins, and predictors of toxicity. Such models will provide more information than the relatively small candidate gene studies performed so far. For implementation of these models into clinical practice, linkage of genotype data to medication prescription systems within electronic health records will be crucial.
Collapse
|
22
|
Dostalek M, Gohh RY, Akhlaghi F. Inosine monophosphate dehydrogenase expression and activity are significantly lower in kidney transplant recipients with diabetes mellitus. Ther Drug Monit 2013; 35:374-83. [PMID: 23666569 PMCID: PMC4109137 DOI: 10.1097/ftd.0b013e3182852697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inosine 5'-monophosphate dehydrogenase (IMPDH) is a target of the immunosuppressive drug, mycophenolic acid (MPA). A 12-hour clinical pharmacokinetic and pharmacodynamic study was conducted to compare IMPDH1 and IMPDH2 gene expression, IMPDHI and IMPDHII protein levels, and enzyme activity between kidney transplant recipients with respect to diabetes status. METHODS Nondiabetic (ND, n = 11) and diabetic (D, n = 9) kidney transplant recipients and on nontransplant nondiabetic (n = 10) and diabetic (n = 10) volunteers were included in the study. RESULTS Area under the effect curve values for gene expression: IMPDH1 [ND: 22.1 (13.8-31.3) versus D: 4.5 (2.3-6.5), P < 0.001] and IMPDH2 [ND: 15.3 (11.0-21.7) versus D: 6.1 (4.6-8.6), P < 0.001], protein level: IMPDHI [ND: 1.0 (0.5-1.3) versus 0.5 (0.4-0.7), P = 0.002] and IMPDHII [ND: 1.0 (0.6-1.6) versus D: 0.7 (0.6-0.8) P < 0.001] and enzyme activity [ND: 180 (105-245) versus D: 29.9 (15.3-35.6) µmole·s(-1)·mole(-1) adenosine monophosphate, P < 0.001] was significantly lower in transplant recipients with diabetes. Similar results were observed in nontransplanted volunteers. Kinetic studies of MPA-mediated suppression of IMPDH activity in nontransplanted individuals revealed an approximately 2.5-fold lower half-maximum effective concentration (EC50) for diabetic as compared with nondiabetic [ND: 50.2 (49.8-50.7) versus D: 15.8 (15.6-16.3) nmole/L, P = 0.004] volunteers. This difference was not related to several IMPDH gene variants. CONCLUSIONS This study indicates a significantly lower IMPDH gene expression, protein level, and enzyme activity in diabetic patients. Further clinical studies in a larger number of patients are warranted to verify whether MPA dosing must be optimized for kidney transplant recipients with diabetes mellitus.
Collapse
Affiliation(s)
- Miroslav Dostalek
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Reginald Y. Gohh
- Division of Organ Transplantation, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Fatemeh Akhlaghi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
23
|
Cao W, Xiao H, Lai X, Luo Y, Shi J, Tan Y, Zheng W, He J, Xie W, Li L, Ye X, Yu X, Lin M, Cai Z, Huang H. Genetic Variations in the Mycophenolate Mofetil Target Enzyme Are Associated with Acute GVHD Risk after Related and Unrelated Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2012; 18:273-9. [DOI: 10.1016/j.bbmt.2011.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
|
24
|
Inosine monophosphate dehydrogenase activity in paediatrics: age-related regulation and response to mycophenolic acid. Eur J Clin Pharmacol 2012; 68:913-22. [DOI: 10.1007/s00228-011-1203-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
|
25
|
Laverdière I, Caron P, Couture F, Guillemette C, Lévesque E. Liquid chromatography-coupled tandem mass spectrometry based assay to evaluate inosine-5'-monophosphate dehydrogenase activity in peripheral blood mononuclear cells from stem cell transplant recipients. Anal Chem 2011; 84:216-23. [PMID: 22092180 DOI: 10.1021/ac202404y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Combinations of immunosuppressive drugs are routinely used post-transplantation to prevent rejection and/or other complications and optimize outcomes. The prodrug ester mycophenolate mofetil (MMF) is frequently used in solid-organ and stem cell transplantation settings. A growing body of evidence supports therapeutic monitoring of this immunosuppressant to optimize its efficacy and reduce toxicity. Thus, pharmacodynamic monitoring of MMF is a strategy that could potentially improve patient outcomes. Pharmacodynamic measurements require evaluation of inosine-5'-monophosphate dehydrogenase (IMPDH) activity, the target enzyme of the active moiety mycophenolic acid. Various nonradioactive methods using chromatographic separations have been used to quantify xanthosine monophosphate, the catalytic product of the enzyme, to indirectly evaluate IMPDH activity. However, no methods have used mass spectrometry based detection, which provides more specificity and sensitivity. Here, we describe a liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) method for the quantification of xanthosine monophosphate and adenosine monophosphate (for normalization) in lysates of peripheral blood mononuclear cells (PBMCs) from hematopoietic stem cell transplant (HSCT) recipients. Linearity, precision, and accuracy were validated over a large range of concentrations for each compound. The method could measure analytes with high sensitivity, accuracy (93-116%), and reproducibility (CV < 7.5%). Its clinical application was validated in PBMC lysates obtained from healthy individuals (n = 43) and HSCT recipients (n = 19). This reliable and validated LC-MS/MS method could be a useful tool for pharmacodynamic monitoring of patients treated with MMF.
Collapse
|
26
|
The role of inosine-5'-monophosphate dehydrogenase in thiopurine metabolism in patients with inflammatory bowel disease. Ther Drug Monit 2011; 33:200-8. [PMID: 21311411 DOI: 10.1097/ftd.0b013e31820b42bb] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND There is a large interindividual variability in thiopurine metabolism. High concentrations of methylthioinosine-5'-monophosphate (meTIMP) and low concentrations of 6-thioguanine nucleotides (6-TGNs) have been associated with a lower response rate and an increased risk of adverse events. In this study, the role of inosine-5'-monophosphate dehydrogenase (IMPDH) for differences in metabolite patterns of thiopurines was investigated. METHODS IMPDH activity and thiopurine metabolite concentrations were determined in patients with inflammatory bowel disease and a normal thiopurine methyltransferase (TPMT) phenotype and meTIMP/6-TGN concentration ratio > 20 (n = 26), in patients with a metabolite ratio ≤ 20 (n = 21), in a subgroup with a metabolite ratio <4 (n = 6), and in 10 patients with reduced TPMT activity. In vitro studies were conducted on human embryonic kidney cells (HEK293) with genetically engineered IMPDH and TPMT activities. RESULTS Patients with metabolite ratios >20 had lower IMPDH activity than those with ratios ≤ 20 (P < 0.001). Metabolite ratios >20 were only observed in patients with normal TPMT activity. Downregulation of IMPDH activity in HEK293 cells was associated with an increase in the concentration of meTIMP (fold change: 17 up to 93, P < 0.001) but, unexpectedly, also of 6-thioguanosine monophosphate (fold change: 2.6 up to 5.0, P < 0.001). CONCLUSIONS These data question the general view of IMPDH as the rate-limiting enzyme in the phosphorylation of thiopurines. Investigations of other mechanisms are needed to more fully explain the various metabolite patterns and outcomes in patients under treatment.
Collapse
|
27
|
Glander P, Hambach P, Liefeldt L, Budde K. Inosine 5'-monophosphate dehydrogenase activity as a biomarker in the field of transplantation. Clin Chim Acta 2011; 413:1391-7. [PMID: 21889500 DOI: 10.1016/j.cca.2011.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/09/2011] [Accepted: 08/16/2011] [Indexed: 11/25/2022]
Abstract
Inosine 5'monophosphate dehydrogenase (IMPDH) is the rate limiting enzyme in the de novo synthesis of guanine nucleotides. The direct determination of target enzyme activity as a biomarker of mycophenolic acid (MPA) may help to estimate better the individual response to the immunosuppressant. However, the assessment of the clinical utility of this approach is limited by the diversity of the assay systems, which has not yet allowed the prospective assessment of this enzyme in larger patient cohorts. A recently validated and standardized assay allows the investigation of IMPDH activity in larger clinical studies. Although descriptive results from observational studies hold promise for a more individualized therapy in transplant medicine, more studies are needed to prospectively validate this approach.
Collapse
Affiliation(s)
- Petra Glander
- Charite-Universitätsmedizin Berlin, Department of Nephrology, Berlin, Germany.
| | | | | | | |
Collapse
|
28
|
Association Between Pharmacodynamic Biomarkers and Clinical Events in the Early Phase After Kidney Transplantation: A Single-Center Pilot Study. Ther Drug Monit 2011; 33:341-9. [DOI: 10.1097/ftd.0b013e3182188675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Wu TY, Peng Y, Pelleymounter LL, Moon I, Eckloff BW, Wieben ED, Yee VC, Weinshilboum RM. Pharmacogenetics of the mycophenolic acid targets inosine monophosphate dehydrogenases IMPDH1 and IMPDH2: gene sequence variation and functional genomics. Br J Pharmacol 2011; 161:1584-98. [PMID: 20718729 DOI: 10.1111/j.1476-5381.2010.00987.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Inosine monophosphate dehydrogenases, encoded by IMPDH1 and IMPDH2, are targets for the important immunosuppressive drug, mycophenolic acid (MPA). Variation in MPA response may result, in part, from genetic variation in IMPDH1 and IMPDH2. EXPERIMENTAL APPROACH We resequenced IMPDH1 and IMPDH2 using DNA from 288 individuals from three ethnic groups and performed functional genomic studies of the sequence variants observed. KEY RESULTS We identified 73 single nucleotide polymorphisms (SNPs) in IMPDH1, 59 novel, and 25 SNPs, 24 novel, in IMPDH2. One novel IMPDH1 allozyme (Leu275) had 10.2% of the wild-type activity as a result of accelerated protein degradation. Decreased activity of the previously reported IMPDH2 Phe263 allozyme was primarily due to decreased protein quantity, also with accelerated degradation. These observations with regard to the functional implications of variant allozymes were supported by the IMPDH1 and IMPDH2 X-ray crystal structures. A novel IMPDH2 intron 1 SNP, G > C IVS1(93), was associated with decreased mRNA quantity, possibly because of altered transcription. CONCLUSIONS AND IMPLICATIONS These results provide insight into the nature and extent of sequence variation in the IMPDH1 and IMPDH2 genes. They also describe the influence of gene sequence variation that alters the encoded amino acids on IMPDH function and provide a foundation for future translational studies designed to correlate sequence variation in these genes with outcomes in patients treated with MPA.
Collapse
Affiliation(s)
- T-Y Wu
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
The proton pump inhibitor pantoprazole and its interaction with enteric-coated mycophenolate sodium in transplant recipients. J Heart Lung Transplant 2011; 30:565-71. [DOI: 10.1016/j.healun.2010.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/03/2010] [Accepted: 12/03/2010] [Indexed: 11/22/2022] Open
|
31
|
Wu TY, Fridley BL, Jenkins GD, Batzler A, Wang L, Weinshilboum RM. Mycophenolic acid response biomarkers: a cell line model system-based genome-wide screen. Int Immunopharmacol 2011; 11:1057-64. [PMID: 21396482 DOI: 10.1016/j.intimp.2011.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/16/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
Mycophenolic acid (MPA) is commonly used to treat patients with solid organ transplants during maintenance immunosuppressive therapy. Response to MPA varies widely, both for efficacy and drug-induced toxicity. A portion of this variation can be explained by pharmacokinetic and pharmacodynamic factors, including genetic variation in MPA-metabolizing UDP-glucuronyltransferase isoforms and the MPA targets, inosine monophosphate dehydrogenase 1 and 2. However, much of the variation in MPA response presently remains unexplained. We set out to determine whether there might be additional genes that modify response to MPA by performing a genome-wide association study between basal gene mRNA expression profiles and an MPA cytotoxicity phenotype using a 271 human lymphoblastoid cell line model system to identify and functionally validate genes that might contribute to variation in MPA response. Our association study identified 41 gene expression probe sets, corresponding to 35 genes, that were associated with MPA cytotoxicity as a drug response phenotype (p<1×10(-6)). Follow-up siRNA-mediated knockdown-based functional validation identified four of these candidate genes, C17orf108, CYBRD1, NASP, and RRM2, whose knockdown shifted the MPA cytotoxicity curves in the direction predicted by the association analysis. These studies have identified novel candidate genes that may contribute to variation in response to MPA therapy and, as a result, may help make it possible to move toward more highly individualized MPA-based immunosuppressive therapy.
Collapse
Affiliation(s)
- Tse-Yu Wu
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Stracke S, Shipkova M, Mayer J, Keller F, Zarghom A, Yang L, Henne-Bruns D, Wieland E. Pharmacokinetics and pharmacodynamics of mycophenolate sodium (EC-MPS) co-administered with cyclosporine in the early-phase post-kidney transplantation. Clin Transplant 2011; 26:57-66. [PMID: 21299636 DOI: 10.1111/j.1399-0012.2011.01403.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycophenolate drug levels are decreased by co-administration of cyclosporine. However, mycophenolate levels may be associated with insufficient immunosuppression. We investigated the pharmacokinetics of 720 mg mycophenolate sodium (EC-MPS) and inosine monophosphate dehydrogenase (IMPDH) activity under co-medication with cyclosporine and steroids within the first 30 d after kidney transplantation (n = 24). Blood samples were drawn at 0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, and 12 h after the morning dose. Plasma concentrations of mycophenolic acid, its glucuronide metabolites (MPAG; AcMPAG), and free MPA were determined using validated HPLC-DAD. IMPDH activity in leukocytes was analyzed chromatographically. Only six of 24 patients had an MPA-AUC(12h) within the putative therapeutic range of 40-60 mg/L·h. MPA clearance was high with 29 L/h. fMPA-AUC(12h) (r = -0.429, p = 0.04) and MPAG-AUC(12h) correlated significantly with the glomerular filtration rate, while total MPA did not. The MPAG-AUC(12h) was about 52-fold higher than the corresponding values for MPA, whereas the AcMPAG-AUC(12h) reached about 20.4% of the respective MPA-AUC(12h.) We found significant correlations between IMPDH inhibition and MPA concentration (r = -0.665; p < 0.0001), fMPA (r = -0.446; p = 0.003), and AcMPAG (r = -0.459; p = 0.002) but not with MPAG. Only 25% of the patients attained the therapeutic range for MPA-AUC under standard EC-MPS dose during the early-phase post-transplantation. We recommend that EC-MPS should be given in higher doses (3 × 720 mg) in the early post-transplant period when co-administered with cyclosporine.
Collapse
Affiliation(s)
- Sylvia Stracke
- Division of Nephrology, University Hospital, Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Therapeutic drug monitoring is a well-established approach in transplantation medicine to guide immunosuppressive therapy. However, it cannot always predict the effects of immunosuppressive drugs on immune cells, because it does not reflect any aspect of an individual patient's immune system. Pharmacodynamic monitoring is a more recent strategy to provide information about the biologic effect of a specific drug or drug combination on the individual transplant patient. Currently, there is a large number of different biomarkers that either directly (specific markers) or indirectly (global markers) relate to the pharmacodynamic effects of immunosuppressive drugs and are under investigation as potential candidates to be introduced in clinical practice. Such biomarkers may be useful to identify patients at risk of developing acute rejection, infection, or cancer as well as patients who are suitable for minimization of immunosuppressant therapy and may be helpful to manage the timing and rate of immunosuppressant weaning. Serial longitudinal monitoring may allow maintenance of an individualized immunosuppressive regimen. Thus, biomarker monitoring is a potential complementary tool to therapeutic drug monitoring. This review summarizes the current state of knowledge about the use of a number of global or drug-specific pharmacodynamic biomarkers. It is not a comprehensive overview of the literature available, but rather an evidence-based reflection by experts who are intensively involved in scientific work in this field.
Collapse
|
34
|
Shin HJ, Kwon SH, Park JM, Kwon SH, Lee KR, Kim YJ, Lee SH. Quantitative determination of inosine 5'-monophosphate dehydrogenase activity in human peripheral blood mononuclear cells by ion-pair reversed-phase high-performance liquid chromatography. ANALYTICAL SCIENCE AND TECHNOLOGY 2010. [DOI: 10.5806/ast.2010.23.6.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Garat A, Cardenas CLL, Lionet A, Devos A, Glowacki F, Kenani A, Migot-Nabias F, Allorge D, Lo-Guidice JM, Broly F, Cauffiez C. Inter-ethnic variability of three functional polymorphisms affecting the IMPDH2 gene. Mol Biol Rep 2010; 38:5185-8. [PMID: 21181270 DOI: 10.1007/s11033-010-0668-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
Abstract
Human type II inosine monophosphate dehydrogenase (IMPDH2) is a key enzyme in the purine nucleotide biosynthetic pathway and constitutes a pivotal biological target for immunosuppressant and antiviral drugs. Several Single Nucleotide Polymorphisms (SNP) affecting the IMPDH2 gene sequence have been reported with potential functional relevance and could impact drugs response. We aimed to determine the frequency of three of these polymorphisms, namely g.3375C>T (Leu(263)Phe), c.-95T>G and IVS7+10T>C, in Caucasians, Tunisians, Peruvians and Black Africans (Gabonese and Senegalese). The g.3375C>T and c.-95T>G polymorphisms are rare with a Minor Allele Frequency ≤1.0% in our populations, whereas the third variant, IVS7+10T>C, is more frequent and displays large interethnic variations, with an allelic frequency ranging from 14.6% in the French Caucasian population studied to less than 2% in Black African and Peruvian populations. This ethnic-related data might contribute to a better understanding of the variability in clinical outcome and/or dose adjustments of drugs that are IMPDH inhibitors such as mycophenolic acid.
Collapse
Affiliation(s)
- Anne Garat
- Equipe D'accueil 4483, Faculté de Médecine de Lille, Pôle Recherche, 1 place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Pharmacokinetic drug monitoring has been used for many years to relate immunosuppressant dose to drug exposure in vivo. However, this conventional therapeutic drug monitoring of blood immunosuppressant levels may not necessarily predict the pharmacologic effects on immune cells. The direct determination of target enzyme activity (eg, calcineurin activity, inosine-5'-monophospahte dehydrogenase [IMPDH] activity, p70S6 kinase) may help to better assess the individual response to the immunosuppressant. However, its use is limited by the difficulties of the assay systems, which did not allow yet the prospective assessment of these enzymes in larger patient cohorts with the establishment of validated pharmacodynamic drug monitoring. The most progress regarding a robust and reproducible test system has been achieved with the determination of IMPDH activity as a specific pharmacodynamic parameter of mycophenolic acid activity. This recently validated and standardized assay allows the investigation of IMPDH activity in larger clinical studies. Although the determination of target enzyme activity, eg, by the determination of IMPDH activity, holds promise for a more individualized therapy in transplant medicine, more studies are needed to prospectively validate this approach.
Collapse
|
37
|
Pharmacokinetic and pharmacodynamic analysis of enteric-coated mycophenolate sodium: limited sampling strategies and clinical outcome in renal transplant patients. Br J Clin Pharmacol 2010; 69:346-57. [PMID: 20406219 DOI: 10.1111/j.1365-2125.2009.03612.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS Pharmacokinetic (PK) and pharmacodynamic (PD) monitoring strategies and clinical outcome were evaluated in enteric-coated mycophenolate sodium (EC-MPS)-treated renal allograft recipients. METHODS PK [mycophenolic acid (MPA)] and PD [inosine monophosphate dehydrogenase (IMPDH) activity] data were analysed in 66 EC-MPS and ciclosporin A (CsA)-treated renal allograft recipients. Adverse events were considered in a follow-up period of 12 weeks. RESULTS Analyses confirmed a limited sampling strategy (LSS) consisting of PK and PD data at predose, 1, 2, 3 and 4 h after oral intake as an appropriate sampling method (MPA r(2)= 0.812; IMPDH r(2)= 0.833). MPA AUC(0-12) of patients with early biopsy-proven acute rejection was significantly lower compared with patients without a rejection (median MPA AUC(0-12) 28 microg*h ml(-1) (7-45) vs. 40 microg*h ml(-1) (16-130), P < 0.01), MPA AUC(0-12) of patients with recurrent infections was significantly higher compared with patients without infections (median MPA AUC(0-12) 65 microg*h ml(-1) (range 37-130) vs. 37 microg*h ml(-1) (range 7-120), P < 0.005). Low 12-h IMPDH enzyme activity curve (AEC(0-12)) was associated with an increased frequency of gastrointestinal side-effects (median IMPDH AEC(0-12) 43 nmol*h mg(-1) protein h(-1)[range 12-67) vs. 75 nmol*h mg(-1) protein h(-1) (range 15-371), P < 0.01]. CONCLUSIONS Despite highly variable absorption data, an appropriate LSS might be estimated by MPA AUC(0-4) and IMPDH AEC(0-4) in renal transplant patients treated with EC-MPS and CsA. Regarding adverse events, the suggested MPA-target AUC(0-12) from 30 to 60 microg*h ml(-1) seems to be appropriate in renal allograft recipients.
Collapse
|
38
|
Schaier M, Scholl C, Scharpf D, Hug F, Bönisch-Schmidt S, Dikow R, Schmitt WH, Schwenger V, Zeier M, Sommerer C. Proton pump inhibitors interfere with the immunosuppressive potency of mycophenolate mofetil. Rheumatology (Oxford) 2010; 49:2061-7. [PMID: 20671023 DOI: 10.1093/rheumatology/keq238] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES MMF is cleaved in the acidic milieu of the gastric compartment. However, its absorption might be impeded by proton pump inhibitors (PPIs), which suppress acid production and thus increase stomach pH. Since PPIs are widely used, it is useful to clarify whether the total drug amount of MMF is available in patients undergoing PPI treatment. METHODS We analysed 36 patients with autoimmune diseases under stable MMF maintenance therapy. Twenty-three patients received co-medication with pantoprazole; 13 patients received no treatment with PPIs or antacids. To assess the immunosuppressive potency, we measured mycophenolic acid levels and inosin monophosphate dehydrogenase (IMPDH) activity with a validated HPLC method in plasma samples collected pre-dose and at 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10 and 12 h after oral administration. RESULTS The mean MMF dosage of the non-PPI patients was 770 (249) mg/12 h and 771 (291) mg/12 h in pantoprazole-treated patients (NS). The total area under the curve of MMF showed a 37% reduction in PPI patients vs those treated with no PPIs (P < 0.01), and the maximum peak concentration of MMF was 60% lower in the pantoprazole patients (P < 0.001). The MMF exposure correlated with the inhibition of IMPDH activity. The area of enzyme activity curve was 42% higher in the PPI patients (P < 0.01). CONCLUSIONS The co-medication of pantoprazole with MMF significantly influences the drug exposure and immunosuppressive potency of MMF in patients with autoimmune diseases. This finding might at least partly explain the different outcomes in studies using MMF for maintenance therapy.
Collapse
Affiliation(s)
- Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sagcal-Gironella ACP, Fukuda T, Wiers K, Cox S, Nelson S, Dina B, Sherwin CMT, Klein-Gitelman MS, Vinks AA, Brunner HI. Pharmacokinetics and pharmacodynamics of mycophenolic acid and their relation to response to therapy of childhood-onset systemic lupus erythematosus. Semin Arthritis Rheum 2010; 40:307-13. [PMID: 20655577 DOI: 10.1016/j.semarthrit.2010.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Mycophenolic acid (MPA) is the active form of mycophenolate mofetil (MMF), which is currently used off-label as immunosuppressive therapy in childhood-onset SLE (cSLE). The objectives of this study were to (1) characterize the pharmacokinetics (MPA-PK) and pharmacodynamics (MPA-PD) of MPA and (2) explore the relationship between MPA-PK and cSLE disease activity. METHODS MPA-PK [area under the curve from 0-12 hours (AUC(0-12))] and MPA-PD [inosine-monophosphate dehydrogenase (IMPDH) activity] were evaluated in cSLE patients on stable MMF dosing. Change in SLE disease activity while on MMF therapy was measured using the British Isles Lupus Assessment Group (BILAG) index. RESULTS A total of 19 AUC(0-12) and 10 IMPDH activity profiles were included in the analysis. Large interpatient variability in MPA exposure (AUC(0-12)) was observed (mean ± SE: 32 ± 4.2 mg h/L; coefficient of variation: 57%). Maximum MPA serum concentrations coincided with maximum IMPDH inhibition. AUC(0-12) and weight-adjusted MMF dosing were only moderately correlated (r = 0.56, P = 0.01). An AUC(0-12) of ≥30 mg h/L was associated with decreased BILAG scores while on MMF therapy (P = 0.002). CONCLUSION Weight-adjusted MMF dosing alone does not reliably allow for the prediction of exposure to biologically active MPA in cSLE. Individualized dosing considering MPA-PK appears warranted as this allows for better estimation of immunologic suppression (IMPDH activity). Additional controlled studies are necessary to confirm that an MPA AUC(0-12) of at least 30 mg h/L is required for cSLE improvement.
Collapse
|
40
|
Maiguma T, Yosida T, Otsubo K, Okabe Y, Sugitani A, Tanaka M, Oishi R, Teshima D. Evaluation of inosin-5'-monophosphate dehydrogenase activity during maintenance therapy with tacrolimus. J Clin Pharm Ther 2010; 35:79-85. [PMID: 20175815 DOI: 10.1111/j.1365-2710.2009.01072.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to identify a target range for inosin-5'-monophosphate dehydrogenase (IMPDH) activity in maintenance therapy with tacrolimus (TCL), and to apply the measurement of IMPDH activity to the therapeutic drug monitoring for mycophenolate mofetil (MMF). METHODS Eleven patients with renal transplants and 10 healthy volunteers were investigated. All patients were treated with a combination of TCL, steroid and MMF for 2 months after transplantation, and were in stable and good condition. IMPDH activity was determined indirectly by measuring xanthosine 5'-monophophate in cell lysates supplemented with IMP and beta-nicotine adenine dinucleotide using an high-performance liquid chromatography (HPLC) method. RESULTS The within-run reproducibility of the assay was excellent, with relative standard deviation (RSD) values of 0.41-4.08%. The mean differences between the spiked concentrations of xanthosine 5'-monophophate and their real values (mean relative errors; MREs) were within a range of 2.66-8.89%, showing good accuracy. The interday RSD values were 1.51-6.12% and MREs ranged from 2.10% to 8.89%. Cell lysates showed a 5-6 nmol/L IC(50) mycophenolic acid (MPA) concentration. TCL, cyclosporine and prednisolone did not affect IMPDH activity. The peak MPA concentration was achieved at 1 h after dosing. IMPDH activity decreased to 75% and 67% at 1 and 2 h after dosing respectively. Therefore, the inhibition rates of MPA against IMPDH activity may be adequate at 25-40% in TCL maintenance therapy. CONCLUSION Inosin-5'-monophosphate dehydrogenase activity in cell lysates could be reliably determined by HPLC. A 25-40% inhibition of IMPDH activity may be an appropriate range for preventing rejection with MPF but this requires further validation using larger studies with harder outcomes such as rejection episodes.
Collapse
Affiliation(s)
- T Maiguma
- Department of Clinical Pharmacy, School of Pharmacy, Shujitsu University, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chiarelli LR, Molinaro M, Libetta C, Tinelli C, Cosmai L, Valentini G, Dal Canton A, Regazzi M. Inosine monophosphate dehydrogenase variability in renal transplant patients on long-term mycophenolate mofetil therapy. Br J Clin Pharmacol 2010; 69:38-50. [PMID: 20078611 DOI: 10.1111/j.1365-2125.2009.03542.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT * Mycophenolic acid (MPA) is a potent, selective and reversible inhibitor of inosine 5'-monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme for de novo guanosine triphosphate biosynthesis. * The large IMPDH interindividual variability could be responsible for the differences in therapeutic effects and side-effects observed with MPA. * Induction of IMPDH activity has been observed in whole blood during immunosuppressive therapy. WHAT THIS STUDY ADDS * Our data were acquired in long-term mycophenolate mofetil-treated renal transplant recipients on different combinations of immunosuppressive agents (ciclosporin, tacrolimus, sirolimus) and with different treatment duration (up to 8.8 years post transplant). * The increasing trend in IMPDH activity that we observed throughout our 12-month observation period was significantly higher in rejecting than in nonrejecting subjects. AIMS Long-term mycophenolate mofetil (MMF) therapy may induce inosine 5'-monophosphate dehydrogenase (IMPDH) activity in peripheral blood mononuclear cells (PBMCs), thus decreasing MMF immunosuppressive properties. Pharmacodynamic monitoring was used to investigate whether biological activity is altered after long-term therapy. METHODS IMPDH activity was measured in PBMC samples from 54 stable kidney transplant patients, already on MMF (for at least 3 months), before (t(0)) and 2 h after (t(2)) MMF morning dose administration; levels were monitored for up to 15 months, together with total mycophenolic acid (MPA) and free MPA concentrations. RESULTS During the 15 months' monitoring, t(0) IMPDH activity in transplant recipients increased from 5.9 +/- 3.7 nmol h(-1) mg(-1)[95% confidence interval (CI) 4.9, 6.9] to 9.0 +/- 3.9 nmol h(-1) mg(-1) (95% CI 7.2, 10.8), with an intra- and interpatient variability of 28% and 42%. Five patients experienced acute rejection during the follow-up: t(0) IMPDH activity was increased during rejection vs. nonrejection, and the trend was significantly higher in rejecting than in nonrejecting subjects for the whole monitoring period. CONCLUSIONS Even though a correlation has been found between IMPDH activity and rejection, its efficacy as a predictive tool in long-term transplant outcomes may be affected by high interpatient variability; on the other hand, continuous monitoring of the IMPDH trend could make an effective prognostic parameter of rejection. Other trials also including pre-transplant data on both IMPDH expression and activity are warranted to better assess their role as biomarkers for MPA effect in clinical practice.
Collapse
Affiliation(s)
- Laurent R Chiarelli
- Department of Biochemistry, University of Pavia, Pharmacokinetics Unit, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fukuda T, Goebel J, Thøgersen H, Maseck D, Cox S, Logan B, Sherbotie J, Seikaly M, Vinks AA. Inosine monophosphate dehydrogenase (IMPDH) activity as a pharmacodynamic biomarker of mycophenolic acid effects in pediatric kidney transplant recipients. J Clin Pharmacol 2010; 51:309-20. [PMID: 20418509 DOI: 10.1177/0091270010368542] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monitoring inosine monophosphate dehydrogenase (IMPDH) activity as a biomarker of mycophenolic acid (MPA)-induced immunosuppression may serve as a novel approach in pharmacokinetics (PK)/pharmacodynamics (PD)-guided therapy. The authors prospectively studied MPA pharmacokinetics and IMPDH inhibition in 28 pediatric de novo kidney transplant recipients. Pretransplant IMPDH activity and full PK/PD profiles were obtained at 3 different occasions: 1 to 3 days, 4 to 9 days, and approximately 6 months after transplant. Large intra- and interpatient variability was noted in MPA pharmacokinetics and exposure and IMPDH inhibition. MPA exposure (AUC(0-12 h)) was low early posttransplant and increased over time and stabilized at months 3 to 6. Mean pretransplant IMPDH activity (6.4 ± 4.6 nmol/h/mg protein) was lower than previously reported in adults. In most of the patients, IMPDH enzyme activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory E(max) model (EC(50) = 0.97 mg/L). This study suggests the importance of early PK/PD monitoring to improve drug exposure. Because IMPDH inhibition is well correlated to MPA concentration, pretransplant IMPDH activity may serve as an early marker to guide the initial level of MPA exposure required in a pediatric population.
Collapse
Affiliation(s)
- Tsuyoshi Fukuda
- Division of Clinical Pharmacology and Pediatric Pharmacology Research Unit, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kuypers DR, Meur YL, Cantarovich M, Tredger MJ, Tett SE, Cattaneo D, Tönshoff B, Holt DW, Chapman J, Gelder TV. Consensus Report on Therapeutic Drug Monitoring of Mycophenolic Acid in Solid Organ Transplantation. Clin J Am Soc Nephrol 2010; 5:341-58. [DOI: 10.2215/cjn.07111009] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Garat A, Cauffiez C, Hamdan-Khalil R, Glowacki F, Devos A, Leclerc J, Lionet A, Allorge D, Lo-Guidice JM, Broly F. IMPDH2 Genetic Polymorphism: A Promoter Single-Nucleotide Polymorphism Disrupts a Cyclic Adenosine Monophosphate Responsive Element. Genet Test Mol Biomarkers 2009; 13:841-7. [DOI: 10.1089/gtmb.2009.0096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anne Garat
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
| | | | - Rima Hamdan-Khalil
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - François Glowacki
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
- Department of Nephrology, Calmette Hospital, CHRU Lille, Lille, France
| | - Aurore Devos
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
| | - Julie Leclerc
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
| | - Arnaud Lionet
- Department of Nephrology, Calmette Hospital, CHRU Lille, Lille, France
| | - Delphine Allorge
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
| | | | - Franck Broly
- EA267, Faculty of Medicine, University Lille Nord de France, Lille, France
| |
Collapse
|
45
|
Mino Y, Naito T, Otsuka A, Ozono S, Kagawa Y, Kawakami J. Inosine monophosphate dehydrogenase activity depends on plasma concentrations of mycophenolic acid and its glucuronides in kidney transplant recipients. Clin Chim Acta 2009; 409:56-61. [DOI: 10.1016/j.cca.2009.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 01/08/2023]
|
46
|
Improved assay for the nonradioactive determination of inosine 5'-monophosphate dehydrogenase activity in peripheral blood mononuclear cells. Ther Drug Monit 2009; 31:351-9. [PMID: 19333146 DOI: 10.1097/ftd.0b013e31819c3f3d] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mycophenolic acid (MPA) inhibits the enzyme inosine 5'-monophosphate dehydrogenase (IMPDH). Thus, the measurement of IMPDH activity could serve as a specific pharmacodynamic (PD) tool for monitoring MPA therapy. At present, however, monitoring of pharmacokinetic parameters is preferred over that of PD parameters because, in general, PD assays are labor-intensive and poorly reproducible. Currently, cell count or protein concentration is widely accepted as methods to normalize enzyme activity. In the present study, we have attempted to further improve a method for the determination of IMPDH activity to increase the robustness and reproducibility of the IMPDH activity assay itself, without making the assay more labor-intensive. Therefore, several aspects of the IMPDH method were investigated regarding their influence on the reproducibility and also modified to increase the feasibility and consistency of the assay. The isolation of peripheral blood mononuclear cells (PBMCs) of whole blood samples was found to be the most variable step. Normalization on cell count is labor-intensive and at the same time has a poor reproducibility. Determination of the protein content in cell extracts is impaired by contamination with extracellular proteins and non-PBMCs. Alternatively, the intracellular substance adenosine monophosphate (AMP) was investigated to normalize the newly generated xanthosine monophosphate. Among various subject groups, no significant differences in mean AMP concentration were found. To simplify the procedure, PBMCs were diluted to a fixed volume after isolation from sample of whole blood, and the IMPDH activity was normalized to the AMP concentration quantified in the same high-performance liquid chromatography run as xanthosine monophosphate was quantified. The within-run and total imprecision (coefficient of variation) ranged from 4.2% to 10.6% and from 6.6% to 11.9%, respectively. In conclusion, the modified method described here for the measurement of IMPDH activity can be used reliably in multicenter trials and in longitudinal studies to evaluate the additional value of any PD monitoring among a diversity of patients treated with MPA.
Collapse
|
47
|
An inosine 5'-monophosphate dehydrogenase 2 single-nucleotide polymorphism impairs the effect of mycophenolic acid. THE PHARMACOGENOMICS JOURNAL 2009; 10:70-6. [PMID: 19770842 DOI: 10.1038/tpj.2009.43] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mycophenolic acid (MPA) is a selective inhibitor of inosine 5'-monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme of de novo synthesis of guanine nucleotides. The isoenzyme IMPDH2 predominates in activated lymphocytes, and its inhibition by MPA is part of standard immunosuppressive regimens. Yet, there are significant unexplained differences in efficacy and tolerability among patients. The objective of this study was to analyze whether frequent variants in the IMPDH2 gene lead to changes in IMPDH activity and to differences in responsiveness to MPA therapy. All 14 exons and intron-exon boundary regions of IMPDH2 were sequenced from genomic DNA probes from 100 healthy individuals. Two novel exonic single-nucleotide polymorphisms were identified in 1% and one intronic polymorphism (rs11706052) in 19% of the study population. Lymphocyte IMPDH activity and proliferation under three MPA concentrations (2.5, 10 and 25 micromol l(-1)) were compared in rs11706052 carriers and wild-type individuals. The presence of rs11706052 polymorphism reduced the antiproliferative effect of MPA on lymphocytes by approximately 50% compared with the IMPDH2 wild-type form at therapeutic relevant concentrations of 10 micromol l(-1) and 25 micromol l(-1). We conclude that a poorer response to MPA therapy can be explained in some individuals by the presence of the rs11706052 polymorphism.
Collapse
|
48
|
Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T > C polymorphism. Pharmacogenet Genomics 2009; 19:626-34. [PMID: 19617864 DOI: 10.1097/fpc.0b013e32832f5f1b] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The active metabolite of mycophenolate mofetil (MMF), mycophenolic acid, inhibits the activity of the target enzyme inosine monophosphate dehydrogenase (IMPDH). The aim of this study was to correlate eight different single nucleotide polymorphisms of the IMPDH type II gene to the activity of the IMPDH enzyme to explain between-patient differences in IMPDH activity. METHODS AND RESULTS In a prospective study, we measured IMPDH activity, mycophenolic acid plasma concentrations, and eight polymorphisms of IMPDH type II in de novo kidney transplant recipients, 6 days posttransplantation while on MMF treatment. Polymorphisms in the IMPDH type II gene were only observed for the IMPDH type II 3757T > C (rs11706052) single nucleotide polymorphism. Ten of 101 patients (10%) were heterozygous and two of 101 patients (2%) homozygous for IMPDH type II 3757T > C. The allele frequency was 6.9%. The IMPDH activity over 12 h (AUC(act)) was 49% higher for patients with an IMPDH type II 3757C variant [n = 12 vs. n = 68; 336 (95% confidence interval: 216-521) vs. 227 (95% confidence interval: 198-260) hmicromol/s/mol adenosine monophosphate; P = 0.04]. The IMPDH activity measured before transplantation (Act(pre-Tx)) was not significantly different between IMPDH type II 3757TT wild-type and variant carrier patients (P = 0.99). CONCLUSION We report that the IMPDH type II 3757T > C polymorphism is associated with an increased IMPDH activity in MMF-treated renal transplant patients. This polymorphism explains 8.0% of the interpatient variability in IMPDH activity.
Collapse
|
49
|
Rath T, Küpper M. Comparison of Inosine-Monophosphate-Dehydrogenase Activity in Patients With Enteric-Coated Mycophenolate Sodium or Mycophenolate Mofetil After Renal Transplantation. Transplant Proc 2009; 41:2524-8. [DOI: 10.1016/j.transproceed.2009.06.124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Golshayan D, Pascual M, Vogt B. Mycophenolic acid formulations in adult renal transplantation - update on efficacy and tolerability. Ther Clin Risk Manag 2009; 5:341-51. [PMID: 19753127 PMCID: PMC2690976 DOI: 10.2147/tcrm.s3496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The description more than 30 years ago of the role of de novo purine synthesis in T and B lymphocytes clonal proliferation opened the possibility for selective immunosuppression by targeting specific enzymatic pathways. Mycophenolic acid (MPA) blocks the key enzyme inosine monophosphate dehydrogenase and the production of guanosine nucleotides required for DNA synthesis. Two MPA formulations are currently used in clinical transplantation as part of the maintenance immunosuppressive regimen. Mycophenolate mofetil (MMF) was the first MPA agent to be approved for the prevention of acute rejection following renal transplantation, in combination with cyclosporine and steroids. Enteric-coated mycophenolate sodium (EC-MPS) is an alternative MPA formulation available in clinical transplantation. In this review, we will discuss the clinical trials that have evaluated the efficacy and safety of MPA in adult kidney transplantation for the prevention of acute rejection and their use in new combination regimens aiming at minimizing calcineurin inhibitor toxicity and chronic allograft nephropathy. We will also discuss MPA pharmacokinetics and the rationale for therapeutic drug monitoring in optimizing the balance between efficacy and safety in individual patients.
Collapse
|