1
|
Yabushita A. Ultrafast Transient Absorption Spectroscopy for Probing Primary Photochemical Reaction of Proteins. ULTRAFAST ELECTRONIC AND STRUCTURAL DYNAMICS 2024:297-335. [DOI: 10.1007/978-981-97-2914-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Scrima S, Tiberti M, Ryde U, Lambrughi M, Papaleo E. Comparison of force fields to study the zinc-finger containing protein NPL4, a target for disulfiram in cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140921. [PMID: 37230374 DOI: 10.1016/j.bbapap.2023.140921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Molecular dynamics (MD) simulations are a powerful approach to studying the structure and dynamics of proteins related to health and disease. Advances in the MD field allow modeling proteins with high accuracy. However, modeling metal ions and their interactions with proteins is still challenging. NPL4 is a zinc-binding protein and works as a cofactor for p97 to regulate protein homeostasis. NPL4 is of biomedical importance and has been proposed as the target of disulfiram, a drug recently repurposed for cancer treatment. Experimental studies proposed that the disulfiram metabolites, bis-(diethyldithiocarbamate)‑copper and cupric ions, induce NPL4 misfolding and aggregation. However, the molecular details of their interactions with NPL4 and consequent structural effects are still elusive. Here, biomolecular simulations can help to shed light on the related structural details. To apply MD simulations to NPL4 and its interaction with copper the first important step is identifying a suitable force field to describe the protein in its zinc-bound states. We examined different sets of non-bonded parameters because we want to study the misfolding mechanism and cannot rule out that the zinc may detach from the protein during the process and copper replaces it. We investigated the force-field ability to model the coordination geometry of the metal ions by comparing the results from MD simulations with optimized geometries from quantum mechanics (QM) calculations using model systems of NPL4. Furthermore, we investigated the performance of a force field including bonded parameters to treat copper ions in NPL4 that we obtained based on QM calculations.
Collapse
Affiliation(s)
- Simone Scrima
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ulf Ryde
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
3
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
4
|
Roy D, Jenkins B, Ali A, Herschmann JR, Harris M, Zamadar M, Simington L, Odunuga O, Adhikari P, Pradhan P, Sarkar S, Pattabiram M, Sengupta B. Multi-component redox system for selective and potent antineoplastic activity towards ovarian cancer cells. Biochem Biophys Res Commun 2022; 592:38-43. [PMID: 35026603 PMCID: PMC8959003 DOI: 10.1016/j.bbrc.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is the deadliest gynecological cancer which rarely causes symptoms, and goes undetected until reaching the advanced stage of drug-resistant metastases. The cationic porphyrin meso-tetra(4-N-methylpyridyl)porphine (TMPyP) is a well-known photosensitizer (PS) used in photodyamic therapy (PDT) for curing cancer due to its strong affinity for DNA and high yield of reactive oxygen species (ROS) upon light activation. The practicality to irradiate tumor cells alone in the physiological system being slim (due to the close proximity of healthy cells and tumors), we looked for a variation in the PDT using a mixture of TMPyP with 1,5-dihydroxynapthalene (DHN) and Fe(III) ions at a mole ratio of 1:20:17 (drug combo) respectively in aqueous solution. The drug combo needs no photoactivation in H2O2 rich environment (mimicking the microenvironment of cancer/tumor), where it generates ȮH and juglone, the latter being a known potent anticancer agent. In vitro studies of the drug combo in drug resistant and sensitive ovarian cancer cell lines showed drastic growth inhibition and cell death compared to normal epithelial cells. The drug combo provides an effective and non-invasive alternative to conventional PDT, exploiting the cytosolic carcinogenic H2O2 to produce an efficient anticancer treatment. The unique action of cancer-specific cytotoxicity arises from the redox chemistry involving activation of Fe(III) as the oxidizing agent to generate juglone, which utilizes the cytosolic ROS in cancer cells against itself.
Collapse
Affiliation(s)
- Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS, USA.
| | - Brenita Jenkins
- Department of Biological Sciences, Alcorn State University, Lorman, MS, USA
| | - Aqeeb Ali
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Jacob R. Herschmann
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Michele Harris
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Matibur Zamadar
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA.
| | - Laken Simington
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Odutayo Odunuga
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Prakash Adhikari
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS, USA
| | - Prabhakar Pradhan
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS, USA
| | - Sanjay Sarkar
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mahesh Pattabiram
- Department of Chemistry, University of Nebraska Kearney, Kearney, NE, USA
| | - Bidisha Sengupta
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA.
| |
Collapse
|
5
|
Exploring the folding energy landscapes of heme proteins using a hybrid AWSEM-heme model. J Biol Phys 2022; 48:37-53. [PMID: 35000062 PMCID: PMC8866609 DOI: 10.1007/s10867-021-09596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/03/2021] [Indexed: 10/29/2022] Open
Abstract
Heme is an active center in many proteins. Here we explore computationally the role of heme in protein folding and protein structure. We model heme proteins using a hybrid model employing the AWSEM Hamiltonian, a coarse-grained forcefield for the protein chain along with AMBER, an all-atom forcefield for the heme. We carefully designed transferable force fields that model the interactions between the protein and the heme. The types of protein-ligand interactions in the hybrid model include thioester covalent bonds, coordinated covalent bonds, hydrogen bonds, and electrostatics. We explore the influence of different types of hemes (heme b and heme c) on folding and structure prediction. Including both types of heme improves the quality of protein structure predictions. The free energy landscape shows that both types of heme can act as nucleation sites for protein folding and stabilize the protein folded state. In binding the heme, coordinated covalent bonds and thioester covalent bonds for heme c drive the heme toward the native pocket. The electrostatics also facilitates the search for the binding site.
Collapse
|
6
|
Mohammed TP, Sankaralingam M. Reactivities of high valent manganese-oxo porphyrins in aqueous medium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Hussein MA, Alam MM, Aly KI, Khan A, Džudžević-Čančar H, Asiri AM, Rahman MM. Hybrid poly(ether-arylidene-ether-sulphone)s derivatives for divalent cobalt ion detection. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2528-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
8
|
Yan J, Li Z, Liu M, Sun X, Ma L, Wang Z, Zhao Z, Huang X, Yuan L. Activity adaptability of a DhHP-6 peroxidase-mimic in wide pH and temperature ranges and solvent media. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01855g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deuterohemin-β-Ala-His-Thr-Val-Glu-Lys (DhHp-6): peroxidase with high activity.
Collapse
Affiliation(s)
- Jiaqing Yan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun 130012
- China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun 130012
- China
| | - Min Liu
- Hospital of Stomatology
- Jilin University
- Changchun
- China
| | - Xiaoli Sun
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Li Ma
- Department of Physics
- Georgia Southern University
- Statesboro
- USA
| | - Zhi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun 130012
- China
| | - Zijian Zhao
- Institute of Agro-food Technology
- Jilin Academy of Agricultural Sciences
- Changchun
- China
| | - Xuri Huang
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- China
| | - Long Yuan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
- China
| |
Collapse
|
9
|
Gocheva G, Ivanova A. A Look at Receptor–Ligand Pairs for Active-Targeting Drug Delivery from Crystallographic and Molecular Dynamics Perspectives. Mol Pharm 2019; 16:3293-3321. [DOI: 10.1021/acs.molpharmaceut.9b00250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gergana Gocheva
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
10
|
Li X, Buda F, de Groot HJ, Sevink GJA. Contrasting Modes of Self-Assembly and Hydrogen-Bonding Heterogeneity in Chlorosomes of Chlorobaculum tepidum. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:14877-14888. [PMID: 30258522 PMCID: PMC6150686 DOI: 10.1021/acs.jpcc.8b01790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Chlorosome antennae form an interesting class of materials for studying the role of structural motifs and dynamics in nonadiabatic energy transfer. They perform robust and highly quantum-efficient transfer of excitonic energy while allowing for compositional variation and completely lacking the usual regulatory proteins. Here, we first cast the geometrical analysis for ideal tubular scaffolding models into a formal framework, to relate effective helical properties of the assembly structures to established characterization data for various types of chlorosomes. This analysis shows that helicity is uniquely defined for chlorosomes composed of bacteriochlorophyll (BChl) d and that three chiral angles are consistent with the nuclear magnetic resonance (NMR) and electron microscope data for BChl c, including two novel ones that are at variance with current interpretations of optical data based on perfect cylindrical symmetry. We use this information as a starting point for investigating dynamic and static heterogeneity at the molecular level by unconstrained molecular dynamics. We first identify a rotational degree of freedom, along the Mg-OH coordination bond, that alternates along the syn-anti stacks and underlies the (flexible) curvature on a larger scale. Because rotation directly relates to the formation or breaking of interstack hydrogen bonds of the O-H···O=C structural motif along the syn-anti stacks, we analyzed the relative fractions of hydrogen-bonded and the nonbonded regions, forming stripe domains in otherwise spectroscopically homogeneous curved slabs. The ratios 7:3 for BChl c and 9:1 for BChl d for the two distinct structural components agree well with the signal intensities determined by NMR. In addition, rotation with curvature-independent formation of stripe domains offers a viable explanation for the localization and dispersion of exciton states over two fractions, as observed in single chlorosome fluorescence decay studies.
Collapse
|
11
|
Sterically induced distortions of nickel(II) porphyrins – Comprehensive investigation by DFT calculations and resonance Raman spectroscopy. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Pavlova A, Parks JM, Gumbart JC. Development of CHARMM-Compatible Force-Field Parameters for Cobalamin and Related Cofactors from Quantum Mechanical Calculations. J Chem Theory Comput 2018; 14:784-798. [PMID: 29334459 DOI: 10.1021/acs.jctc.7b01236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Corrinoid cofactors such as cobalamin are used by many enzymes and are essential for most living organisms. Therefore, there is broad interest in investigating cobalamin-protein interactions with molecular dynamics simulations. Previously developed parameters for cobalamins are based mainly on crystal structure data. Here, we report CHARMM-compatible force field parameters for several corrinoids developed from quantum mechanical calculations. We provide parameters for corrinoids in three oxidation states, Co3+, Co2+, and Co1+, and with various axial ligands. Lennard-Jones parameters for the cobalt center in the Co(II) and Co(I) states were optimized using a helium atom probe, and partial atomic charges were obtained with a combination of natural population analysis (NPA) and restrained electrostatic potential (RESP) fitting approaches. The Force Field Toolkit was used to optimize all bonded terms. The resulting parameters, determined solely from calculations of cobalamin alone or in water, were then validated by assessing their agreement with density functional theory geometries and by analyzing molecular dynamics simulation trajectories of several corrinoid proteins for which X-ray crystal structures are available. In each case, we obtained excellent agreement with the reference data. In comparison to previous CHARMM-compatible parameters for cobalamin, we observe a better agreement for the fold angle and lower RMSD in the cobalamin binding site. The approach described here is readily adaptable for developing CHARMM-compatible force-field parameters for other corrinoids or large biomolecules.
Collapse
Affiliation(s)
- Anna Pavlova
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Ali TA, Mohamed GG, Omar M, Hanafy NM. Construction and performance characteristics of chemically modified carbon paste electrodes for the selective determination of Co(II) ions in water samples. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Hung CC, Yabushita A, Kobayashi T, Chen PF, Liang KS. Ultrafast dynamics of ligand and substrate interaction in endothelial nitric oxide synthase under Soret excitation. Biophys Chem 2016; 214-215:11-6. [PMID: 27183248 DOI: 10.1016/j.bpc.2016.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in <300fs, then followed by vibrational cooling and recombination within 2ps. Such impulsive bond breaking and late rebinding generate proteinquakes, which relaxes in several tens of picoseconds. The photo excited dynamics of eNOS-oxy with L-arginine substrate mainly occurs at the local site of heme, including ultrafast internal conversion within 400fs, vibrational cooling, charge transfer, and complete ground-state recovery within 1.4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps.
Collapse
Affiliation(s)
- Chih-Chang Hung
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
| | - Atsushi Yabushita
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan; Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan; CREST, JST, Saitama, Japan.
| | - Takayoshi Kobayashi
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan; Department of Applied Physics and Chemistry and Institute for Laser Science, The University of Electrocommunications, Tokyo, Japan; CREST, JST, Saitama, Japan; Institute of Laser Engineering, Osaka University
| | - Pei-Feng Chen
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Keng S Liang
- Institute of Physics, Academia Sinica, Taipei, Taiwan; Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
15
|
Kuang YM, Yu YJ, Luo Y, Zhu JZ, Liao Y, Zhang Y, Dong ZC. Tunneling Electron Induced Fluorescence from Single Porphyrin Molecules Decoupled by Striped-Phase Octanethiol Self-assembled Monolayer. CHINESE J CHEM PHYS 2016. [DOI: 10.1063/1674-0068/29/cjcp1506122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
16
|
Wu YY, Zhang ZL, Zhang JS, Zhu XL, Tan ZJ. Multivalent ion-mediated nucleic acid helix-helix interactions: RNA versus DNA. Nucleic Acids Res 2015; 43:6156-65. [PMID: 26019178 PMCID: PMC4499160 DOI: 10.1093/nar/gkv570] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/20/2015] [Indexed: 01/30/2023] Open
Abstract
Ion-mediated interaction is critical to the structure and stability of nucleic acids. Recent experiments suggest that the multivalent ion-induced aggregation of double-stranded (ds) RNAs and DNAs may strongly depend on the topological nature of helices, while there is still lack of an understanding on the relevant ion-mediated interactions at atomistic level. In this work, we have directly calculated the potentials of mean force (PMF) between two dsRNAs and between two dsDNAs in Co(NH3)6 (3+) (Co-Hex) solutions by the atomistic molecular dynamics simulations. Our calculations show that at low [Co-Hex], the PMFs between B-DNAs and between A-RNAs are both (strongly) repulsive. However, at high [Co-Hex], the PMF between B-DNAs is strongly attractive, while those between A-RNAs and between A-DNAs are still (weakly) repulsive. The microscopic analyses show that for A-form helices, Co-Hex would become 'internal binding' into the deep major groove and consequently cannot form the evident ion-bridge between adjacent helices, while for B-form helices without deep grooves, Co-Hex would exhibit 'external binding' to strongly bridge adjacent helices. In addition, our further calculations show that, the PMF between A-RNAs could become strongly attractive either at very high [Co-Hex] or when the bottom of deep major groove is fixed with a layer of water.
Collapse
Affiliation(s)
- Yuan-Yan Wu
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhong-Liang Zhang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jin-Si Zhang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics & Information Engineering, Jianghan University, Wuhan 430056, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Computational simulation study on the anion recognition properties of functionalized tetraphenyl porphyrins. J Mol Model 2015; 21:140. [DOI: 10.1007/s00894-015-2688-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/27/2015] [Indexed: 11/26/2022]
|
18
|
Guerra F, Adam S, Bondar AN. Revised force-field parameters for chlorophyll-a, pheophytin-a and plastoquinone-9. J Mol Graph Model 2015; 58:30-9. [DOI: 10.1016/j.jmgm.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
|
19
|
Qu ZW, Hansen A, Grimme S. Co–C Bond Dissociation Energies in Cobalamin Derivatives and Dispersion Effects: Anomaly or Just Challenging? J Chem Theory Comput 2015; 11:1037-45. [DOI: 10.1021/acs.jctc.5b00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zheng-wang Qu
- Mulliken
Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstraße
4, 53115 Bonn, North Rhine-Westphalia, Germany
| | - Andreas Hansen
- Mulliken
Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstraße
4, 53115 Bonn, North Rhine-Westphalia, Germany
| | - Stefan Grimme
- Mulliken
Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstraße
4, 53115 Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
20
|
Moin ST, Hofer TS. Hydration of porphyrin and Mg–porphyrin: ab initio quantum mechanical charge field molecular dynamics simulations. ACTA ACUST UNITED AC 2014; 10:117-27. [DOI: 10.1039/c3mb70300b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Zeitler TR, Van Heest T, Sholl DS, Allendorf MD, Greathouse JA. Predicting Low-Pressure O2Adsorption in Nanoporous Framework Materials for Sensing Applications. Chemphyschem 2013; 14:3740-50. [DOI: 10.1002/cphc.201300682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 11/08/2022]
|
22
|
Pietrangeli D, Garramone G, Guascito MR, Pepe A, Rosa A, Ricciardi G. Synthesis, coordination chemistry, and physico-chemical properties of the 2-chloroethoxy-iron(III)(ethylthio) porphyrazine. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reaction of octakis(ethylthio)porphyrazine ( H 2 OESPz ) with FeBr 2 in ClCH 2 CH 2 OH at 135 °C affords the 2-chloroethoxy-iron(III)-(ethylthio)porphyrazine, ( ClCH 2 CH 2 O ) Fe III OESPz , ( LFe III OESPz ) in good yield. The spectroscopic, redox, and coordination properties of the complex and its μ-oxo dimer derivative, [ Fe III OESPz ]2 O , are investigated and compared to those of the iron(III)porphyrin analogs.
Collapse
Affiliation(s)
- Daniela Pietrangeli
- Università della Basilicata, Dipartimento di Scienze, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Gaetano Garramone
- Università della Basilicata, Dipartimento di Scienze, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Rachele Guascito
- Università del Salento, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Via per Monteroni, 73100, Lecce, Italy
| | - Antonietta Pepe
- Università della Basilicata, Dipartimento di Scienze, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Angela Rosa
- Università della Basilicata, Dipartimento di Scienze, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giampaolo Ricciardi
- Università della Basilicata, Dipartimento di Scienze, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
23
|
Parameterization of the prosthetic redox centers of the bacterial cytochrome bc 1 complex for atomistic molecular dynamics simulations. Theor Chem Acc 2013. [DOI: 10.1007/s00214-013-1370-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Reig AJ, Conrad KS, Brunold TC. Combined spectroscopic/computational studies of vitamin B12 precursors: geometric and electronic structures of cobinamides. Inorg Chem 2012; 51:2867-79. [PMID: 22332807 DOI: 10.1021/ic202052g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vitamin B(12) (cyanocobalamin) and its biologically active derivatives, methylcobalamin and adenosylcobalamin, are members of the family of corrinoids, which also includes cobinamides. As biological precursors to cobalamins, cobinamides possess the same structural core, consisting of a low-spin Co(3+) ion that is ligated equatorially by the four nitrogens of a highly substituted tetrapyrrole macrocycle (the corrin ring), but differ with respect to the lower axial ligation. Specifically, cobinamides possess a water molecule instead of the nucleotide loop that coordinates axially to Co(3+)cobalamins via its dimethylbenzimidazole (DMB) base. Compared to the cobalamin species, cobinamides have proven much more difficult to study experimentally, thus far eluding characterization by X-ray crystallography. In this study, we have utilized combined quantum mechanics/molecular mechanics (QM/MM) computations to generate complete structural models of a representative set of cobinamide species with varying upper axial ligands. To validate the use of this approach, analogous QM/MM geometry optimizations were carried out on entire models of the cobalamin counterparts for which high-resolution X-ray structural data are available. The accuracy of the cobinamide structures was assessed further by comparing electronic absorption spectra computed using time-dependent density functional theory to those obtained experimentally. Collectively, the results obtained in this study indicate that the DMB → H(2)O lower axial ligand switch primarily affects the energies of the Co 3d(z(2))-based molecular orbital (MO) and, to a lesser extent, the other Co 3d-based MOs as well as the corrin π-based highest energy MO. Thus, while the energy of the lowest-energy electronic transition of cobalamins changes considerably as a function of the upper axial ligand, it is nearly invariant for the cobinamides.
Collapse
Affiliation(s)
- Amanda J Reig
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
25
|
Chemaly SM, Florczak M, Dirr H, Marques HM. Probing the Nature of the CoIII Ion in Corrins: A Comparison of the Thermodynamics and Kinetics of the Ligand Substitution Reactions of Aquacyanocobyrinic Acid Heptamethyl Ester and Stable Yellow Aquacyanocobyrinic Acid Heptamethyl Ester. Inorg Chem 2011; 50:8719-27. [DOI: 10.1021/ic200288b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Susan M. Chemaly
- Molecular Sciences Institute, School of Chemistry, and ‡Protein Structure−Function Unit, School of Molecular and Cell Biology, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa
| | - Melissa Florczak
- Molecular Sciences Institute, School of Chemistry, and ‡Protein Structure−Function Unit, School of Molecular and Cell Biology, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa
| | - Heinrich Dirr
- Molecular Sciences Institute, School of Chemistry, and ‡Protein Structure−Function Unit, School of Molecular and Cell Biology, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, and ‡Protein Structure−Function Unit, School of Molecular and Cell Biology, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050 South Africa
| |
Collapse
|
26
|
Hu L, Ryde U. Comparison of Methods to Obtain Force-Field Parameters for Metal Sites. J Chem Theory Comput 2011; 7:2452-63. [DOI: 10.1021/ct100725a] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- LiHong Hu
- School of Computer Science and Information Technology, North-east Normal University, Changchun, 130024, Peopleʼs Republic of China
- Department of Theoretical Chemistry, Lund University, Chemical Centre, Post Office Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, Post Office Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
27
|
Varadwaj PR, Cukrowski I, Perry CB, Marques HM. A Density Functional Theory and Quantum Theory of Atoms-in-Molecules Analysis of the Stability of Ni(II) Complexes of Some Amino Alcohol Ligands. J Phys Chem A 2011; 115:6629-40. [DOI: 10.1021/jp201922w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hillcrest, Pretoria, 0002 South Africa
- Department of Chemistry & Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - Ignacy Cukrowski
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hillcrest, Pretoria, 0002 South Africa
| | - Christopher B. Perry
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, Johannesburg, 2050 South Africa
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, Johannesburg, 2050 South Africa
| |
Collapse
|
28
|
Clardy SM, Allis DG, Fairchild TJ, Doyle RP. Vitamin B12in drug delivery: breaking through the barriers to a B12bioconjugate pharmaceutical. Expert Opin Drug Deliv 2010; 8:127-40. [DOI: 10.1517/17425247.2011.539200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Peters MB, Yang Y, Wang B, Füsti-Molnár L, Weaver MN, Merz KM. Structural Survey of Zinc Containing Proteins and the Development of the Zinc AMBER Force Field (ZAFF). J Chem Theory Comput 2010; 6:2935-2947. [PMID: 20856692 PMCID: PMC2941202 DOI: 10.1021/ct1002626] [Citation(s) in RCA: 371] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Currently the Protein Data Bank (PDB) contains over 18,000 structures that contain a metal ion including Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag, Cd, Ir, Pt, Au, and Hg. In general, carrying out classical molecular dynamics (MD) simulations of metalloproteins is a convoluted and time consuming process. Herein, we describe MCPB (Metal Center Parameter Builder), which allows one, to conveniently and rapidly incorporate metal ions using the bonded plus electrostatics model (Hoops et al., J. Am. Chem. Soc. 1991, 113, 8262-8270) into the AMBER Force Field (FF). MCPB was used to develop a Zinc FF, ZAFF, which is compatible with the existing AMBER FFs. The PDB was mined for all Zn containing structures with most being tetrahedrally bound. The most abundant primary shell ligand combinations were extracted and FFs were created. These include Zn bound to CCCC, CCCH, CCHH, CHHH, HHHH, HHHO, HHOO, HOOO, HHHD, and HHDD (O = water and the remaining are 1 letter amino acid codes). Bond and angle force constants and RESP charges were obtained from B3LYP/6-31G* calculations of model structures from the various primary shell combinations. MCPB and ZAFF can be used to create FFs for MD simulations of metalloproteins to study enzyme catalysis, drug design and metalloprotein crystal refinement.
Collapse
Affiliation(s)
- Martin B. Peters
- Department of Chemistry, Quantum Theory Project, 2328 New Physics Building, PO Box 118435, University of Florida, Gainesville, Florida 32611-8435
| | - Yue Yang
- Department of Chemistry, Quantum Theory Project, 2328 New Physics Building, PO Box 118435, University of Florida, Gainesville, Florida 32611-8435
| | - Bing Wang
- Department of Chemistry, Quantum Theory Project, 2328 New Physics Building, PO Box 118435, University of Florida, Gainesville, Florida 32611-8435
| | - László Füsti-Molnár
- Department of Chemistry, Quantum Theory Project, 2328 New Physics Building, PO Box 118435, University of Florida, Gainesville, Florida 32611-8435
| | - Michael N. Weaver
- Department of Chemistry, Quantum Theory Project, 2328 New Physics Building, PO Box 118435, University of Florida, Gainesville, Florida 32611-8435
| | - Kenneth M. Merz
- Department of Chemistry, Quantum Theory Project, 2328 New Physics Building, PO Box 118435, University of Florida, Gainesville, Florida 32611-8435
| |
Collapse
|
30
|
Ríos-Escudero Á, Estiú GL, Costamagna† J, Cárdenas-Jirón† GI. Theoretical and experimental study of the electronic structure and spectra of Ni(II) tetraazadinaphtho[14]annulene complexes. J COORD CHEM 2010. [DOI: 10.1080/00958970310001624276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ángel Ríos-Escudero
- a Departamento de Química de los Materiales and Departamento de Ciencias Químicas , Facultad de Química y Biología, Universidad de Santiago de Chile , Casilla 40, Correo 33, Santiago, Chile
| | - Guillermina L. Estiú
- b Departamento de Química Inorgánica , Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Pabellón 2, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Juan Costamagna†
- a Departamento de Química de los Materiales and Departamento de Ciencias Químicas , Facultad de Química y Biología, Universidad de Santiago de Chile , Casilla 40, Correo 33, Santiago, Chile
| | - Gloria I. Cárdenas-Jirón†
- a Departamento de Química de los Materiales and Departamento de Ciencias Químicas , Facultad de Química y Biología, Universidad de Santiago de Chile , Casilla 40, Correo 33, Santiago, Chile
| |
Collapse
|
31
|
Kuta J, Wuerges J, Randaccio L, Kozlowski PM. Axial bonding in alkylcobalamins: DFT analysis of the inverse versus normal trans influence. J Phys Chem A 2010; 113:11604-12. [PMID: 19848426 DOI: 10.1021/jp901397p] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional theory has been applied to study the origin of the inverse and normal trans influence in alkylcobalamins. In order to cover the X-ray structural data available for alkylcobalamins with a variety of axial substituents, geometries of 28 related corrin-containing models have been optimized and analyzed. The BP86/6-31G(d) level of theory was applied which showed good reliability in reproducing the axial bond lengths. Comparison of experimental and calculated data allowed to conclude that the inverse trans influence is not a general feature of cobalamins, as it appeared from the experimental data analysis alone. Inverse trans influence is observed for the series of R groups with increasing bulk and electron donating ability. For the series of R groups having similar medium bulk, but differing significantly in the electron donating ability, normal trans influence was found. Finally, it was determined, that the axial bond lengths correlate well but differently in the two series of R groups with the orbital energies of the six molecular orbitals essential in axial interligand bonding.
Collapse
Affiliation(s)
- Jadwiga Kuta
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | |
Collapse
|
32
|
Scorciapino MA, Robertazzi A, Casu M, Ruggerone P, Ceccarelli M. Heme Proteins: The Role of Solvent in the Dynamics of Gates and Portals. J Am Chem Soc 2010; 132:5156-63. [DOI: 10.1021/ja909822d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariano Andrea Scorciapino
- Department of Chemical Sciences, University of Cagliari, Sardinian Laboratory for Computational Materials Science SLACS (IOM-CNR), and Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Arturo Robertazzi
- Department of Chemical Sciences, University of Cagliari, Sardinian Laboratory for Computational Materials Science SLACS (IOM-CNR), and Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Mariano Casu
- Department of Chemical Sciences, University of Cagliari, Sardinian Laboratory for Computational Materials Science SLACS (IOM-CNR), and Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Paolo Ruggerone
- Department of Chemical Sciences, University of Cagliari, Sardinian Laboratory for Computational Materials Science SLACS (IOM-CNR), and Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| | - Matteo Ceccarelli
- Department of Chemical Sciences, University of Cagliari, Sardinian Laboratory for Computational Materials Science SLACS (IOM-CNR), and Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Italy
| |
Collapse
|
33
|
Shi Z, Lin N. Self-Assembly of a Two-Dimensional Bimetallic Coordination Framework and Dynamic Control of Reversible Conversions to Homo-Metallic Hydrogen-Bond Arrays. Chemphyschem 2010; 11:97-100. [DOI: 10.1002/cphc.200900756] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Shubina TE. Computational Studies on Properties, Formation, and Complexation of M(II)-Porphyrins. ADVANCES IN INORGANIC CHEMISTRY 2010. [DOI: 10.1016/s0898-8838(10)62007-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Allis DG, Fairchild TJ, Doyle RP. The binding of vitamin B12 to transcobalamin(II); structural considerations for bioconjugate design—a molecular dynamics study. MOLECULAR BIOSYSTEMS 2010; 6:1611-8. [DOI: 10.1039/c003476b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Scorciapino MA, Robertazzi A, Casu M, Ruggerone P, Ceccarelli M. Breathing motions of a respiratory protein revealed by molecular dynamics simulations. J Am Chem Soc 2009; 131:11825-32. [PMID: 19653680 DOI: 10.1021/ja9028473] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Internal cavities, which are central to the biological functions of myoglobin, are exploited by gaseous ligands (e.g., O(2), NO, CO, etc.) to migrate inside the protein matrix. At present, it is not clear whether the ligand makes its own way inside the protein or instead the internal cavities are an intrinsic feature of myoglobin. To address this issue, standard molecular dynamics simulations were performed on horse-heart met-myoglobin with no ligand migrating inside the protein matrix. To reveal intrinsic internal pathways, the use of a statistical approach was applied to the cavity calculation, with special emphasis on the major pathway from the distal pocket to Xe1. Our study points out the remarkable dynamical behavior of Xe4, whose "breathing motions" may facilitate migration of ligands through the distal region. Additionally, our results highlight a two-way path for a ligand to diffuse through the proximal region, possibly allowing an alternative route in case Xe1 is occupied. Finally, our approach has led us to the identification of key residues, such as leucines, that may work as switches between cavities.
Collapse
Affiliation(s)
- Mariano Andrea Scorciapino
- Department of Chemical Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (Ca), Italy
| | | | | | | | | |
Collapse
|
37
|
Kovár P, Pospísil M, Káfunková E, Lang K, Kovanda F. Mg-Al layered double hydroxide intercalated with porphyrin anions: molecular simulations and experiments. J Mol Model 2009; 16:223-33. [PMID: 19575247 DOI: 10.1007/s00894-009-0537-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 06/10/2009] [Indexed: 11/25/2022]
Abstract
Molecular modeling in combination with powder X-ray diffraction (XRD) provided new information on the organization of the interlayer space of Mg-Al layered double hydroxide (LDH) containing intercalated porphyrin anions [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS)]. Anion-exchange and rehydration procedures were used for the preparation of TPPS-containing LDH with an Mg/Al molar ratio of 2. Molecular modeling was carried out in the Cerius(2) and Materials Studio modeling environment. Three types of models were created in order to simulate the experimental XRD patterns of LDH intercalates with a TPPS loading of 70-80% with respect to the theoretical anion exchange capacity (AEC). The models represent single-phase systems with a 100% TPPS loading in the interlayer space (Type 1) and models represent the coexistence of two phases corresponding to the total exchange from 75 to 92% (Type 2). To cover other possible arrangements, models with the coexistence of both TPPS and NO(3)(-) anions in the same interlayer space were calculated (Type 3). The models are described and compared with experimental data. In all cases, guest TPPS anions are tilted with respect to the hydroxide layers, and are horizontally shifted to each other by up to one-half of the TPPS diameter. According to the energy characteristics and simulated XRD, the most probable arrangement is of Type 2, where some layers are saturated with TPPS anions and others are filled with original NO(3)(-) anions.
Collapse
Affiliation(s)
- Petr Kovár
- Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
38
|
Klappenberger F, Weber-Bargioni A, Auwärter W, Marschall M, Schiffrin A, Barth JV. Temperature dependence of conformation, chemical state, and metal-directed assembly of tetrapyridyl-porphyrin on Cu(111). J Chem Phys 2008; 129:214702. [DOI: 10.1063/1.3021291] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Li Q, Yamazaki S, Eguchi T, Hasegawa Y, Kim H, Kahng SJ, Feng Jia J, Xue QK. Adsorption, manipulation and self-assembling of TBrPP-Co molecules on a Ag/Si(111) surface by scanning tunnelling microscopy. NANOTECHNOLOGY 2008; 19:465707. [PMID: 21836262 DOI: 10.1088/0957-4484/19/46/465707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Individual adsorption and two-dimensional assembling of 5,10,15,20-tetrakis-(4-bromophenyl)-porphyrin-Co (TBrPP-Co) molecules on a Si(111)-[Formula: see text] Ag reconstructed surface have been studied using low-temperature scanning tunnelling microscopy (STM). All the isolated molecules are observed in a planar shape with slight distortion. The isolated molecules can be controllably rotated with an STM tip to the orientation along the trigonal lattice ([Formula: see text] direction) of the substrate. With an increased coverage (0.07 ML) and appropriate annealing, the molecules assemble to form three types of ordered phase. The long-range ordered structures, however, disappear at higher coverage (0.75 ML).
Collapse
Affiliation(s)
- Qing Li
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa 277-8581, Japan. Institute of Physics, Chinese Academy of Science, Beijing 100080, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kabra VS, Gaikar VG. Molecular simulation of sodium butyl benzene sulfonate at air–water interface and in aqueous solution. J Mol Liq 2008. [DOI: 10.1016/j.molliq.2008.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
de Sousa AS, Fernandes MA, Nxumalo W, Balderson JL, Jeftič T, Cukrowski I, Marques HM. Sc(III) porphyrins. The molecular structure of two Sc(III) porphyrins and a re-evaluation of the parameters for the molecular mechanics modelling of Sc(III) porphyrins. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2007.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Auwärter W, Klappenberger F, Weber-Bargioni A, Schiffrin A, Strunskus T, Wöll C, Pennec Y, Riemann A, Barth JV. Conformational Adaptation and Selective Adatom Capturing of Tetrapyridyl-porphyrin Molecules on a Copper (111) Surface. J Am Chem Soc 2007; 129:11279-85. [PMID: 17705476 DOI: 10.1021/ja071572n] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a combined low-temperature scanning tunneling microscopy and near-edge X-ray adsorption fine structure study on the interaction of tetrapyridyl-porphyrin (TPyP) molecules with a Cu(111) surface. A novel approach using data from complementary experimental techniques and charge density calculations allows us to determine the adsorption geometry of TPyP on Cu(111). The molecules are centered on "bridge" sites of the substrate lattice and exhibit a strong deformation involving a saddle-shaped macrocycle distortion as well as considerable rotation and tilting of the meso-substituents. We propose a bonding mechanism based on the pyridyl-surface interaction, which mediates the molecular deformation upon adsorption. Accordingly, a functionalization by pyridyl groups opens up pathways to control the anchoring of large organic molecules on metal surfaces and tune their conformational state. Furthermore, we demonstrate that the affinity of the terminal groups for metal centers permits the selective capture of individual iron atoms at low temperature.
Collapse
Affiliation(s)
- Willi Auwärter
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cukrowski I, Marques HM, Mkwizu TS, Magampa PP, Serge C. Influence of electronic and steric effects on stability constants and electrochemical reversibility of divalent ion complexes with glycine and sarcosine. A glass electrode potentiometric, sampled direct current polarographic, virtual potentiometric, and molecular modelling study. Anal Chim Acta 2007; 590:203-16. [PMID: 17448346 DOI: 10.1016/j.aca.2007.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/05/2007] [Accepted: 03/14/2007] [Indexed: 11/20/2022]
Abstract
Cd(II) complexes with glycine (gly) and sarcosine (sar) were studied by glass electrode potentiometry, direct current polarography, virtual potentiometry, and molecular modelling. The electrochemically reversible Cd(II)-glycine-OH labile system was best described by a model consisting of M(HL), ML, ML2, ML3, ML(OH) and ML2(OH) (M = Cd(II), L = gly) with the overall stability constants, as log beta, determined to be 10.30+/-0.05, 4.21+/-0.03, 7.30+/-0.05, 9.84+/-0.04, 8.9+/-0.1, and 10.75+/-0.10, respectively. In case of the electrochemically quasi-reversible Cd(II)-sarcosine-OH labile system, only ML, ML2 and ML3 (M = Cd(II), L = sar) were found and their stability constants, as log beta, were determined to be 3.80+/-0.03, 6.91+/-0.07, and 8.9+/-0.4, respectively. Stability constants for the ML complexes, the prime focus of this work, were thus established with an uncertainty smaller than 0.05 log units. The observed departure from electrochemical reversibility for the Cd-sarcosine-OH system was attributed mainly to the decrease in the transfer coefficient alpha. The MM2 force field, supplemented by additional parameters, reproduced the reported crystal structures of diaqua-bis(glycinato-O,N)nickel(II) and fac-tri(glycinato)-nickelate(II) very well. These parameters were used to predict structures of all possible isomers of (i) [Ni(H2O)4(gly)]+ and [Ni(H2O)4(sar)]+; and (ii) [Ni(H2O)3(IDA)] and [Ni(H2O)3(MIDA)] (IDA = iminodiacetic acid, MIDA = N-methyl iminodiacetic acid) by molecular mechanics/simulated annealing methods. The change in strain energy, deltaU(str), that accompanies the substitution of one ligand by another (ML + L' --> ML' + L), was computed and a strain energy deltaU(str) = +0.28 kcal mol(-1) for the reaction [Ni(H2O)4(gly)]+ + sar --> [Ni(H2O)4(sar)]+ + gly was found. This predicts the monoglycine complex to be marginally more stable. By contrast, for the reaction [Ni(H2O)3IDA] + MIDA --> [Ni(H2O)3MIDA] + IDA, deltaU(str) = -0.64 kcal mol(-1), and the monoMIDA complex is predicted to be more stable. This correlates well with (i) stability constants for Cd-gly and Cd-sar reported here; and (ii) known stability constants of ML complex for glycine, sarcosine, IDA, and MIDA.
Collapse
Affiliation(s)
- Ignacy Cukrowski
- Department of Chemistry, University of Pretoria, NW-1 Building, Pretoria 0002, South Africa.
| | | | | | | | | |
Collapse
|
44
|
Auwärter W, Weber-Bargioni A, Brink S, Riemann A, Schiffrin A, Ruben M, Barth JV. Controlled metalation of self-assembled porphyrin nanoarrays in two dimensions. Chemphyschem 2007; 8:250-4. [PMID: 17167810 DOI: 10.1002/cphc.200600675] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report a bottom-up approach for the fabrication of metallo-porphyrin compounds and nanoarchitectures in two dimensions. Scanning tunneling microscopy and tunneling spectroscopy observations elucidate the interaction of highly regular porphyrin layers self-assembled on a Ag(111) surface with iron monomers supplied by an atomic beam. The Fe is shown to be incorporated selectively in the porphyrin macrocycle whereby the template structure is strictly preserved. The immobilization of the molecular reactants allows the identification of single metalation events in a novel reaction scheme. Because the template layers provide extended arrays of reaction sites, superlattices of coordinatively unsaturated and magnetically active metal centers are obtained. This approach offers novel pathways to realize metallo-porphyrin compounds, low-dimensional metal-organic architectures and patterned surfaces which cannot be achieved by conventional means.
Collapse
Affiliation(s)
- Willi Auwärter
- Departments of Chemistry and Physics & Astronomy, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada.
| | | | | | | | | | | | | |
Collapse
|
45
|
Huang X, Guo S, Zhou Q, Lu T, Ding X. Effect of La3+ on structure and electrochemical reaction of microperoxidase-11 in imitated physiological solution. J Electroanal Chem (Lausanne) 2007. [DOI: 10.1016/j.jelechem.2006.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
|
47
|
Marmo Moreira L, Lima Poli A, Costa-Filho AJ, Imasato H. Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR, UV–Vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus. Biophys Chem 2006; 124:62-72. [PMID: 16814451 DOI: 10.1016/j.bpc.2006.05.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/30/2006] [Accepted: 05/30/2006] [Indexed: 11/26/2022]
Abstract
The equilibrium complexity involving different axially coordinated hemes is peculiar to hemoglobins. The pH dependence of the spontaneous exchange of ligands in the extracellular hemoglobin from Glossoscolex paulistus was studied using UV-Vis, EPR, and CD spectroscopies. This protein has a complex oligomeric assembly with molecular weight of 3.1 MDa that presents an important cooperative effect. A complex coexistence of different species was observed in almost all pH values, except pH 7.0, where just aquomet species is present. Four new species were formed and coexist with the aquomethemoglobin upon acidification: (i) a "pure" low-spin hemichrome (Type II), also called hemichrome B, with an usual spin state (d(xy))(2)(d(xz),d(yz))(3); (ii) a strong g(max) hemichrome (Type I), also showing an usual spin state (d(xy))(2)(d(xz),d(yz))(3); (iii) a hemichrome with unusual spin state (d(xz),d(yz))(4)(d(xy))(1) (Type III); (iv) and a high-spin pentacoordinate species. CD measurements suggest that the mechanism of species formation could be related with an initial process of acid denaturation. However, it is worth mentioning that based on EPR the aquomet species remains even at acidic pH, indicating that the transitions are not complete. The "pure" low-spin hemichrome presents a parallel orientation of the imidazole ring planes but the strong g(max) hemichrome is a HALS (highly anisotropic low-spin) species indicating a reciprocally perpendicular orientation of the imidazole ring planes. The hemichromes and pentacoordinate formation mechanisms are discussed in detail.
Collapse
Affiliation(s)
- Leonardo Marmo Moreira
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13566-590, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
48
|
Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate catalyzed by manganese(III) tetra-arylporphyrins, to study the axial ligation of imidazole. J CHEM SCI 2006. [DOI: 10.1007/bf02711454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Crestoni ME, Fornarini S. Heme-peptide/protein ions and phosphorous ligands: search for site-specific addition reactions. J Biol Inorg Chem 2006; 12:22-35. [PMID: 16944229 DOI: 10.1007/s00775-006-0159-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
High-resolution Fourier transform ion cyclotron resonance mass spectrometry is employed to gain thorough kinetics and thermodynamics information on the reaction of free and ligated heme-type ions with selected ligands, with the aim of obtaining an insight into the coordination environment of the prosthetic group in a variety of biomolecular ions. Adopting a stepwise approach towards systems of increasing complexity, we examined the reactivity of free gaseous iron(III) protoporphyrin IX ions, Fe(III)-heme(+), of the charged species from microperoxidase-11 (MP11) (covalently peptide bound heme), and of the multiply charged ions from heme proteins, namely, cytochrome c (cyt c) and myoglobin (examples of noncovalently protein bound hemes). Among an array of test compounds allowed to react with Fe(III)-heme(+), OP(OMe)(3) and P(OMe)(3) proved to be similarly efficient ligands in the first addition step, yet displayed markedly distinct reactivity towards heme iron already engaged in axial coordination. The ease with which P(OMe)(3) acts as a second axial ligand is exploited to probe structural and conformational features of biomolecular ions. In this way, circumstantial evidence is gained of a folded conformation of +2 charge state ions from MP11 and an elongated one for the +3 charge state ions. Similarly, both the general reaction pattern and detailed kinetics and thermodynamics data point to a regiospecific addition reaction of P(OMe)(3) directed at the heme iron within multiply charged ions from cyt c. This unprecedented example of ion-molecule reaction which specifically involves a prosthetic group belonging to protein ions stands in contrast to the multiple, nonspecific interactions established by OP(OMe)(3) molecules with the protonated sites of multiply charged cyt c and apomyoglobin ions. This finding may develop and provide sensitive probes of the structure and bonding features of protein ions in the gas phase.
Collapse
Affiliation(s)
- Maria Elisa Crestoni
- Dipartimento Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università di Roma La Sapienza, P.le A. Moro 5, 00185, Rome, Italy.
| | | |
Collapse
|
50
|
|