1
|
Vitré C, Le Gal Y, Vacher A, Roisnel T, Lorcy D, Santana S, Prudêncio M, Pinheiro T, Marques F. Structure-activity relationship of anticancer and antiplasmodial gold bis(dithiolene) complexes. Dalton Trans 2024; 53:11903-11913. [PMID: 38953883 DOI: 10.1039/d4dt01458h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Monoanionic gold bis(dithiolene) complexes were recently shown to display activity against ovarian cancer cells, Gram-positive bacteria, Candida strains and the rodent malaria parasite, P. berghei. To date, only monoanionic gold(III) bis(dithiolene) complexes with a thiazoline backbone substituted with small alkyl chains have been evaluated for biomedical applications. We now analyzed the influence of the length and the hydrophobicity vs. hydrophilicity of these complexes' alkyl chain on their anticancer and antiplasmodial properties. Isomer analogues of these monoanionic gold(III) bis(dithiolene) complexes, this time with a thiazole backbone, were also investigated in order to assess the influence of the nature of the heterocyclic ligand on their overall chemical and biological properties. In this report we present the total synthesis of four novel monoanionic gold(III) bis(dithiolene) complexes with a long alkyl chain and a polyoxygenated (PEG) chain aiming to improve their solubility and biological properties. Our results showed that the complexes with a PEG chain showed promising anticancer and antiplasmodial activities beside improved solubility, a key parameter in drug discovery and development.
Collapse
Affiliation(s)
- Constantin Vitré
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Yann Le Gal
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Antoine Vacher
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Dominique Lorcy
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Sofia Santana
- iMM-Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Miguel Prudêncio
- iMM-Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Teresa Pinheiro
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Fernanda Marques
- Departamento de Engenharia e Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
2
|
Stefàno E, Cossa LG, De Castro F, De Luca E, Vergaro V, My G, Rovito G, Migoni D, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. Evaluation of the Antitumor Effects of Platinum-Based [Pt( η1-C 2H 4-OR)(DMSO)(phen)] + (R = Me, Et) Cationic Organometallic Complexes on Chemoresistant Pancreatic Cancer Cell Lines. Bioinorg Chem Appl 2023; 2023:5564624. [PMID: 37727647 PMCID: PMC10506884 DOI: 10.1155/2023/5564624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies with an increasing incidence and a high mortality rate, due to its rapid progression, invasiveness, and resistance to anticancer therapies. In this work, we evaluated the antiproliferative and antimigratory activities of the two organometallic compounds, [Pt(η1-C2H4-OMe)(DMSO)(phen)]Cl (1) and [Pt(η1-C2H4-OEt)(DMSO)(phen)]Cl (2), on three human pancreatic ductal adenocarcinoma cell lines with different sensitivity to cisplatin (Mia PaCa-2, PANC-1, and YAPC). The two cationic analogues showed superimposable antiproliferative effects on the tested cells, without significant differences depending on alkyl chain length (Me or Et). On the other hand, they demonstrated to be more effective than cisplatin, especially on YAPC cancer cells. For the interesting cytotoxic activity observed on YAPC, further biological assays were performed, on this cancer cell line, to evaluate the apoptotic and antimetastatic properties of the considered platinum compounds (1 and 2). The cytotoxicity of 1 and 2 compounds appeared to be related to their intracellular accumulation, which was much faster than that of cisplatin. Both 1 and 2 compounds significantly induced apoptosis and cell cycle arrest, with a high accumulation of sub-G1 phase cells, compared to cisplatin. Moreover, phenanthroline-containing complexes caused a rapid loss of mitochondria membrane potential, ΔΨM, if compared to cisplatin, probably due to their cationic and lipophilic properties. On 3D tumor spheroids, 1 and 2 significantly reduced migrated area more than cisplatin, confirming an antimetastatic ability.
Collapse
Affiliation(s)
- Erika Stefàno
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Luca Giulio Cossa
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Erik De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Giulia My
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Gianluca Rovito
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
3
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
4
|
An Overview on Coinage Metal Nanocluster-Based Luminescent Biosensors via Etching Chemistry. BIOSENSORS 2022; 12:bios12070511. [PMID: 35884314 PMCID: PMC9313264 DOI: 10.3390/bios12070511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
The findings from the synthetic mechanism of metal nanoclusters yield the etching chemistry based on coinage metal nanoclusters. The utilization of such chemistry as a tool that can alter the optical properties of metal nanoclusters has inspired the development of a series of emerging luminescent biosensors. Compared with other sensors, the luminescent biosensors have the advantages of being more sensitive, saving time and saving cost. We reviewed topics on the luminescent sensors based on the etching of emissive coinage metal nanoclusters. The molecules possessing varied etching ability towards metal nanoclusters were categorized with discussions of corresponding etching mechanisms. The understanding of etching mechanisms favored the discussions of how to use etching methods to detecting biochemical molecules. The emerging luminescent biosensors via etching chemistry also provided challenges and new opportunities for analytical chemistry and sensors.
Collapse
|
5
|
Varna D, Geromichalou E, Hatzidimitriou AG, Papi R, Psomas G, Dalezis P, Aslanidis P, Choli-Papadopoulou T, Trafalis DT, Angaridis PA. Silver(I) complexes bearing heterocyclic thioamide ligands with NH 2 and CF 3 substituents: effect of ligand group substitution on antibacterial and anticancer properties. Dalton Trans 2022; 51:9412-9431. [PMID: 35674362 DOI: 10.1039/d2dt00793b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, there has been an increasing interest in the study of Ag(I) coordination compounds as potent antibacterial and anticancer agents. Herein, a series of Ag(I) complexes bearing phosphines and heterocyclic thioamide ligands with highly electronegative NH2- and CF3-group substituents, i.e. [AgCl(atdztH)(xantphos)] (1), [Ag(μ-atdztH)(DPEphos)]2(NO3)2 (2), [Ag(atdzt)(PPh3)3] (3), [Ag(μ-atdzt)(DPEphos)]2 (4), and [Ag(μ-mtft)(DPEphos)]2 (5), where atdztH = 5-amino-1,3,4-thiadiazole-2-thiol, mtftH = 4-methyl-5-(trifluoromethyl)-1,2,4-triazol-3-thiol, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, and DPEphos = bis(2-diphenylphosphino-phenyl)ether, were synthesized, and their in vitro antibacterial and anticancer properties were evaluated. Complexes 1-4 bearing the NH2-substituted thioamide exhibited moderate-to-high activity against S. aureus, B. subtilis, B. cereus and E. coli bacterial strains. A high antiproliferative activity was also observed for 1-3 against SKOV-3, Hup-T3, DMS114 and PC3 cancer cell lines (IC50 = 4.0-11.7 μM), as well as some degree of selectivity against MRC-5 normal cells. Interestingly, 5 bearing the CF3-substituted thioamide is completely inactive in all bioactivity studies. Binding of 1-3 to drug-carrier proteins BSA and HSA is reasonably strong for their uptake and subsequent release to possible target sites. The three complexes show a significant in vitro antioxidant ability for scavenging free radicals, suggesting likely implication of this property in the mechanism of their bioactivity, but a low potential to destroy the double-strand structure of CT-DNA by intercalation. Complementary insights into possible bioactivity mechanisms were provided by molecular docking calculations, exploring the ability of complexes to bind to bacterial DNA gyrase, and to the overexpressed in the aforementioned cancer cells Fibroblast Growth Factor Receptor 1, affecting their functionalities.
Collapse
Affiliation(s)
- Despoina Varna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Dalezis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Paraskevas Aslanidis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
6
|
Abogosh AK, Alghanem MK, Ahmad S, Al-Asmari A, As Sobeai HM, Sulaiman AAA, Fettouhi M, Popoola SA, Alhoshani A, Isab AA. A novel cyclic dinuclear gold(I) complex induces anticancer activity via an oxidative stress-mediated intrinsic apoptotic pathway in MDA-MB-231 cancer cells. Dalton Trans 2022; 51:2760-2769. [PMID: 35083998 DOI: 10.1039/d1dt03546k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A new dinuclear cyclic gold(I) complex [Au2(DCyPA)2](PF6)2, 1, based on bis[2-(dicyclohexylphosphano)ethyl]amine (DCyPA) has been synthesized and characterized by elemental analysis, IR and NMR spectroscopy, and X-ray crystallography. In the dinuclear complex cation [Au2(DCyPA)2]2+, the two gold(I) ions are bridged by the ligand bis[2-(dicyclohexylphosphano)ethyl]amine (DCyPA) giving rise to a 16-membered ring centrosymmetric metallacycle. The cytotoxicity of the complex was evaluated against the triple-negative human breast cancer cells MDA-MB-231. In order to understand the mechanism of the cytotoxic behavior, a variety of assays, including Annexin V-FITC/Propidium iodide double staining, ROS production, and mitochondrial membrane potential and migration assays were carried out. The results indicated that complex 1 induced cytotoxicity via an oxidative stress-mediated intrinsic apoptotic pathway in MDA-MB-231 cancer cells.
Collapse
Affiliation(s)
- Ahmed K Abogosh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Meshal K Alghanem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saeed Ahmad
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdullah Al-Asmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Homood M As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adam A A Sulaiman
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Mohammed Fettouhi
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
- Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Saheed A Popoola
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anvarhusein A Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
7
|
Sulaiman AAA, Ahmad S, Mujahid Hashimi S, Alqosaibi AI, Peedikakkal AMP, Alhoshani A, Alsaleh NB, Isab AA. Novel dinuclear gold( i) complexes containing bis(diphenylphosphano)alkanes and (biphenyl-2-yl)(di- tert-butyl)phosphane: synthesis, structural characterization and anticancer activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj01680j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel dinuclear phosphanegold(I) complexes containing bis(diphenylphosphano)alkanes and related phosphano alkanes were synthesized and characterized by elemental analysis, FTIR, NMR spectroscopy, and X-ray crystallography.
Collapse
Affiliation(s)
- Adam A. A. Sulaiman
- Core Research Facilities (CRF), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Saeed Ahmad
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Saeed Mujahid Hashimi
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Parklands, QLD, Australia
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | | | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anvarhusein A. Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
8
|
Gold(I) Complexes Bearing Alkylated 1,3,5-Triaza-7-phosphaadamantane Ligands as Thermoresponsive Anticancer Agents in Human Colon Cells. Biomedicines 2021; 9:biomedicines9121848. [PMID: 34944664 PMCID: PMC8698759 DOI: 10.3390/biomedicines9121848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022] Open
Abstract
Overheating can affect solubility or lipophilicity, among other properties, of some anticancer drugs. These temperature-dependent changes can improve efficiency and selectivity of the drugs, since they may affect their bioavailability, diffusion through cell membrane or activity. One recent approach to create thermosensitive molecules is the incorporation of fluorine atoms in the chemical structure, since fluor can tune some chemical properties such as binding affinity. Herein we report the anticancer effect of gold derivatives with phosphanes derived from 1,3,5-triaza-7-phosphaadamantane (PTA) with long hydrocarbon chains and the homologous fluorinated chains. Besides, we analysed the influence of temperature in the cytotoxic effect. The studied gold(I) complexes with phosphanes derived from PTA showed antiproliferative effect on human colon carcinoma cells (Caco-2/TC7 cell line), probably by inhibiting cellular TrxR causing a dysfunction in the intracellular redox state. In addition, the cell cycle was altered by the activation of p53, and the complexes produce apoptosis through mitochondrial depolarization and the consequent activation of caspase-3. Furthermore, the results suggest that this cytotoxic effect is enhanced by hyperthermia and the presence of polyfluorinated chains.
Collapse
|
9
|
Sulaiman AA, Alhoshani A, Ahmad S, Peedikakkal AMP, Abogosh AK, Alghanem M, Mahmoud MA, Alanazi WA, Alasmael N, Monim-ul-Mehboob M, Isab AA. Synthesis, anticancer activity and apoptosis induction of gold(I) complexes containing tris(o-methoxyphenyl)phosphane. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Au 2phen and Auoxo6, Two Dinuclear Oxo-Bridged Gold(III) Compounds, Induce Apoptotic Signaling in Human Ovarian A2780 Cancer Cells. Biomedicines 2021; 9:biomedicines9080871. [PMID: 34440075 PMCID: PMC8389655 DOI: 10.3390/biomedicines9080871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023] Open
Abstract
Au2phen ((2,9-dimethyl-1,10-phenanthroline)2Au2(µ-O)2)(PF6)2 and Auoxo6 ((6,6′-dimethyl-2,2′-bipyridine)2Au2(µ-O)2)(PF6)2 are two structurally related gold(III) complexes that were previously reported to display relevant and promising anticancer properties in vitro toward a large number of human cancer cell lines. To expand the knowledge on the molecular mechanisms through which these gold(III) complexes trigger apoptosis in cancer cells, further studies have been performed using A2780 ovarian cancer cells as reference models. For comparative purposes, parallel studies were carried out on the gold(III) complex AuL12 (dibromo(ethylsarcosinedithiocarbamate)gold(III)), whose proapoptotic profile had been earlier characterized in several cancer cell lines. Our results pointed out that all these gold(III) compounds manifest a significant degree of similarity in their cellular and proapoptotic effects; the main observed perturbations consist of potent thioredoxin reductase inhibition, disruption of the cell redox balance, impairment of the mitochondrial membrane potential, and induction of associated metabolic changes. In addition, evidence was gained of the remarkable contribution of ASK1 (apoptosis-signal-regulating kinase-1) and AKT pathways to gold(III)-induced apoptotic signaling. Overall, the observed effects may be traced back to gold(III) reduction and subsequent formation and release of gold(I) species that are able to bind and inhibit several enzymes responsible for the intracellular redox homeostasis, in particular the selenoenzyme thioredoxin reductase.
Collapse
|
11
|
Redrado M, Benedi A, Marzo I, García‐Otín AL, Fernández‐Moreira V, Concepción Gimeno M. Multifunctional Heterometallic Ir III -Au I Probes as Promising Anticancer and Antiangiogenic Agents. Chemistry 2021; 27:9885-9897. [PMID: 33860585 PMCID: PMC8361937 DOI: 10.1002/chem.202100707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/18/2022]
Abstract
A new class of emissive cyclometallated IrIII -AuI complexes with a bis(diphenylphosphino) methanide bridging ligand was successfully synthesised from the diphosphino complex [Ir(N^C)2 (dppm)]+ (1). The different gold ancillary ligand, a triphenylphosphine (2), a chloride (3) or a thiocytosine (4) did not reveal any significant effect on the photophysical properties, which are mainly due to metal-to-ligand charge-transfer (3 MLCT) transitions based on IrIII . However, the AuI fragment, along with the ancillary ligand, seemed crucial for the bioactivity in A549 lung carcinoma cells versus endothelial cells. Both cell types display variable sensitivities to the complexes (IC50 =0.6-3.5 μM). The apoptotic pathway is activated in all cases, and paraptotic cell death seems to take place at initial stages in A549 cells. Species 2-4 showed at least dual lysosomal and mitochondrial biodistribution in A549 cells, with an initial lysosomal localisation and a possible trafficking process between both organelles with time. The bimetallic IrIII -AuI complexes disrupted the mitochondrial transmembrane potential in A549 cells and increased reactive oxygen species (ROS) generation and thioredoxin reductase (TrxR) inhibition in comparison with that displayed by the monometallic complex 1. Angiogenic activity assays performed in endothelial cells revealed the promising antimetastatic potential of 1, 2 and 4.
Collapse
Affiliation(s)
- Marta Redrado
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Andrea Benedi
- Departamento de Bioquímica y Biología CelularUniversidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología CelularUniversidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Angel L. García‐Otín
- Unidad de Investigación TraslacionalHospital Universitario Miguel ServetInstituto Aragonés de Ciencias de la Salud (IACS)/Instituto de Investigación Sanitaria Aragón50009ZaragozaSpain
| | - Vanesa Fernández‐Moreira
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - M. Concepción Gimeno
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| |
Collapse
|
12
|
Pettenuzzo A, Vezzù K, Di Paolo ML, Fotopoulou E, Marchiò L, Via LD, Ronconi L. Design, physico-chemical characterization and in vitro biological activity of organogold(III) glycoconjugates. Dalton Trans 2021; 50:8963-8979. [PMID: 34110336 DOI: 10.1039/d1dt01100f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To develop new metal-based glycoconjugates as potential anticancer agents, four organometallic gold(iii)-dithiocarbamato glycoconjugates of the type [AuIII(2-Bnpy)(SSC-Inp-GlcN)](PF6) (2-Bnpy: 2-benzylpyridine; Inp: isonipecotic moiety; GlcN: amino-glucose scaffold; Au3-Au6) and the corresponding model non-glycosylated counterparts [AuIII(2-Bnpy)(SSC-Inp-R)](PF6) (R: OEt (Au1), NH2 (Au2)) have been generated and characterized by means of several analytical techniques (elemental analysis, FT-IR, 1H-/13C-NMR, ESI-MS, UV-Vis, X-ray crystallography). Their stability under physiologically-relevant conditions (PBS solution) and n-octanol/PBS distribution coefficient (D7.4) have also been evaluated. Gold(iii) glycoconjugates showed an antiproliferative effect against ovarian carcinoma A2780 cells, with GI50 values in the low micromolar range. Remarkably, their cell growth inhibitory effect increases upon the addition of a glucose transporter 1 (GLUT1) inhibitor, thus ruling out the involvement of GLUT1 in their transport inside the cell. Additional mechanistic studies have been carried out in A2780 cells, supporting the hypothesis of a facilitated diffusion mechanism (possibly mediated by glucose transporters other than GLUT1), and revealing their capability to act as topoisomerase I and II inhibitors and to disrupt mitochondrial membrane integrity, leading to the generation of ROS, thus resulting in the promotion of oxidative stress and, eventually, cell death.
Collapse
Affiliation(s)
- Andrea Pettenuzzo
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Co. Galway, Ireland.
| | - Keti Vezzù
- University of Padova, Department of Industrial Engineering, Via F. Marzolo 8, 35131 Padova, Italy
| | - Maria Luisa Di Paolo
- University of Padova, Department of Molecular Medicine, Via G. Colombo 3, 35131 Padova, Italy
| | - Eirini Fotopoulou
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Co. Galway, Ireland.
| | - Luciano Marchiò
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Lisa Dalla Via
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, 35131 Padova, Italy.
| | - Luca Ronconi
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Co. Galway, Ireland.
| |
Collapse
|
13
|
Al-Buthabhak HS, Yu Y, Sobolev A, Al-Salami H, Baker MV. 3,5-Dibromophenyl-functionalised imidazolium salts and their corresponding [Au(NHC)2]+ complexes: synthesis, supramolecular chemistry and anti-cancer activity. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
|
15
|
Xiao Z, Johnson A, Singh K, Suntharalingam K. The Discrete Breast Cancer Stem Cell Mammosphere Activity of Group 10‐Bis(azadiphosphine) Metal Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhiyin Xiao
- School of Chemistry University of Leicester Leicester UK
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Alice Johnson
- School of Chemistry University of Leicester Leicester UK
| | - Kuldip Singh
- School of Chemistry University of Leicester Leicester UK
| | | |
Collapse
|
16
|
Xiao Z, Johnson A, Singh K, Suntharalingam K. The Discrete Breast Cancer Stem Cell Mammosphere Activity of Group 10-Bis(azadiphosphine) Metal Complexes. Angew Chem Int Ed Engl 2021; 60:6704-6709. [PMID: 33274606 DOI: 10.1002/anie.202014242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/21/2020] [Indexed: 12/15/2022]
Abstract
We report the anti-breast cancer stem cell (CSC) properties of a series of Group 10-bis(azadiphosphine) complexes 1-3 under exclusively three-dimensional cell culture conditions. The breast CSC mammosphere potency of 1-3 is dependent on the Group 10 metal present, increasing in the following order: 1 (nickel complex) <2 (palladium complex) <3 (platinum complex). Notably, 3 reduces the formation and size of mammospheres to a greater extent than salinomycin, an established CSC-active compound, or any reported anti-CSC metal complex tested under similar conditions. Mechanistic studies suggest that the most effective complexes 2 and 3 readily penetrate CSC mammospheres, enter CSC nuclei, induce genomic DNA damage, and trigger caspase-dependent apoptosis. To the best of our knowledge, this is the first study to systematically probe the anti-CSC activity of a series of structurally related Group 10 complexes and to be conducted entirely using three-dimensional CSC culture conditions.
Collapse
Affiliation(s)
- Zhiyin Xiao
- School of Chemistry, University of Leicester, Leicester, UK.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Alice Johnson
- School of Chemistry, University of Leicester, Leicester, UK
| | - Kuldip Singh
- School of Chemistry, University of Leicester, Leicester, UK
| | | |
Collapse
|
17
|
Mármol I, Montanel-Perez S, Royo JC, Gimeno MC, Villacampa MD, Rodríguez-Yoldi MJ, Cerrada E. Gold(I) and Silver(I) Complexes with 2-Anilinopyridine-Based Heterocycles as Multitarget Drugs against Colon Cancer. Inorg Chem 2020; 59:17732-17745. [DOI: 10.1021/acs.inorgchem.0c02922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Inés Mármol
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Unidad de Fisiología. and CIBERobn, IIS Aragón, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Sara Montanel-Perez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - José Carlos Royo
- Departamento de Farmacología y Fisiología, Unidad de Fisiología. and CIBERobn, IIS Aragón, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - M. Dolores Villacampa
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - M. Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología, Unidad de Fisiología. and CIBERobn, IIS Aragón, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
18
|
|
19
|
Synthesis, characterization, DFT optimization and anticancer evaluation of phosphanegold(I) dithiocarbamates. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Luengo A, Marzo I, Reback M, Daubit IM, Fernández‐Moreira V, Metzler‐Nolte N, Gimeno MC. Luminescent Bimetallic Ir III /Au I Peptide Bioconjugates as Potential Theranostic Agents. Chemistry 2020; 26:12158-12167. [PMID: 32542887 PMCID: PMC7540463 DOI: 10.1002/chem.202002067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/12/2020] [Indexed: 01/11/2023]
Abstract
Diverse iridium peptide bioconjugates and the corresponding iridium/gold bimetallic complexes have been synthesized starting from a cyclometallated carboxylic acid substituted IrIII complex [Ir(ppy)2 (Phen-5-COO)] by solid phase peptide synthesis (SPPS). The selected peptide sequences were an enkephalin derivative Tyr-Gly-Gly-Phe-Leu together with the propargyl-substituted species Tyr-Gly-Pgl-Phe-Leu to allow gold coordination (Pgl: propyrgyl-glycine, HC≡C-Gly), and a specific short peptide, Ala-Cys-Ala-Phen, containing a cysteine residue. Introduction of the gold center has been achieved via a click reaction with the alkynyl group leading to an organometallic Au-C(triazole) species, or by direct coordination to the sulfur atom of the cysteine. The photophysical properties of these species revealed predominantly an emission originating from the Ir complex, using mixed metal-to-ligand and ligand-to-ligand charge transfer excited states of triplet multiplicity. The formation of the peptide bioconjugates caused a systematic redshift of the emission profiles. Lysosomal accumulation was observed for all the complexes, in contrast to the expected mitochondrial accumulation triggered by the gold complexes. Only the cysteine-containing Ir/Au bioconjugate displayed cytotoxic activity. The absence of activity may be related to the lack of endosomal/lysosomal escape for the cationic peptide conjugates. Interestingly, the different coordination sphere of the gold atom may play a crucial role, as the Au-S(cysteine) bond may be more readily cleaved in a biological environment than the Au-C(triazole) bond, and thus the Au fragment could be released from or trapped in the lysosomes, respectively. This work represents a starting point in the development of bimetallic peptide bioconjugates as theranostics and in the knowledge of factors that contribute to anti-proliferative activity.
Collapse
Affiliation(s)
- Andrés Luengo
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología CelularUniversidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Matthew Reback
- Inorganic Chemistry I—Bioinorganic ChemistryFaculty of Chemistry and BiochemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Isabelle M. Daubit
- Inorganic Chemistry I—Bioinorganic ChemistryFaculty of Chemistry and BiochemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Vanesa Fernández‐Moreira
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Nils Metzler‐Nolte
- Inorganic Chemistry I—Bioinorganic ChemistryFaculty of Chemistry and BiochemistryRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - M. Concepción Gimeno
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| |
Collapse
|
21
|
Odachowski M, Marschner C, Blom B. A review on 1,1-bis(diphenylphosphino)methane bridged homo- and heterobimetallic complexes for anticancer applications: Synthesis, structure, and cytotoxicity. Eur J Med Chem 2020; 204:112613. [PMID: 32784095 DOI: 10.1016/j.ejmech.2020.112613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
Herein, we review developments in synthesis, structure, and biological (anti-cancer) activities of 1,1-bis(diphenylphosphino)methane (dppm) bridged homo- and heterobimetallic systems of the type LmM(μ2-dppm)M'Ln (M and M' are transition metals which may be different or the same and Ln,m are co-ligands) since the first such reported bimetallic system in 1987 until the present time (2020). As the simplest diphosphine, dppm enables facile formation of bimetallic complexes, where, given the short spacer between the PPh2 groups, close spatial proximity of the metal centres is ensured. We concentrate on complexes bearing no M-M interaction and contrast biological activities of these complexes with mononuclear counterparts and positive control agents such as cisplatin, in an attempt to elucidate patterns in the biological activities of these complexes.
Collapse
Affiliation(s)
- Matylda Odachowski
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands
| | - Christoph Marschner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
22
|
Sulaiman AA, Alhoshani A, As Sobeai HM, Alghanem M, Abogosh AK, Ahmad S, Altaf M, Monim-ul-Mehboob M, Stoeckli-Evans H, Isab AA. Anticancer activity and X-ray structure determination of gold(I) complexes of 2-(diphenylphosphanyl)-1-aminocyclohexane. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Tabrizi L, Romanova J. Antiproliferative Activity of Gold(I) N‐Heterocyclic Carbene and Triphenylphosphine Complexes with Ibuprofen Derivatives as Effective Enzyme Inhibitors. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Leila Tabrizi
- School of ChemistryNational University of Ireland Galway, University Road Galway H91 TK33 Ireland
| | - Julia Romanova
- Faculty of Chemistry and Pharmacy, Department of Inorganic ChemistryUniversity of Sofia “St. Kliment Ohridski” 1 James Bourchier Blvd. Sofia 1164 Bulgaria
| |
Collapse
|
24
|
Gallati CM, Goetzfried SK, Ausserer M, Sagasser J, Plangger M, Wurst K, Hermann M, Baecker D, Kircher B, Gust R. Synthesis, characterization and biological activity of bromido[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes. Dalton Trans 2020; 49:5471-5481. [PMID: 32255443 DOI: 10.1039/c9dt04824c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bromido[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes (8a-h) with methoxy, methyl and fluorine substituents at different positions of the 4-aryl ring were synthesized and characterized. The relevance of the 2-methoxypyridin-5-yl residue and the substituents at the 4-aryl ring with regard to the activity against a series of cell lines was determined. Particularly against the Cisplatin-resistant ovarian cancer cell line A2780cis, the most active bromido[3-ethyl-4-(4-methoxyphenyl)-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complex 8c was more active than Auranofin. It also inhibited thioredoxin reductase more effectively and induced high amounts of reactive oxygen species in A2780cis cells. Furthermore, its influence on non-cancerous SV 80 lung fibroblasts was lower than that of Auranofin. This fact, together with a high accumulation rate in tumor cells, determined on the example of MCF-7 cells, makes this complex an interesting candidate for further extensive studies.
Collapse
Affiliation(s)
- Caroline M Gallati
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Alotaibi MR, Monier M, Elsayed N. Fabrication and investigation of gold (III) ion-imprinted functionalized silica particles. J Mol Recognit 2019; 33:e2813. [PMID: 31814208 DOI: 10.1002/jmr.2813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/18/2019] [Indexed: 11/09/2022]
Abstract
Au (III) ion-imprinted mesoporous silica particles (Au-Si-Py) was manufactured by the condensation reaction of (3-Aminopropyl)triethoxysilane (AT)and 2-pyridinecarboxaldehyde (Py). The obtained AT-Py Schiff base ligand was then coordinate with the template gold ions and the polymerizable gold-complex was allowed to gel in presence of tetraethoxysilane (TEOS) and then the coordinated gold ions were leached out of the obtained silica matrix using acidified thiourea solution. During the synthetic steps, the obtained materials were investigated utilizing advanced instrumental and spectral methods. Moreover, the morphological structure of both Au (III) ions imprinted Au-Si-Py and non-imprinted NI-Si-Py silica particles were visualized using scanning electron microscope (SEM). Various adsorption experiments had been carried out using both Au-Si-Py and NI-Si-Py to examine their potential for selective extraction of gold ions under different conditions.
Collapse
Affiliation(s)
- Majdah R Alotaibi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71421, KSA
| | - Mohammed Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.,Chemistry Department, Faculty of Science, Taibah University, Yanbu Branch, Yanbu El-Bahr, KSA
| | - NadiaH Elsayed
- Department of Polymers and Pigments, National Research Centre, Dokki, Cairo, 12311, Egypt.,Department of Chemistry, University College-Alwajh Tabuk UniversityTabuk, KSA
| |
Collapse
|
26
|
Synthesis of phosphine-containing novel Pd(II) and Ni(II) complexes: Electrochemical, photophysical and quantum chemical studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Synthesis, Characterization and Catalytic Properties of Benzylphosphonate-aminethylphosphine-Pd(II), Cu(II), Ru(II) and V(IV) Complexes. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01121-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Mármol I, Quero J, Rodríguez-Yoldi MJ, Cerrada E. Gold as a Possible Alternative to Platinum-Based Chemotherapy for Colon Cancer Treatment. Cancers (Basel) 2019; 11:cancers11060780. [PMID: 31195711 PMCID: PMC6628079 DOI: 10.3390/cancers11060780] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Due to the increasing incidence and high mortality associated with colorectal cancer (CRC), novel therapeutic strategies are urgently needed. Classic chemotherapy against CRC is based on oxaliplatin and other cisplatin analogues; however, platinum-based therapy lacks selectivity to cancer cells and leads to deleterious side effects. In addition, tumor resistance to oxaliplatin is related to chemotherapy failure. Gold(I) derivatives are a promising alternative to platinum complexes, since instead of interacting with DNA, they target proteins overexpressed on tumor cells, thus leading to less side effects than, but a comparable antitumor effect to, platinum derivatives. Moreover, given the huge potential of gold nanoparticles, the role of gold in CRC chemotherapy is not limited to gold(I) complexes. Gold nanoparticles have been found to be able to overcome multidrug resistance along with reduced side effects due to a more efficient uptake of classic drugs. Moreover, the use of gold nanoparticles has enhanced the effect of traditional therapies such as radiotherapy, photothermal therapy, or photodynamic therapy, and has displayed a potential role in diagnosis as a consequence of their optic properties. Herein, we have reviewed the most recent advances in the use of gold(I) derivatives and gold nanoparticles in CRC therapy.
Collapse
Affiliation(s)
- Inés Mármol
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Javier Quero
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Elena Cerrada
- Deparment of Inorganic Chemistry, University of Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, University of Zaragoza-CSIC, 50009 Zaragoza, Spain.
| |
Collapse
|
29
|
|
30
|
Abstract
Background:
Since the serendipitous discovery of the antitumor activity of cisplatin
there has been a continuous surge in studies aimed at the development of new cytotoxic
metal complexes. While the majority of these complexes have been designed to interact with
nuclear DNA, other targets for anticancer metallodrugs attract increasing interest. In cancer
cells the mitochondrial metabolism is deregulated. Impaired apoptosis, insensitivity to antigrowth
signals and unlimited proliferation have been linked to mitochondrial dysfunction. It
is therefore not surprising that mitochondria have emerged as a major target for cancer therapy.
Mitochondria-targeting agents are able to bypass resistance mechanisms and to (re-) activate
cell-death programs.
Methods:
Web-based literature searching tools such as SciFinder were used to search for reports
on cytotoxic metal complexes that are taken up by the mitochondria and interact with
mitochondrial DNA or mitochondrial proteins, disrupt the mitochondrial membrane potential,
facilitate mitochondrial membrane permeabilization or activate mitochondria-dependent celldeath
signaling by unbalancing the cellular redox state. Included in the search were publications
investigating strategies to selectively accumulate metallodrugs in the mitochondria.
Results:
This review includes 241 references on antimitochondrial metal complexes, the use
of mitochondria-targeting carrier ligands and the formation of lipophilic cationic complexes.
Conclusion:
Recent developments in the design, cytotoxic potency, and mechanistic understanding
of antimitochondrial metal complexes, in particular of cyclometalated Au, Ru, Ir and
Pt complexes, Ru polypyridine complexes and Au-N-heterocyclic carbene and phosphine
complexes are summarized and discussed.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
31
|
Pandey SK, Pratap S, Marverti G, Kaur M, Jasinski JP. Synthesis, spectroscopic, crystal structure and in vitro cytotoxicity studies of N-thiophenoyl-N′-substituted phenyl thiocarbamide derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Zaki M, Hairat S, Aazam ES. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv 2019; 9:3239-3278. [PMID: 35518979 PMCID: PMC9060267 DOI: 10.1039/c8ra07926a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
The advent of the clinically approved drug cisplatin started a new era in the design of metallodrugs for cancer chemotherapy. However, to date, there has not been much success in this field due to the persistence of some side effects and multi-drug resistance of cancer cells. In recent years, there has been increasing interest in the design of metal chemotherapeutics using organometallic complexes due to their good stability and unique properties in comparison to normal coordination complexes. Their intermediate properties between that of traditional inorganic and organic materials provide researchers with a new platform for the development of more promising cancer therapeutics. Classical metal-based drugs exert their therapeutic potential by targeting only DNA, but in the case of organometallic complexes, their molecular target is quite distinct to avoid drug resistance by cancer cells. Some organometallic drugs act by targeting a protein or inhibition of enzymes such as thioredoxin reductase (TrRx), while some target mitochondria and endoplasmic reticulum. In this review, we mainly discuss organometallic complexes of Ru, Ti, Au, Fe and Os and their mechanisms of action and how new approaches improve their therapeutic potential towards various cancer phenotypes. Herein, we discuss the role of structure-reactivity relationships in enhancing the anticancer potential of drugs for the benefit of humans both in vitro and in vivo. Besides, we also include in vivo tumor models that mimic human physiology to accelerate the development of more efficient clinical organometallic chemotherapeutics.
Collapse
Affiliation(s)
- Mehvash Zaki
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| | - Suboot Hairat
- Department of Biotechnology, Wachemo University Hossana Ethiopia
| | - Elham S Aazam
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| |
Collapse
|
33
|
Fereidoonnezhad M, Ahmadi Mirsadeghi H, Abedanzadeh S, Yazdani A, Alamdarlou A, Babaghasabha M, Almansaf Z, Faghih Z, McConnell Z, Shahsavari HR, Beyzavi MH. Synthesis and biological evaluation of thiolate gold(i) complexes as thioredoxin reductase (TrxR) and glutathione reductase (GR) inhibitors. NEW J CHEM 2019. [DOI: 10.1039/c9nj02502b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Au(i) complexes with PPh2py and thiolate ligands are prepared. The complexes are shown considerable cytotoxic activities and those efficiently inhibit the TrxRs and GR.
Collapse
Affiliation(s)
- Masood Fereidoonnezhad
- Toxicology Research Center; Department of Medicinal Chemistry
- School of Pharmacy
- Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| | - Hasti Ahmadi Mirsadeghi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | | | - Alireza Yazdani
- Toxicology Research Center; Department of Medicinal Chemistry
- School of Pharmacy
- Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| | - Arsalan Alamdarlou
- Toxicology Research Center; Department of Medicinal Chemistry
- School of Pharmacy
- Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| | - Mojgan Babaghasabha
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Zainab Almansaf
- Department of Chemistry and Biochemistry
- University of Arkansas
- Fayetteville
- USA
| | - Zeinab Faghih
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Zachary McConnell
- Department of Chemistry and Biochemistry
- University of Arkansas
- Fayetteville
- USA
| | - Hamid R. Shahsavari
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
- Department of Chemistry and Biochemistry
| | - M. Hassan Beyzavi
- Department of Chemistry and Biochemistry
- University of Arkansas
- Fayetteville
- USA
| |
Collapse
|
34
|
Cerrada E, Fernández-Moreira V, Gimeno MC. Gold and platinum alkynyl complexes for biomedical applications. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Svahn N, Moro AJ, Roma-Rodrigues C, Puttreddy R, Rissanen K, Baptista PV, Fernandes AR, Lima JC, Rodríguez L. The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes. Chemistry 2018; 24:14654-14667. [DOI: 10.1002/chem.201802547] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/13/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Noora Svahn
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica; Universitat de Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| | - Artur J. Moro
- LAQV-REQUIMTE, Departamento de Química, CQFB; Universidade Nova de Lisboa; Monte de Caparica Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - Rakesh Puttreddy
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; P.O. Box 35 40014 Jyväskylä Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; P.O. Box 35 40014 Jyväskylä Finland
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - João Carlos Lima
- LAQV-REQUIMTE, Departamento de Química, CQFB; Universidade Nova de Lisboa; Monte de Caparica Portugal
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica; Universitat de Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
- Institut de Nanociència i Nanotecnologia (IN2UB); Universitat de Barcelona; 08028 Barcelona Spain
| |
Collapse
|
36
|
Quero J, Cabello S, Fuertes T, Mármol I, Laplaza R, Polo V, Gimeno MC, Rodriguez-Yoldi MJ, Cerrada E. Proteasome versus Thioredoxin Reductase Competition as Possible Biological Targets in Antitumor Mixed Thiolate-Dithiocarbamate Gold(III) Complexes. Inorg Chem 2018; 57:10832-10845. [DOI: 10.1021/acs.inorgchem.8b01464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Javier Quero
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Silvia Cabello
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Teresa Fuertes
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Inés Mármol
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Ruben Laplaza
- Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Victor Polo
- Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - M. Jesús Rodriguez-Yoldi
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, CIBERobn, IIS, Aragón IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
37
|
Mahendiran D, Pravin N, Bhuvanesh NSP, Kumar RS, Viswanathan V, Velmurugan D, Rahiman AK. Bis(thiosemicarbazone)copper(I) Complexes as Prospective Therapeutic Agents: Interaction with DNA/BSA Molecules, and In Vitro and In Vivo Anti-Proliferative Activities. ChemistrySelect 2018. [DOI: 10.1002/slct.201800934] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dharmasivam Mahendiran
- Post-Graduate and Research Department of Chemistry; The New College (Autonomous); Chennai 600 014 India
| | | | | | - Raju Senthil Kumar
- Department of Pharmaceutical Chemistry; Swamy Vivekanandha College of Pharmacy, Elayampalayam; Tiruchengodu 637 205 India
| | - Vijayan Viswanathan
- CAS in Crystallography and Biophysics; University of Madras; Guindy Campus; Chennai 600 025 India
| | - Devadasan Velmurugan
- CAS in Crystallography and Biophysics; University of Madras; Guindy Campus; Chennai 600 025 India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry; The New College (Autonomous); Chennai 600 014 India
| |
Collapse
|
38
|
Yeo CI, Ooi KK, Tiekink ERT. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy? Molecules 2018; 23:molecules23061410. [PMID: 29891764 PMCID: PMC6100309 DOI: 10.3390/molecules23061410] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022] Open
Abstract
A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.
Collapse
Affiliation(s)
- Chien Ing Yeo
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University. No. 5, Jalan Universiti, Bandar Sunway 47500, Malaysia.
| | - Kah Kooi Ooi
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University. No. 5, Jalan Universiti, Bandar Sunway 47500, Malaysia.
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University. No. 5, Jalan Universiti, Bandar Sunway 47500, Malaysia.
| |
Collapse
|
39
|
Gambini V, Tilio M, Maina EW, Andreani C, Bartolacci C, Wang J, Iezzi M, Ferraro S, Ramadori AT, Simon OC, Pucciarelli S, Wu G, Dou QP, Marchini C, Galassi R, Amici A. In vitro and in vivo studies of gold(I) azolate/phosphane complexes for the treatment of basal like breast cancer. Eur J Med Chem 2018; 155:418-427. [PMID: 29906688 DOI: 10.1016/j.ejmech.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
Basal like breast cancer (BLBC) is a very aggressive subtype of breast cancer giving few chances of survival, against which cisplatin based therapy is a compromise among the anticancer activity, the resistance development and the severe side effects. With the aim of finding new anticancer agents alternative to cisplatin, seven gold(I) azolate/phosphane compounds were evaluated in vitro by MTT tests in human MDA-MB-231, human mammary epithelial HMLE cells overexpressing FoxQ1, and murine A17 cells as models of BLBC. Two compounds, (4,5-dichloro-1H-imidazolate-1-yl)-(triphenylphosphane)-gold(I) 1 and (4,5-dicyano-1H-imidazolate-1-yl)-(triphenylphosphane)-gold(I) 2 were found very active and chosen for an in vivo study in A17 tumors transplanted in syngeneic mice. The compounds resulted to be more active than cisplatin, less nephrotoxic and generally more tolerated by the mice. This study also provides evidence that both gold(I) complexes inhibited the 19 S proteasome-associated deubiquitinase USP14 and induced apoptosis, while compound 1's mechanism of action depends also on its ability to down-regulate key molecules governing cancer growth and progression, such as STAT3 and Cox-2.
Collapse
Affiliation(s)
- Valentina Gambini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Martina Tilio
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Eunice Wairimu Maina
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Cristina Andreani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Caterina Bartolacci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Manuela Iezzi
- Aging Research Centre, G. d'Annunzio University, Chieti, 66100, Italy
| | - Stefano Ferraro
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy
| | - Anna Teresa Ramadori
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy
| | - Oumarou Camille Simon
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy.
| | - Rossana Galassi
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy.
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| |
Collapse
|
40
|
Marandi F, Moeini K, Alizadeh F, Mardani Z, Quah CK, Loh WS. Structural, spectral and docking studies of a coordination polymer of zinc(II) formed by a pyridine-derived linker. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A mixed ligand zinc coordination polymer, {Zn(μ-DPE)(DBM)2}
n
(1) (HDBM: dibenzoylmethane and DPE: (E)-1,2-di(pyridin-4-yl)ethene), was prepared and identified by elemental analysis, FT-IR, 1H NMR spectroscopy and single-crystal X-ray diffraction. In the 1D linear coordination polymer of 1, the zinc atom has a ZnN2O4 environment with octahedral geometry. These complex units are linked by the bridging of the planar N2 donor DPE ligands. In the coordination network of complex 1, in addition to the hydrogen bonds, the network is more stabilized by π–π stacking interactions between pyridine and β-diketone moieties of the ligands. These interactions increase the ability of the compound to interact with biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS and Top II) as investigated by docking calculations.
Collapse
Affiliation(s)
- Farzin Marandi
- Chemistry Department , Payame Noor University , 19395-4697 Tehran , I.R. Iran
| | - Keyvan Moeini
- Chemistry Department , Payame Noor University , 19395-4697 Tehran , I.R. Iran
| | - Fereshteh Alizadeh
- Chemistry Department , Payame Noor University , 19395-4697 Tehran , I.R. Iran
| | - Zahra Mardani
- Inorganic Chemistry Department, Faculty of Chemistry , Urmia University , 57561-51818, Urmia , I.R. Iran
| | - Ching Kheng Quah
- X-ray Crystallography Unit, School of Physics , Universiti Sains Malaysia , 11800 USM, Penang , Malaysia
| | - Wan-Sin Loh
- X-ray Crystallography Unit, School of Physics , Universiti Sains Malaysia , 11800 USM, Penang , Malaysia
| |
Collapse
|
41
|
Ssemaganda A, Low LM, Verhoeft KR, Wambuzi M, Kawoozo B, Nabasumba SB, Mpendo J, Bagaya BS, Kiwanuka N, Stanisic DI, Berners-Price SJ, Good MF. Gold(i) phosphine compounds as parasite attenuating agents for malaria vaccine and drug development. Metallomics 2018; 10:444-454. [DOI: 10.1039/c7mt00311k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The asexual blood-stagePlasmodiumparasite attenuating properties of gold(i) phosphine compounds are exploited in a novel strategy for malaria vaccine development.
Collapse
Affiliation(s)
| | | | | | - Mathias Wambuzi
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | - Barbarah Kawoozo
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | | | - Juliet Mpendo
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | - Bernard S. Bagaya
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
- Department of Immunology and Molecular Biology
| | - Noah Kiwanuka
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | | | | | | |
Collapse
|
42
|
Mahendiran D, Amuthakala S, Bhuvanesh NSP, Kumar RS, Rahiman AK. Copper complexes as prospective anticancer agents: in vitro and in vivo evaluation, selective targeting of cancer cells by DNA damage and S phase arrest. RSC Adv 2018; 8:16973-16990. [PMID: 35540520 PMCID: PMC9080330 DOI: 10.1039/c8ra00954f] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/29/2018] [Indexed: 12/29/2022] Open
Abstract
A series of six new bis(thiosemicarbazone)copper(i) complexes of the type [Cu(L1–6)2Cl] (1–6) have been synthesized and characterized. The molecular structure of the ligand L4 was determined by the single crystal XRD method. All the complexes adopted trigonal planar (Y-shaped) geometry. All the complexes strongly bind with CT-DNA via intercalative mode, which was further supported by molecular docking studies. Further, the complexes were effectively bind with BSA as observed by UV-Vis and fluorescence spectra. All the complexes effectively cleave pBR322 DNA through hydrolytic pathway as evidenced from T4 ligase experiments. All the complexes interact with the anticancer receptor focal adhesion kinase (FAK) via electrostatic, van der Waals, hydrogen bonding, σ–π and π–π interactions. In vitro cytotoxicity of the complexes were assessed by MTT assay against four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and Ehrlich ascites carcinoma (EAC), and two normal cell lines namely normal human dermal fibroblasts (NHDF) and L6 myotubes with respect to the commercially used anticancer drug cisplatin. All the complexes induce apoptosis in EAC cells, which was confirmed by AO/EB, Hoechst 33258 and PI staining methods. The complexes block cell cycle progression of EAC cells in S phase (DNA synthesis). The cellular uptake studies confirmed the ability of the complexes to go into the cytoplasm and accumulation in the cell nuclei. In the in vivo anticancer studies, the complexes significantly reduce the tumour volume in female Swiss albino mice. Overall, our results ensure the role of thiosemicarbazone-based copper(i) complexes as prospective anticancer agents, induction of apoptosis and S phase arrest with the mitochondrial controlled pathway. The thiosemicarbazone-based copper(i) complexes causing S phase arrest and apoptosis involving the mitochondrial controlled pathway has been investigated.![]()
Collapse
Affiliation(s)
- Dharmasivam Mahendiran
- Post-Graduate and Research Department of Chemistry
- The New College (Autonomous)
- Chennai 600 014
- India
| | - Sethu Amuthakala
- Post-Graduate and Research Department of Chemistry
- The New College (Autonomous)
- Chennai 600 014
- India
| | | | - Raju Senthil Kumar
- Department of Pharmaceutical Chemistry
- Swamy Vivekanandha College of Pharmacy
- Tiruchengodu 637 205
- India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry
- The New College (Autonomous)
- Chennai 600 014
- India
| |
Collapse
|
43
|
Srinivasa Reddy T, Privér SH, Rao VV, Mirzadeh N, Bhargava SK. Gold(i) and gold(iii) phosphine complexes: synthesis, anticancer activities towards 2D and 3D cancer models, and apoptosis inducing properties. Dalton Trans 2018; 47:15312-15323. [DOI: 10.1039/c8dt01724g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein we report the synthesis of gold(i) and gold(iii) complexes of tris(4-methoxyphenyl)phosphine and tris(2,6-dimethoxyphenyl)phosphine and their anticancer activity towards 2D and 3D cancer models.
Collapse
Affiliation(s)
- T. Srinivasa Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne 3001
- Australia
| | - Steven H. Privér
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne 3001
- Australia
| | - Vijay V. Rao
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne 3001
- Australia
| | - Nedaossadat Mirzadeh
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne 3001
- Australia
| | - Suresh K. Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne 3001
- Australia
| |
Collapse
|
44
|
Synthesis, characterization and anticancer evaluation of phosphinogold(I) thiocarbohydrate complexes. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Luengo A, Fernández-Moreira V, Marzo I, Gimeno MC. Trackable Metallodrugs Combining Luminescent Re(I) and Bioactive Au(I) Fragments. Inorg Chem 2017; 56:15159-15170. [DOI: 10.1021/acs.inorgchem.7b02470] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrés Luengo
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea, CSIC-Universidad de Zaragoza, Pedro Cerbuna
12, 50009 Zaragoza, Spain
| | - Vanesa Fernández-Moreira
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea, CSIC-Universidad de Zaragoza, Pedro Cerbuna
12, 50009 Zaragoza, Spain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología
Molecular, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea, CSIC-Universidad de Zaragoza, Pedro Cerbuna
12, 50009 Zaragoza, Spain
| |
Collapse
|
46
|
Atrián-Blasco E, Gascón S, Rodrı́guez-Yoldi MJ, Laguna M, Cerrada E. Novel Gold(I) Thiolate Derivatives Synergistic with 5-Fluorouracil as Potential Selective Anticancer Agents in Colon Cancer. Inorg Chem 2017; 56:8562-8579. [DOI: 10.1021/acs.inorgchem.7b01370] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elena Atrián-Blasco
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea, Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
- Laboratoire de Chimie de Coordination (LCC), UPS, INPT, LCC, 205 Route de Narbonne et Universite
de Toulouse, F-31077 Toulouse, France
| | - Sonia Gascón
- Departamento de Farmacología
y Fisiología, Unidad de Fisiología, Facultad de Veterinaria,
Ciber de Fisiopatología de la Obesidad y Nutrición, Instituto Agroalimentario de Aragón and Instituto de Investigación Sanitaria de Aragón, 50013 Zaragoza, Spain
| | - M Jesus Rodrı́guez-Yoldi
- Departamento de Farmacología
y Fisiología, Unidad de Fisiología, Facultad de Veterinaria,
Ciber de Fisiopatología de la Obesidad y Nutrición, Instituto Agroalimentario de Aragón and Instituto de Investigación Sanitaria de Aragón, 50013 Zaragoza, Spain
| | - Mariano Laguna
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea, Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| | - Elena Cerrada
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea, Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
47
|
Uruş S, İncesu M, Köşker S, Kurt AH, Ceyhan G. Synthesis, characterization, photoluminescence and electrochemical properties of Pt(II) and Ag(I) complexes of tetradentate aminomethylphosphine ligands and antiproliferative activities on HT-29 human colon cancer. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Serhan Uruş
- Chemistry Department, Faculty of Science and Letters; Kahramanmaras Sütçü İmam University; 46100 Kahramanmaraş Turkey
- Research and Development Centre for University-Industry-Public Relations; Kahramanmaras Sütçü İmam University; 46100 Kahramanmaras Turkey
| | - Mahmut İncesu
- Chemistry Department, Faculty of Science and Letters; Kahramanmaras Sütçü İmam University; 46100 Kahramanmaraş Turkey
| | - Seda Köşker
- Chemistry Department, Faculty of Science and Letters; Kahramanmaras Sütçü İmam University; 46100 Kahramanmaraş Turkey
| | - Akif Hakan Kurt
- Department of Pharmacology, School of Medicine; Kahramanmaras Sütçü İmam University; 46050 Kahramanmaras Turkey
| | - Gökhan Ceyhan
- Research and Development Centre for University-Industry-Public Relations; Kahramanmaras Sütçü İmam University; 46100 Kahramanmaras Turkey
| |
Collapse
|
48
|
Liu W, Gust R. Update on metal N-heterocyclic carbene complexes as potential anti-tumor metallodrugs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.09.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis. Biometals 2016; 29:637-50. [DOI: 10.1007/s10534-016-9940-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
50
|
Sánchez O, González S, Higuera-Padilla ÁR, León Y, Coll D, Fernández M, Taylor P, Urdanibia I, Rangel HR, Ortega JT, Castro W, Goite MC. Remarkable in vitro anti-HIV activity of new silver(I)– and gold(I)–N-heterocyclic carbene complexes. Synthesis, DNA binding and biological evaluation. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|