1
|
Pražáková M, Ndiaye D, Tóth É, Drahoš B. Expanding the Family of Monosubstituted 15-Membered Pyridine-Based Macrocyclic Ligands for Mn(II) Complexation in the Context of MRI. Inorg Chem 2025; 64:8205-8221. [PMID: 40215259 PMCID: PMC12042267 DOI: 10.1021/acs.inorgchem.5c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
As Mn(II) complexes attract continuous interest as alternatives to Gd-based contrast agents (CAs) in clinical magnetic resonance imaging (MRI), we synthesized two monosubstituted derivatives of the 15-membered pyridine-based macrocycle 15-pyN3O2 bearing either a 2-pyridylmethyl (L2) or a 2-benzimidazolylmethyl pendant arm (L3) and characterized their Mn(II) complexes MnL2 and MnL3 in the context of MRI contrast agent development. Their X-ray molecular structures confirmed a coordination number of seven and a pentagonal bipyramidal geometry with one coordination site available for inner-sphere water. Protonation constants of L2 and L3, and stability constants with selected divalent metal ions were determined using potentiometry. MnL2 and MnL3 complexes are fully formed at pH 7.4; however, they both display low kinetic inertness due to a significant spontaneous dissociation of the nonprotonated complex. The presence of one inner-sphere water molecule in the Mn(II) complexes was confirmed by 17O NMR and 1H NMRD measurements. The water exchange rate constants are very low (kex298 = 0.46 × 107 and 0.23 × 107 s-1 for MnL2 and MnL3, respectively), but typical for Mn(II) complexes of 15-pyN3O2 derivatives. The relaxivities are in good agreement with monohydrated small-molecular-weight Mn(II) chelates (r1 = 2.49 and 2.77 mM-1 s-1 at 20 MHz, 25 °C, for MnL2 and MnL3, respectively).
Collapse
Affiliation(s)
- Marie Pražáková
- Department
of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Daouda Ndiaye
- Centre
de Biophysique Moléculaire, CNRS-UPR 4301, Université
d’Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Éva Tóth
- Centre
de Biophysique Moléculaire, CNRS-UPR 4301, Université
d’Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Bohuslav Drahoš
- Department
of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
2
|
Chen JL, Chen SN, Liu HK, Pan BB, Zhao Y, Fu X, Otting G, Su XC. Rational Design of Lanthanide-Binding Tags to Optimize Magnetic Anisotropy in Paramagnetic Protein NMR. J Am Chem Soc 2025; 147:9939-9952. [PMID: 40064860 DOI: 10.1021/jacs.5c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Due to their exceptional anisotropic magnetic properties, lanthanide ion (Ln3+) complexes are of great utility in many fields of chemistry, including magnetic materials, biomedical imaging, and nuclear magnetic resonance (NMR) spectroscopy. How to achieve large magnetic anisotropies in the Ln3+ complexes coordinated with open-chain ligands is still a challenge. In this study, we started from the open-chain 4PS-PyMTA ligand and assessed the magnetic anisotropy using installed Ln3+ coordinating pendants by increasing size and rigidity. This approach yielded Ln3+ complexes with increasing magnetic anisotropies. The magnetic anisotropy and conformational dynamics of these open-chain 4PS-PyMTA-based Ln3+ complexes were evaluated by NMR spectroscopy. The impact of the coordination arms on the magnetic anisotropy was further characterized by the ligand field parameters derived from europium luminescence spectra. These data show that the design strategy yielded an efficient way to enhance the conformational rigidity of the Ln3+ chelating moiety and the ligand field strength, which underpins magnetic anisotropy. The magnitudes of pseudocontact shifts and residual dipolar couplings obtained with these 4PS-PyMTA-derived tags installed on a protein rival those obtained previously with synthetically less accessible cyclen-based Ln3+ tags. Our work provides a practical strategy to open-chain Ln3+ complexes with large magnetic anisotropies and straightforward synthetic protocols.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Shen-Na Chen
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Kai Liu
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Zhao
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Fu
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Maďar M, Faltejsek J, Bušková H, Koláčná L, Jaroš A, Kotek J, Straka M, Kubíček V, Ludvík J. Unusual variability of isomers in copper(II) complexes with 1,8-bis(2-hydroxybenzyl)-cyclam. Dalton Trans 2025; 54:3127-3140. [PMID: 39821065 DOI: 10.1039/d4dt03166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Copper isotopes and their complexes are intensively studied due to their high potential for applications in radiodiagnosis and radiotherapy. Here, we study the CuII complex of 1,8-bis(2-hydroxybenzyl)-cyclam (H2L), which forms an unexpected variety of isomers differing in the mutual orientation of the substituents on the cyclam nitrogen atoms, the protonation of the phenolate pendant, and the ligand denticity. The interconversion of the isomers is rather slow, which made the isolation, identification and investigation of some of the individual species possible. The most stable and the most common form is the hexacoordinated trans-III isomer. However, several other forms were also observed in solution in the course of HPLC, UV-VIS and electrochemical measurements. The isomers present in solution were identified by comparison with the solid-state structures solved by X-ray diffraction analysis on single crystals and with the help of theoretical calculations. The phenolate pendant is coordinated both in the protonated and deprotonated state; however, the coordination in the axial position of the hexacoordinated trans-III complex is weak, especially in its protonated state. Conversely, the CuII ion is pentacoordinated in the cis-V isomer with only one phenolate strongly coordinated in the basal plane of the distorted tetragonal pyramid. The computational data showed that the phenolate groups might form strong intraligand hydrogen bonds competitive with the metal-phenolate bonds, stabilizing the structure of the complex. In addition, theoretical calculations revealed that several geometries are energetically close to the optimal one, which indicates possible dynamic behaviour of the complex in solution.
Collapse
Affiliation(s)
- Milan Maďar
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Jan Faltejsek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542/2, 160 00 Prague 6, Czech Republic
| | - Hana Bušková
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542/2, 160 00 Prague 6, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Lucie Koláčná
- Czech Academy of Sciences, J. Heyrovsky Institute of Physical Chemistry, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Adam Jaroš
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542/2, 160 00 Prague 6, Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Michal Straka
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542/2, 160 00 Prague 6, Czech Republic
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Jiří Ludvík
- Czech Academy of Sciences, J. Heyrovsky Institute of Physical Chemistry, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| |
Collapse
|
4
|
Reibenspies J, Small N, Bhuvanesh N, Chiarella G, Salazar V, Pery B, Smith R, Toole D, Hewage S, Fernando H, Reinheimer E. Crystal structure and Hirshfeld surface analysis of (nitrato-κ 2 O, O')(1,4,7,10-tetra-aza-cyclo-dodecane-κ 4 N)nickel(II) nitrate. Acta Crystallogr E Crystallogr Commun 2024; 80:1157-1160. [PMID: 39712170 PMCID: PMC11660466 DOI: 10.1107/s2056989024009496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 12/24/2024]
Abstract
The crystal structure of the title compound, [Ni(C8H20N4)(NO3)]NO3, at room temperature, has monoclinic (P21/n) symmetry. The structure displays inter-molecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site. The 1,4,7,10-tetra-aza-cyclo-dodecane (cyclen) backbone has the [4,8] configuration, with three nitro-gen-bound H atoms directed above the plane of the nitro-gen atoms towards the offset nickel atom with the fourth nitro-gen-bound hydrogen directed below from the plane of the nitro-gen atoms. The nitrate anion O atoms are seen to hydrogen bond to the H atoms bound to the N atoms of the ligand.
Collapse
Affiliation(s)
- Joseph Reibenspies
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Nadia Small
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | - Rukiyah Smith
- Prairie View A&M University,Prairie ViewTexas 77446 USA
| | - Deja Toole
- Prairie View A&M University,Prairie ViewTexas 77446 USA
| | | | | | | |
Collapse
|
5
|
Ding Y, Ruan X, Shu K, Xu W, Liu Y, Mo G, Xu J, Jian Y, Zhang J, Zhang L, Wang K, Hou JT, Shen J, Yan Z, Ye F, Zhu J, Dai L. Rational Design of Mono-Substituted Gd-DOTA as Highly Stable and Efficient MRI Contrast Agents for Hepatobiliary and Inflammation Imaging. J Med Chem 2024; 67:15476-15493. [PMID: 39190821 DOI: 10.1021/acs.jmedchem.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Hepatobiliary-specific magnetic resonance imaging contrast agents (MRI CAs) play a crucial role in the early diagnosis of hepatocellular carcinoma (HCC). However, only two acyclic CAs, Gd-BOPTA and Gd-EOB-DTPA, exhibit unfavorable kinetic inertness. Our study focused on the development of superior stable innovative macrocyclic CAs. By introducing a lipophilic benzyloxy group (OBn) into the H4DOTA ring (Gd-L1), we achieved significant enhancement in kinetic inertness. In vivo experiments in mice demonstrated that 40% of the dosage was distributed to the liver at 5 min, providing sustained hepatic enhancement for over 35 min. We also developed an MPO-responsive MRI CA (Gd-L3), which can participate in the "peroxidase cycle" as the substrate, generating oligomers with a 3.8-fold increase in relaxivity, and selectively enhance the lesion in an acute gout mouse model. Overall, our work represents a significant advancement in the field of hepatic and inflammatory MRI, offering promising avenues for early diagnosis and improved imaging outcomes.
Collapse
Affiliation(s)
- Yinghui Ding
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Xinzhong Ruan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Kun Shu
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Weiyuan Xu
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yao Liu
- Sichuan Key Laboratory of Medical Imaging, School of Basic Medical Sciences and Forensic Medicine and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Gengshen Mo
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jiao Xu
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yong Jian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jilai Zhang
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Lingfeng Zhang
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Keren Wang
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhihan Yan
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fangfu Ye
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Basic Medical Sciences and Forensic Medicine and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Lixiong Dai
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
6
|
Uzal-Varela R, Rodríguez-Rodríguez A, Lalli D, Valencia L, Maneiro M, Botta M, Iglesias E, Esteban-Gómez D, Angelovski G, Platas-Iglesias C. Endeavor toward Redox-Responsive Transition Metal Contrast Agents Based on the Cross-Bridge Cyclam Platform. Inorg Chem 2024; 63:1575-1588. [PMID: 38198518 PMCID: PMC10806912 DOI: 10.1021/acs.inorgchem.3c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
We present the synthesis and characterization of a series of Mn(III), Co(III), and Ni(II) complexes with cross-bridge cyclam derivatives (CB-cyclam = 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) containing acetamide or acetic acid pendant arms. The X-ray structures of [Ni(CB-TE2AM)]Cl2·2H2O and [Mn(CB-TE1AM)(OH)](PF6)2 evidence the octahedral coordination of the ligands around the Ni(II) and Mn(III) metal ions, with a terminal hydroxide ligand being coordinated to Mn(III). Cyclic voltammetry studies on solutions of the [Mn(CB-TE1AM)(OH)]2+ and [Mn(CB-TE1A)(OH)]+ complexes (0.15 M NaCl) show an intricate redox behavior with waves due to the MnIII/MnIV and MnII/MnIII pairs. The Co(III) and Ni(II) complexes with CB-TE2A and CB-TE2AM show quasi-reversible features due to the CoIII/CoII or NiII/NiIII pairs. The [Co(CB-TE2AM)]3+ complex is readily reduced by dithionite in aqueous solution, as evidenced by 1H NMR studies, but does not react with ascorbate. The [Mn(CB-TE1A)(OH)]+ complex is however reduced very quickly by ascorbate following a simple kinetic scheme (k0 = k1[AH-], where [AH-] is the ascorbate concentration and k1 = 628 ± 7 M-1 s-1). The reduction of the Mn(III) complex to Mn(II) by ascorbate provokes complex dissociation, as demonstrated by 1H nuclear magnetic relaxation dispersion studies. The [Ni(CB-TE2AM)]2+ complex shows significant chemical exchange saturation transfer effects upon saturation of the amide proton signals at 71 and 3 ppm with respect to the bulk water signal.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Aurora Rodríguez-Rodríguez
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Magnetic Resonance Platform
(PRISMA-UPO), Universitá del Piemonte
Orientale, Viale T. Michel
11, Alessandria 15121, Italy
| | - Laura Valencia
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende 36310, Pontevedra, Spain
| | - Marcelino Maneiro
- Departamento
de Química Inorgánica, Facultade de Ciencias, Campus
Terra, Universidade de Santiago de Compostela, Lugo 27002, Galicia, Spain
| | - Mauro Botta
- Dipartimento
di Scienze e Innovazione Tecnologica, Magnetic Resonance Platform
(PRISMA-UPO), Universitá del Piemonte
Orientale, Viale T. Michel
11, Alessandria 15121, Italy
| | - Emilia Iglesias
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - David Esteban-Gómez
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Goran Angelovski
- Laboratory
of Molecular and Cellular Neuroimaging, International Center for Primate
Brain Research (ICPBR), Center for Excellence in Brain Science and
Intelligence Technology (CEBSIT), Chinese
Academy of Sciences (CAS), Shanghai 201602, PR China
| | - Carlos Platas-Iglesias
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| |
Collapse
|
7
|
Lesnikov VK, Golovanov IS, Nelyubina YV, Aksenova SA, Sukhorukov AY. Crown-hydroxylamines are pH-dependent chelating N,O-ligands with a potential for aerobic oxidation catalysis. Nat Commun 2023; 14:7673. [PMID: 37996433 PMCID: PMC10667252 DOI: 10.1038/s41467-023-43530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Despite the rich coordination chemistry, hydroxylamines are rarely used as ligands for transition metal coordination compounds. This is partially because of the instability of these complexes that undergo decomposition, disproportionation and oxidation processes involving the hydroxylamine motif. Here, we design macrocyclic poly-N-hydroxylamines (crown-hydroxylamines) that form complexes containing a d-metal ion (Cu(II), Ni(II), Mn(II), and Zn(II)) coordinated by multiple (up to six) hydroxylamine fragments. The stability of these complexes is likely to be due to a macrocycle effect and strong intramolecular H-bonding interactions between the N-OH groups. Crown-hydroxylamine complexes exhibit interesting pH-dependent behavior where the efficiency of metal binding increases upon deprotonation of the hydroxylamine groups. Copper complexes exhibit catalytic activity in aerobic oxidation reactions under ambient conditions, whereas the corresponding complexes with macrocyclic polyamines show poor or no activity. Our results show that crown-hydroxylamines display anomalous structural features and chemical behavior with respect to both organic hydroxylamines and polyaza-crowns.
Collapse
Affiliation(s)
- Vladislav K Lesnikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation
| | - Ivan S Golovanov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Vavilova str. 28, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (National Research University), 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russian Federation
| | - Svetlana A Aksenova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Vavilova str. 28, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (National Research University), 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russian Federation
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky prospect, 47, Moscow, Russian Federation.
| |
Collapse
|
8
|
Koucký F, Kotek J, Císařová I, Havlíčková J, Kubíček V, Hermann P. Transition metal complexes of cyclam with two 2,2,2-trifluoroethylphosphinate pendant arms as probes for 19F magnetic resonance imaging. Dalton Trans 2023; 52:12208-12223. [PMID: 37401675 DOI: 10.1039/d3dt01420g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
A new cyclam-based ligand bearing two methylene(2,2,2-trifluoroethyl)phosphinate pendant arms was synthesized and its coordination behaviour towards selected divalent transition metal ions [Co(II), Ni(II), Cu(II), Zn(II)] was studied. The ligand was found to be very selective for the Cu(II) ion according to the common Williams-Irving trend. Complexes with all the studied metal ions were structurally characterized. The Cu(II) ion forms two isomeric complexes; the pentacoordinated isomer pc-[Cu(L)] is the kinetic product and the octahedral trans-O,O'-[Cu(L)] isomer is the final (thermodynamic) product of the complexation reaction. Other studied metal ions form octahedral cis-O,O'-[M(L)] complexes. The complexes with paramagnetic metal ions showed a significant shortening of 19F NMR longitudinal relaxation times (T1) to the millisecond range [Ni(II) and Cu(II) complexes] or tens of milliseconds [Co(II) complex] at the temperature and magnetic field relevant for 19F magnetic resonance imaging (MRI). Such a short T1 results from a short distance between the paramagnetic metal ion and the fluorine atoms (∼6.1-6.4 Å). The complexes show high kinetic inertness towards acid-assisted dissociation; in particular, the trans-O,O'-[Cu(L)] complex was found to be extremely inert with a dissociation half-time of 2.8 h in 1 M HCl at 90 °C. Together with the short relaxation time, it potentially enables in vitro/in vivo utilization of the complexes as efficient contrast agents for 19F MRI.
Collapse
Affiliation(s)
- Filip Koucký
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Jana Havlíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| |
Collapse
|
9
|
Jennings J, Pabst G. Multiple Routes to Bicontinuous Cubic Liquid Crystal Phases Discovered by High-Throughput Self-Assembly Screening of Multi-Tail Lipidoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206747. [PMID: 37026678 DOI: 10.1002/smll.202206747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Bicontinuous cubic phases offer advantageous routes to a broad range of applied materials ranging from drug delivery devices to membranes. However, a priori design of molecules that assemble into these phases remains a technological challenge. In this article, a high-throughput synthesis of lipidoids that undergo protonation-driven self-assembly (PrSA) into liquid crystalline (LC) phases is conducted. With this screening approach, 12 different multi-tail lipidoid structures capable of assembling into the bicontinuous double gyroid phase are discovered. The large volume of small-angle X-ray scattering (SAXS) data uncovers unexpected design criteria that enable phase selection as a function of lipidoid headgroup size and architecture, tail length and architecture, and counterion identity. Surprisingly, combining branched headgroups with bulky tails forces lipidoids to adopt unconventional pseudo-disc conformations that pack into double gyroid networks, entirely distinct from other synthetic or biological amphiphiles within bicontinuous cubic phases. From a multitude of possible applications, two examples of functional materials from lipidoid liquid crystals are demonstrated. First, the fabrication of gyroid nanostructured films by interfacial PrSA, which are rapidly responsive to the external medium. Second, it is shown that colloidally-dispersed lipidoid cubosomes, for example, for drug delivery, are easily assembled using top-down solvent evaporation methods.
Collapse
Affiliation(s)
- James Jennings
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, 8010, Austria
| | - Georg Pabst
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, 8010, Austria
| |
Collapse
|
10
|
Miao Q, Dekkers R, Gupta KBSS, Overhand M, Dasgupta R, Ubbink M. Rigidified and Hydrophilic DOTA-like Lanthanoid Ligands: Design, Synthesis, and Dynamic Properties. Inorg Chem 2023; 62:3776-3787. [PMID: 36802549 PMCID: PMC9996828 DOI: 10.1021/acs.inorgchem.2c03768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Limiting the dynamics of paramagnetic tags is crucial for the accuracy of the structural information derived from paramagnetic nuclear magnetic resonance (NMR) experiments. A hydrophilic rigid 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA)-like lanthanoid complex was designed and synthesized following a strategy that allows the incorporation of two sets of two adjacent substituents. This resulted in a C2 symmetric hydrophilic and rigid macrocyclic ring, featuring four chiral hydroxyl-methylene substituents. NMR spectroscopy was used to investigate the conformational dynamics of the novel macrocycle upon complexation with europium and compared to DOTA and its derivatives. The twisted square antiprismatic and square antiprismatic conformers coexist, but the former is favored, which is different from DOTA. Two-dimensional 1H exchange spectroscopy shows that ring flipping of the cyclen-ring is suppressed due to the presence of the four chiral equatorial hydroxyl-methylene substituents at proximate positions. The reorientation of the pendant arms causes conformational exchange between two conformers. The reorientation of the coordination arms is slower when the ring flipping is suppressed. This indicates that these complexes are suitable scaffolds to develop rigid probes for paramagnetic NMR of proteins. Due to their hydrophilic nature, it is anticipated that they are less likely to cause protein precipitation than their more hydrophobic counterparts.
Collapse
Affiliation(s)
- Qing Miao
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.,College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - René Dekkers
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Karthick Babu Sai Sankar Gupta
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mark Overhand
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Rubin Dasgupta
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, Stockholm 17177, Sweden
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
11
|
Maďar M, Koláčná L, Koucký F, Havlíčková J, Kuchár J, Kotek J, Kubíček V, Ludvík J, Hermann P. Derivatives of cyclam-1,8-diacetic acid: synthesis and complexes with divalent transition metal ions. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Brown AM, Butman JL, Lengacher R, Vargo NP, Martin KE, Koller A, Śmiłowicz D, Boros E, Robinson JR. N, N-Alkylation Clarifies the Role of N- and O-Protonated Intermediates in Cyclen-Based 64Cu Radiopharmaceuticals. Inorg Chem 2023; 62:1362-1376. [PMID: 36490364 DOI: 10.1021/acs.inorgchem.2c02907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radioisotopes of Cu, such as 64Cu and 67Cu, are alluring targets for imaging (e.g., positron emission tomography, PET) and radiotherapeutic applications. Cyclen-based macrocyclic polyaminocarboxylates are one of the most frequently examined bifunctional chelators in vitro and in vivo, including the FDA-approved 64Cu radiopharmaceutical, Cu(DOTATATE) (Detectnet); however, connections between the structure of plausible reactive intermediates and their stability under physiologically relevant conditions remain to be established. In this study, we share the synthesis of a cyclen-based, N,N-alkylated spirocyclic chelate, H2DO3AC4H8, which serves as a model for N-protonation. Our combined experimental (in vitro and in vivo) and computational studies unravel complex pH-dependent speciation and enable side-by-side comparison of N- and O-protonated species of relevant 64Cu radiopharmaceuticals. Our studies suggest that N-protonated species are not inherently unstable species under physiological conditions and demonstrate the potential of N,N-alkylation as a tool for the rational design of future radiopharmaceuticals.
Collapse
Affiliation(s)
- Alexander M Brown
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Jana L Butman
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Raphael Lengacher
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Natasha P Vargo
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Kirsten E Martin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Angus Koller
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York11794, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| |
Collapse
|
13
|
Uzal-Varela R, Patinec V, Tripier R, Valencia L, Maneiro M, Canle M, Platas-Iglesias C, Esteban-Gómez D, Iglesias E. On the dissociation pathways of copper complexes relevant as PET imaging agents. J Inorg Biochem 2022; 236:111951. [PMID: 35963110 DOI: 10.1016/j.jinorgbio.2022.111951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
Several bifunctional chelators have been synthesized in the last years for the development of new 64Cu-based PET agents for in vivo imaging. When designing a metal-based PET probe, it is important to achieve high stability and kinetic inertness once the radioisotope is coordinated. Different competitive assays are commonly used to evaluate the possible dissociation mechanisms that may induce Cu(II) release in the body. Among them, acid-assisted dissociation tests or transchelation challenges employing EDTA or SOD are frequently used to evaluate both solution thermodynamics and the kinetic behavior of potential metal-based systems. Despite of this, the Cu(II)/Cu(I) bioreduction pathway that could be promoted by the presence of bioreductants still remains little explored. To fill this gap we present here a detailed spectroscopic study of the kinetic behavior of different macrocyclic Cu(II) complexes. The complexes investigated include the cross-bridge cyclam derivative [Cu(CB-TE1A)]+, whose structure was determined using single-crystal X-ray diffraction. The acid-assisted dissociation mechanism was investigated using HClO4 and HCl to analyse the effect of the counterion on the rate constants. The complexes were selected so that the effects of complex charge and coordination polyhedron could be assessed. Cyclic voltammetry experiments were conducted to investigate whether the reduction to Cu(I) falls within the window of common bioreducing agents. The most striking behavior concerns the [Cu(NO2Th)]2+ complex, a 1,4,7-triazacyclononane derivative containing two methylthiazolyl pendant arms. This complex is extremely inert with respect to dissociation following the acid-catalyzed mechanism, but dissociates rather quickly in the presence of a bioreductant like ascorbic acid.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Véronique Patinec
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Laura Valencia
- Departamento de Química Inorgánica, Universidade de Vigo, Facultad de Ciencias, 36310 Pontevedra, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Facultade de Ciencias, 27002 Lugo, Spain
| | - Moisés Canle
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain.
| | - Emilia Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain.
| |
Collapse
|
14
|
Pazderová L, Benešová M, Havlíčková J, Vojtíčková M, Kotek J, Lubal P, Ullrich M, Walther M, Schulze S, Neuber C, Rammelt S, Pietzsch HJ, Pietzsch J, Kubíček V, Hermann P. Cyclam with a phosphinate-bis(phosphonate) pendant arm is a bone-targeting carrier of copper radionuclides. Dalton Trans 2022; 51:9541-9555. [PMID: 35670322 DOI: 10.1039/d2dt01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligands combining a bis(phosphonate) group with a macrocycle function as metal isotope carriers for radionuclide-based imaging and for treating bone metastases associated with several cancers. However, bis(phosphonate) pendant arms often slow down complex formation and decrease radiochemical yields. Nevertheless, their negative effect on complexation rates may be mitigated by using a suitable spacer between bis(phosphonate) and the macrocycle. To demonstrate the potential of bis(phosphonate) bearing macrocyclic ligands as a copper radioisotope carrier, we report the synthesis of a new cyclam derivative bearing a phosphinate-bis(phosphonate) pendant (H5te1PBP). The ligand showed a high selectivity to CuII over ZnII and NiII ions, and the bis(phosphonate) group was not coordinated in the CuII complex, strongly interacting with other metal ions in solution. The CuII complex formed quickly, in 1 s, at pH 5 and at a millimolar scale. The complexation rates significantly differed under a ligand or metal ion excess due to the formation of reaction intermediates differing in their metal-to-ligand ratio and protonation state, respectively. The CuII-te1PBP complex also showed a high resistance to acid-assisted hydrolysis (t1/2 2.7 h; 1 M HClO4, 25 °C) and was effectively adsorbed on the hydroxyapatite surface. H5te1PBP radiolabeling with [64Cu]CuCl2 was fast and efficient, with specific activities of approximately 30 GBq 64Cu per 1 μmol of ligand (pH 5.5, room temperature, 30 min). In a pilot experiment, we further demonstrated the excellent suitability of [64Cu]CuII-te1PBP for imaging active bone compartments by dedicated small animal PET/CT in healthy mice and subsequently in a rat femoral defect model, in direct comparison with [18F]fluoride. Moreover, [64Cu]CuII-te1PBP showed a higher uptake in critical bone defect regions. Therefore, our study highlights the potential of [64Cu]CuII-te1PBP as a PET radiotracer for evaluating bone healing in preclinical and clinical settings with a diagnostic value similar to that of [18F]fluoride, albeit with a longer half-life (12.7 h) than 18F (1.8 h), thereby enabling extended observation times.
Collapse
Affiliation(s)
- Lucia Pazderová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Martina Benešová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic. .,Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Jana Havlíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Margareta Vojtíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Přemysl Lubal
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Martin Walther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sabine Schulze
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Stefan Rammelt
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
15
|
Moon D, Jeon J, Choi JH. Two exodentate conformations, spectroscopic properties, and Hirshfeld surface analysis of new macrocyclic compounds with tetrabromide and tetraperchlorate. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Boltersdorf T, Gavins FNE, Long NJ. Long-lived lanthanide emission via a pH-sensitive and switchable LRET complex. Chem Sci 2021; 12:8740-8745. [PMID: 34257873 PMCID: PMC8246121 DOI: 10.1039/d1sc01503f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022] Open
Abstract
Lanthanide-based luminescence resonance energy transfer (LRET) can be used as a tool to enhance lanthanide emission for time-resolved cellular imaging applications. By shortening lanthanide emission lifetimes whilst providing an alternative radiative pathway to the formally forbidden, weak lanthanide-only emission, the photon flux of such systems is increased. With this aim in mind, we investigated energy transfer in differently spaced donor–acceptor terbium–rhodamine pairs with the LRET “on” (low pH) and LRET “off” (high pH). Results informed the design, preparation and characterisation of a compound containing terbium, a spectrally-matched pH-responsive fluorophore and a receptor-targeting group. By combining these elements, we observed switchable LRET, where the targeting group sensitises lanthanide emission, resulting in an energy transfer to the rhodamine dye with an efficiency of E = 0.53. This strategy can be used to increase lanthanide emission rates for brighter optical probes. A pH-sensitive luminescence resonance energy transfer (LRET) was explored as a method to increase photon flux in a terbium-rhodamine-receptor targeting group construct. At low pH, long-lived dye emission and shorter terbium lifetimes were observed.![]()
Collapse
Affiliation(s)
- Tamara Boltersdorf
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
| | - Felicity N E Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London Uxbridge Middlesex UB8 3PH UK
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
| |
Collapse
|
17
|
Moon D, Jeon S, Choi JH. Crystal structure, endo/exodentate conformations, spectroscopic properties, and Hirshfeld surface analysis of two constrained cyclam compounds with bromides and hydrates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Chen JL, Chen BG, Li B, Yang F, Su XC. Assessing multiple conformations of lanthanide binding tags for proteins using a sensitive 19F-reporter. Chem Commun (Camb) 2021; 57:4291-4294. [PMID: 33913982 DOI: 10.1039/d1cc00791b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Quantifying the isomeric species of metal complexes in solution is difficult. 19F NMR herein was used to determine the abundance of isomeric species and dynamic properties of lanthanide binding tags. The results suggest that 19F is an efficient reporter in assessing and screening paramagnetic tags suitable for protein NMR analysis.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ben-Guang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Feng Yang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
19
|
Pazderová L, David T, Kotek J, Kubíček V, Hermann P. Complexes of cyclen side-bridged with a methylene-bis(phosphinate) group. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Moon D, Choi JH. Crystal structure of 3,14-diethyl-2,6,13,17-tetra-azoniatri-cyclo-[16.4.0.0 7,12]docosane tetra-chloride tetra-hydrate from synchrotron X-ray data. Acta Crystallogr E Crystallogr Commun 2021; 77:213-216. [PMID: 33614157 PMCID: PMC7869539 DOI: 10.1107/s2056989021001006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/10/2022]
Abstract
The crystal structure of the hydrated title salt, C22H48N4 4+·4Cl-·4H2O (C22H48N4 = H4 L = 3,14-diethyl-2,6,13,17-tetra-azoniatri-cyclo-[16.4.0.07,12]doco-sa-ne), has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit comprises one half of the macrocyclic cation (completed by crystallographic inversion symmetry), two chloride anions and two water mol-ecules. The macrocyclic ring of the tetra-cation adopts an exodentate (3,4,3,4)-D conformation. The crystal structure is stabilized by inter-molecular hydrogen bonds involving the macrocycle N-H groups and water O-H groups as donors, and the O atoms of the water mol-ecules and chloride anions as acceptors, giving rise to a three-dimensional network.
Collapse
Affiliation(s)
- Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Jong-Ha Choi
- Department of Chemistry, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
21
|
Vaughn BA, Brown AM, Ahn SH, Robinson JR, Boros E. Is Less More? Influence of the Coordination Geometry of Copper(II) Picolinate Chelate Complexes on Metabolic Stability. Inorg Chem 2020; 59:16095-16108. [DOI: 10.1021/acs.inorgchem.0c02314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett A. Vaughn
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Alexander M. Brown
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Shin Hye Ahn
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Jerome R. Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
22
|
Liu J, Wang S, Huang T, Manchanda P, Abou-Hamad E, Nunes SP. Smart covalent organic networks (CONs) with "on-off-on" light-switchable pores for molecular separation. SCIENCE ADVANCES 2020; 6:eabb3188. [PMID: 32875111 PMCID: PMC7438094 DOI: 10.1126/sciadv.abb3188] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/09/2020] [Indexed: 05/20/2023]
Abstract
Development of the new-generation membranes for tunable molecular separation requires materials with abilities beyond strict separation. Stimuli response could remotely adjust the membrane selectivity. Azobenzene derivatives can be photo-switched between trans and cis isomers under ultraviolet or visible light. Here, the azobenzenes were implanted as light switches to bridge the flexible cyclen building blocks. The smart covalent organic network membranes fold and unfold as origami that can be photo-switched between on-state (large) and off-state (small) pores. The cis membranes with off state under ultraviolet (UV) light have higher dye rejection than trans membranes with on-state channels. By controlling the trans-to-cis azobenzene isomerization via UV/Vis light, the pore size can be remotely controlled at the molecular level and the solvent permeance and dye rejection can be dynamically tuned.
Collapse
Affiliation(s)
- Jiangtao Liu
- Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shaofei Wang
- Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tiefan Huang
- Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Priyanka Manchanda
- Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Edy Abou-Hamad
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Suzana P. Nunes
- Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
23
|
Moon D, Choi JH. Crystal structure of 1,4,8,11-tetra-methyl-1,4,8,11-tetra-azonia-cyclo-tetra-decane bis-[chlorido-chromate(VI)] dichloride from synchrotron X-ray data. Acta Crystallogr E Crystallogr Commun 2020; 76:523-526. [PMID: 32280497 PMCID: PMC7133034 DOI: 10.1107/s2056989020003059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 11/29/2022]
Abstract
The crystal structure of title compound, (C14H36N4)[CrO3Cl]2Cl2, has been determined by synchrotron radiation X-ray crystallography at 220 K. The macrocyclic cation lies across a crystallographic inversion center and hence the asymmetric unit contains one half of the organic cation, one chloro-chromate anion and one chloride anion. Both the Cl- anion and chloro-chromate Cl atom are involved in hydrogen bonding. In the crystal, hydrogen bonds involving the 1,4,8,11-tetra-methyl-1,4,8,11-tetra-azonia-cyclo-tetra-decane (TMC) N-H groups and C-H groups as donor groups and three O atoms of the chloro-chromate and the chloride anion as acceptor groups link the components, giving rise to a three-dimensional network.
Collapse
Affiliation(s)
- Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Jong-Ha Choi
- Department of Chemistry, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
24
|
Urbanovský P, Kotek J, Císařová I, Hermann P. The solid-state structures and ligand cavity evaluation of lanthanide(iii) complexes of a DOTA analogue with a (dibenzylamino)methylphosphinate pendant arm. Dalton Trans 2020; 49:1555-1569. [PMID: 31932828 DOI: 10.1039/c9dt04056k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of lanthanide(iii) complexes of a monophosphinate analogue of H4dota, 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic-10-methyl[(N,N-dibenzylamino)methyl]phosphinic acid (H4do3apDBAm = H4L1), were prepared and their solid-state structures were studied using single-crystal X-ray diffraction. In all structures, the ligand anion was octadentately coordinated to the Ln(iii) or Sc(iii) ions similarly to other DOTA-like ligands, i.e. forming parallel N4- and O4-planes. The lighter lanthanide(iii) complexes (till dysprosium) were nonacoordinated in the twisted square-antiprismatic (TSA) configuration with the apical coordination of water molecules or oxygen atoms from the neighbouring complex unit. The heavier lanthanide(iii) complexes (from terbium) were found as the "anhydrous" octacoordinated twisted square-antiprismatic (TSA') isomer. For the terbium(iii) ion, both forms were structurally characterized. The structural data of the Ln(iii)-H4L1 complexes and complexes of several related DOTA-like ligands were analysed. It clearly showed that the structural parameters for the square-antiprismatic (SA) isomers were clustered in a small range while those for the TSA/TSA' isomers were significantly more spread. The analysis also gave useful information about the influence of various pendant arms on the structure of the complexes of the DOTA-like ligands. The twist angle (torsion) of the chelate ring containing a larger phosphorus atom was similar to those of the remaining three acetate pendants. It led to a larger separation of the N4O4 planes and to smaller trans-O-Ln-O angles than the parameters found in the complexes of H4dota and its tetraamide derivatives dotam(R). It resulted in a relatively long bond between the metal ion and the coordinated water molecule. It led, together with the negative charge of the oxygen atoms forming the O4-plane, to an extremely fast water exchange rate reported for the Gd(iii)-H4L1 complex and, generally, to a fast water exchange of Gd(iii) complexes with the monophosphorus acid analogues of H4dota, H5do3ap/H4do3apR.
Collapse
Affiliation(s)
- Peter Urbanovský
- Universita Karlova (Charles University), Department of Inorganic Chemistry, Hlavova 2030, 128 43 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
25
|
Perinelli M, Guerrini R, Albanese V, Marchetti N, Bellotti D, Gentili S, Tegoni M, Remelli M. Cu(II) coordination to His-containing linear peptides and related branched ones: Equalities and diversities. J Inorg Biochem 2020; 205:110980. [PMID: 31931375 DOI: 10.1016/j.jinorgbio.2019.110980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 01/20/2023]
Abstract
The two branched peptides (AAHAWG)4-PWT2 and (HAWG)4-PWT2 where synthesized by mounting linear peptides on a cyclam-based scaffold (PWT2), provided with four maleimide chains, through a thio-Michael reaction. The purpose of this study was primarily to verify if the two branched ligands had a Cu(II) coordination behavior reproducing that of the single-chain peptides, namely AAHAWG-NH2, which bears an Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) Motif, and HAWG-NH2, which presents a His residue as the N-terminal amino acid, in a wide pH range. The study of Cu(II) binding was performed by potentiometric, spectroscopic (UV-vis absorption, CD, fluorescence) and ESI-MS techniques. ATCUN-type ligands ((AAHAWG)4-PWT2 and AAHAWG-NH2) were confirmed to bind one Cu(II) per peptide fragment at both pH 7.4 and pH 9.0, with a [NH2, 2N-, NIm] coordination mode. On the other hand, the ligand HAWG-NH2 forms a [CuL2]2+ species at neutral pH, while, at pH 9, the formation of 1:2 Cu(II):ligand adducts is prevented by amidic nitrogen deprotonation and coordination, to give rise solely to 1:1 species. Conversely, Cu(II) binding to (HAWG)4-PWT2 resulted in the formation of 1:2 copper:peptide chain also at pH 9: hence, through the latter branched peptide we obtained, at alkaline pH, the stabilization of a specific Cu(II) coordination mode which results unachievable using the corresponding single-chain peptide. This behavior could be explained in terms of high local peptide concentration on the basis of the speciation of the Cu(II)/single-chain peptide systems.
Collapse
Affiliation(s)
- Monica Perinelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Remo Guerrini
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Valentina Albanese
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Nicola Marchetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Denise Bellotti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Silvia Gentili
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Matteo Tegoni
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Maurizio Remelli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via Luigi Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
26
|
Boltersdorf T, Ansari J, Senchenkova EY, Jiang L, White AJP, Coogan M, Gavins FNE, Long NJ. Development, characterisation and in vitro evaluation of lanthanide-based FPR2/ALX-targeted imaging probes. Dalton Trans 2019; 48:16764-16775. [PMID: 31674608 DOI: 10.1039/c9dt03520f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report the design, preparation and characterisation of three small-molecule, Formyl Peptide Receptor (FPR)-targeted lanthanide complexes (Tb·14, Eu·14 and Gd·14). Long-lived, metal-based emission was observed from the terbium complex (τH2O = 1.9 ms), whereas only negligible lanthanide signals were detected in the europium analogue. Ligand-centred emission was investigated using Gd·14 at room temperature and 77 K, leading to the postulation that metal emission may be sensitised via a ligand-based charge transfer state of the targeting Quin C1 unit. Comparatively high longitudinal relaxivity values (r1) for octadentate metal complexes of Gd·14 were determined (6.9 mM-1 s-1 at 400 MHz and 294 K), which could be a result of a relative increase in twisted square antiprism (TSAP) isomer prevalence compared to typical DOTA constructs (as evidenced by NMR spectroscopy). In vitro validation of concentration responses of Tb·14via three key neutrophil functional assays demonstrated that the inflammatory responses of neutrophils (i.e. chemotaxis, transmigration and granular release) remained unchanged in the presence of specific concentrations of the compound. Using a time-resolved microscopy set-up we were able to observe binding of the Tb·14 probe to stimulated human neutrophils around the cell periphery, while in the same experiment with un-activated neutrophils, no metal-based signals were detected. Our results demonstrate the utility of Tb·14 for time-resolved microscopy with lifetimes several orders of magnitude longer than autofluorescent signals and a preferential uptake in stimulated neutrophils.
Collapse
Affiliation(s)
- Tamara Boltersdorf
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Grenier L, Beyler M, Platas‐Iglesias C, Closson T, Gómez DE, Seferos DS, Liu P, Ornatsky OI, Baranov V, Tripier R. Highly Stable and Inert Complexation of Indium(III) by Reinforced Cyclam Dipicolinate and a Bifunctional Derivative for Bead Encoding in Mass Cytometry. Chemistry 2019; 25:15387-15400. [DOI: 10.1002/chem.201903969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Laura Grenier
- UMR CNRS-UBO 6521 CEMCAUniv. Brest 6 avenue V. Le Gorgeu 29200 Brest France
| | - Maryline Beyler
- UMR CNRS-UBO 6521 CEMCAUniv. Brest 6 avenue V. Le Gorgeu 29200 Brest France
| | - Carlos Platas‐Iglesias
- Departamento de QuímicaFacultade de Ciencias &Centro de Investigaciones Científicas AvanzadasUniversidade da Coruña 15071 A Coruña Spain
| | - Taunia Closson
- Fluidigm Canada Inc. 1380 Rodick Street, Markham Ontario L3R 4G5 Canada
| | - David Esteban Gómez
- Departamento de QuímicaFacultade de Ciencias &Centro de Investigaciones Científicas AvanzadasUniversidade da Coruña 15071 A Coruña Spain
| | - Dwight S. Seferos
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Canada
| | - Peng Liu
- Fluidigm Canada Inc. 1380 Rodick Street, Markham Ontario L3R 4G5 Canada
| | - Olga I. Ornatsky
- Fluidigm Canada Inc. 1380 Rodick Street, Markham Ontario L3R 4G5 Canada
| | - Vladimir Baranov
- Fluidigm Canada Inc. 1380 Rodick Street, Markham Ontario L3R 4G5 Canada
| | - Raphaël Tripier
- UMR CNRS-UBO 6521 CEMCAUniv. Brest 6 avenue V. Le Gorgeu 29200 Brest France
| |
Collapse
|
28
|
Bárta J, Hermann P, Kotek J. Coordination Behavior of 1,4-Disubstituted Cyclen Endowed with Phosphonate, Phosphonate Monoethylester, and H-Phosphinate Pendant Arms. Molecules 2019; 24:E3324. [PMID: 31547345 PMCID: PMC6767212 DOI: 10.3390/molecules24183324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 11/17/2022] Open
Abstract
Three 1,4,7,10-tetraazacyclododecane-based ligands disubstituted in 1,4-positions with phosphonic acid, phosphonate monoethyl-ester, and H-phosphinic acid pendant arms, 1,4-H4do2p, 1,4-H2do2pOEt, and 1,4-H2Bn2do2pH, were synthesized and their coordination to selected metal ions, Mg(II), Ca(II), Mn(II), Zn(II), Cu(II), Eu(III), Gd(III), and Tb(III), was investigated. The solid-state structure of the phosphonate ligand, 1,4-H4do2p, was determined by single-crystal X-ray diffraction. Protonation constants of the ligands and stability constants of their complexes were obtained by potentiometry, and their values are comparable to those of previously studied analogous 1,7-disubstitued cyclen derivatives. The Gd(III) complex of 1,4-H4do2p is ~1 order of magnitude more stable than the Gd(III) complex of the 1,7-analogue, probably due to the disubstituted ethylenediamine-like structural motif in 1,4-H4do2p enabling more efficient wrapping of the metal ion. Stability of Gd(III)-1,4-H2do2pOEt and Gd(III)-H2Bn2do2pH complexes is low and the constants cannot be determined due to precipitation of the metal hydroxide. Protonations of the Cu(II), Zn(II), and Gd(III) complexes probably takes place on the coordinated phosphonate groups. Complexes of Mn(II) and alkali-earth metal ions are significantly less stable and are not formed in acidic solutions. Potential presence of water molecule(s) in the coordination spheres of the Mn(II) and Ln(III) complexes was studied by variable-temperature NMR experiments. The Mn(II) complexes of the ligands are not hydrated. The Gd(III)-1,4-H4do2p complex undergoes hydration equilibrium between mono- and bis-hydrated species. Presence of two-species equilibrium was confirmed by UV-Vis spectroscopy of the Eu(III)-1,4-H4do2p complex and hydration states were also determined by luminescence measurements of the Eu(III)/Tb(III)-1,4-H4do2p complexes.
Collapse
Affiliation(s)
- Jiří Bárta
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
29
|
Miao Q, Liu WM, Kock T, Blok A, Timmer M, Overhand M, Ubbink M. A Double-Armed, Hydrophilic Transition Metal Complex as a Paramagnetic NMR Probe. Angew Chem Int Ed Engl 2019; 58:13093-13100. [PMID: 31314159 PMCID: PMC6771572 DOI: 10.1002/anie.201906049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/15/2019] [Indexed: 01/20/2023]
Abstract
Synthetic metal complexes can be used as paramagnetic probes for the study of proteins and protein complexes. Herein, two transition metal NMR probes (TraNPs) are reported. TraNPs are attached through two arms to a protein to generate a pseudocontact shift (PCS) using cobalt(II), or paramagnetic relaxation enhancement (PRE) with manganese(II). The PCS analysis of TraNPs attached to three different proteins shows that the size of the anisotropic component of the magnetic susceptibility depends on the probe surroundings at the surface of the protein, contrary to what is observed for lanthanoid‐based probes. The observed PCS are relatively small, making cobalt‐based probes suitable for localized studies, such as of an active site. The obtained PREs are stronger than those obtained with nitroxide spin labels and the possibility to generate both PCS and PRE offers advantages. The properties of TraNPs in comparison with other cobalt‐based probes are discussed.
Collapse
Affiliation(s)
- Qing Miao
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New, Taipei City, 24205, Taiwan
| | - Thomas Kock
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Anneloes Blok
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Monika Timmer
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mark Overhand
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
30
|
Miao Q, Liu W, Kock T, Blok A, Timmer M, Overhand M, Ubbink M. A Double‐Armed, Hydrophilic Transition Metal Complex as a Paramagnetic NMR Probe. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing Miao
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Wei‐Min Liu
- Department of Chemistry Fu Jen Catholic University No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 24205 Taiwan
| | - Thomas Kock
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Anneloes Blok
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Monika Timmer
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Mark Overhand
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
31
|
Urbanovský P, Kotek J, Carniato F, Botta M, Hermann P. Lanthanide Complexes of DO3A-(Dibenzylamino)methylphosphinate: Effect of Protonation of the Dibenzylamino Group on the Water-Exchange Rate and the Binding of Human Serum Albumin. Inorg Chem 2019; 58:5196-5210. [PMID: 30942072 DOI: 10.1021/acs.inorgchem.9b00267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protonation of a distant, noncoordinated group of metal-based magnetic resonance imaging contrast agents potentially changes their relaxivity. The effect of a positive charge of the drug on the human serum albumin (HSA)-drug interaction remains poorly understood as well. Accordingly, a (dibenzylamino)methylphosphinate derivative of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was efficiently synthesized using pyridine as the solvent for a Mannich-type reaction of tBu3DO3A, formaldehyde, and Bn2NCH2PO2H2 ethyl ester. The ligand protonation and metal ion (Gd3+, Cu2+, and Zn2+) stability constants were similar to those of the parent DOTA, whereas the basicity of the side-chain amino group of the complexes (log KA = 5.8) was 1 order of magnitude lower than that of the free ligand (log KA = 6.8). The presence of one bound water molecule in both deprotonated and protonated forms of the gadolinium(III) complex was deduced from the solid-state X-ray diffraction data [gadolinium(III) and dysprosium(III)], from the square antiprism/twisted square antiprism (SA/TSA) isomer ratio along the lanthanide series, from the fluorescence data of the europium(III) complex, and from the 17O NMR measurements of the dysprosium(III) and gadolinium(III) complexes. In the gadolinium(III) complex with the deprotonated amino group, water exchange is extremely fast (τM = 6 ns at 25 °C), most likely thanks to the high abundance of the TSA isomer and to the presence of a proximate protonable group, which assists the water-exchange process. The interaction between lanthanide(III) complexes and HSA is pH-dependent, and the deprotonated form is bound much more efficaciously (∼13% and ∼70% bound complex at pH = 4 and 7, respectively). The relaxivities of the complex and its HSA adduct are also pH-dependent, and the latter is approximately 2-3 times increased at pH = 4-7. The relaxivity for the supramolecular HSA-complex adduct ( r1b) is as high as 52 mM-1 s-1 at neutral pH (at 20 MHz and 25 °C). The findings of this study stand as a proof-of-concept, showing the ability to manipulate an albumin-drug interaction, and thus the blood pool residence time of the drug, by introducing a positive charge in a side-chain amino group.
Collapse
Affiliation(s)
- Peter Urbanovský
- Department of Inorganic Chemistry , Universita Karlova (Charles University) , Hlavova 2030 , 12843 Prague 2 , Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry , Universita Karlova (Charles University) , Hlavova 2030 , 12843 Prague 2 , Czech Republic
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Petr Hermann
- Department of Inorganic Chemistry , Universita Karlova (Charles University) , Hlavova 2030 , 12843 Prague 2 , Czech Republic
| |
Collapse
|
32
|
Vaddypally S, Tomlinson W, O’Sullivan OT, Ding R, Van Vliet MM, Wayland BB, Hooper JP, Zdilla MJ. Activation of C–H, N–H, and O–H Bonds via Proton-Coupled Electron Transfer to a Mn(III) Complex of Redox-Noninnocent Octaazacyclotetradecadiene, a Catenated-Nitrogen Macrocyclic Ligand. J Am Chem Soc 2019; 141:5699-5709. [DOI: 10.1021/jacs.8b10250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shivaiah Vaddypally
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Warren Tomlinson
- Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943, United States
| | - Owen T. O’Sullivan
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Ran Ding
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Megan M. Van Vliet
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Bradford B. Wayland
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Joseph P. Hooper
- Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943, United States
| | - Michael J. Zdilla
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
33
|
Tong YB, Tian ZF, Duan HB, Zhu ZP, Hong TY, Zhao SP, Yang JK. Dielectric Relaxation and Beyond Limiting Behavior of Alternating-Current Conductivity in a Supermolecular Ferroelectric. Chem Asian J 2019; 14:582-591. [PMID: 30650249 DOI: 10.1002/asia.201801853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/08/2019] [Indexed: 11/10/2022]
Abstract
A cyclen-based hybrid supermolecule crystal, [(FeCl2 )(cyclen)]Cl (1), where cyclen=1,4,7,10-tetraazacyclododecane, was prepared using a liquid-liquid diffusion approach. The variable crystal structures exhibit that compound 1 belongs to an orthorhombic crystal system, Pna21 space group (point group C2V ) in the temperature range of 150-400 K. This hybrid supermolecule shows a dielectric relaxation behavior around room temperature, and the ferroelectric nature of 1 has been directly verified by hysteresis measurements. In addition, the AC (alternating current) conductivity study reveals that the 1 displays a beyond limiting behavior. These interesting findings are for the first time reported in the field of supermolecular ferroelectrics. This study may open a new way to construct supermolecular ferroelectrics and give insights into their conductor behavior.
Collapse
Affiliation(s)
- Yuan-Bo Tong
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zheng-Fang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hu Bei Province, 438000, P.R. China
| | - Hai-Bao Duan
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, P.R. China
| | - Zhong-Peng Zhu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Yu Hong
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shun-Ping Zhao
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246133, P.R. China
| | - Jing-Kui Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
34
|
Narayana PV, Seelam N, Prasanna B. An Efficient Synthesis of the bis-Tetraazacyclodecane JM3100 Under PTC Conditions. ORG PREP PROCED INT 2019. [DOI: 10.1080/00304948.2018.1537749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- P. Venkata Narayana
- Department of Chemistry, Chaitanya Postgraduate College (Autonomous), Kishanpura, Hanamkonda, Warangal, Telangana State, 506 001 India
- Department of Chemistry, Koneru Lakshmaiah University, Guntur, Andhra Pradesh, India
| | - Nareshvarma Seelam
- Department of Chemistry, Koneru Lakshmaiah University, Guntur, Andhra Pradesh, India
| | - Bethanamudi Prasanna
- Department of Chemistry, Chaitanya Postgraduate College (Autonomous), Kishanpura, Hanamkonda, Warangal, Telangana State, 506 001 India
| |
Collapse
|
35
|
Pujales-Paradela R, Savić T, Brandariz I, Pérez-Lourido P, Angelovski G, Esteban-Gómez D, Platas-Iglesias C. Reinforced Ni(ii)-cyclam derivatives as dual1H/19F MRI probes. Chem Commun (Camb) 2019; 55:4115-4118. [DOI: 10.1039/c9cc01204d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extremely inert paramagnetic nickel(ii) complexes based on a cross-bridged cyclam platform present responses at the1H (CEST) and19F frequencies.
Collapse
Affiliation(s)
- Rosa Pujales-Paradela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Tanja Savić
- MR Neuroimaging Agents
- Max Planck Institute for Biological Cybernetics
- Tuebingen
- Germany
| | - Isabel Brandariz
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Paulo Pérez-Lourido
- Departamento de Química Inorgánica
- Facultad de Ciencias, Universidade de Vigo
- As Lagoas
- Marcosende
- 36310 Pontevedra
| | - Goran Angelovski
- MR Neuroimaging Agents
- Max Planck Institute for Biological Cybernetics
- Tuebingen
- Germany
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| |
Collapse
|
36
|
Zhong DC, Lu TB. Molecular recognition and activation by polyaza macrocyclic compounds based on host-guest interactions. Chem Commun (Camb) 2018; 52:10322-37. [PMID: 27381748 DOI: 10.1039/c6cc03660k] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and syntheses of supramolecular hosts for the recognition and activation of molecules and anions are one of the most active research fields in supramolecular chemistry, in which polyaza macrocyclic ligands and their complexes have drawn particular attention due to their strong host-guest interactions. This review mainly focuses on the recent progress in the recognition of molecules and anions by polyaza macrocyclic compounds including polyaza macrocycles, polyaza macrobicycles and polyaza macrotricycles, as well as the activation of molecules by polyaza macrocyclic ligands and their metal complexes.
Collapse
Affiliation(s)
- Di-Chang Zhong
- Institute of New Energy Materials & Low Carbon Technology, School of Material Science & Engineering, Tianjin University of Technology, Tianjin 300384, China. and Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Tong-Bu Lu
- Institute of New Energy Materials & Low Carbon Technology, School of Material Science & Engineering, Tianjin University of Technology, Tianjin 300384, China. and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
37
|
Procházková S, Kubíček V, Kotek J, Vágner A, Notni J, Hermann P. Lanthanide(iii) complexes of monophosphinate/monophosphonate DOTA-analogues: effects of the substituents on the formation rate and radiolabelling yield. Dalton Trans 2018; 47:13006-13015. [DOI: 10.1039/c8dt02608d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly acidic additional coordinating groups in the pendant arms increase the radiolabelling yield of DOTA-like complexes.
Collapse
Affiliation(s)
- Soňa Procházková
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Adrienn Vágner
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Debrecen
- Hungary
| | - Johannes Notni
- Lehrstuhl für Pharmazeutische Radiochemie
- Technische Universität München
- D-85748 Garching
- Germany
| | - Petr Hermann
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| |
Collapse
|
38
|
Paúrová M, David T, Císařová I, Lubal P, Hermann P, Kotek J. Optimization of the selectivity and rate of copper radioisotope complexation: formation and dissociation kinetic studies of 1,4,8-trimethylcyclam-based ligands with different coordinating pendant arms. NEW J CHEM 2018. [DOI: 10.1039/c8nj00419f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Influence of coordinating pendant arm character on selectivity and rate of copper(ii) complexation was investigated to optimize ligands for radiomedicinal use.
Collapse
Affiliation(s)
- Monika Paúrová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Tomáš David
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Přemysl Lubal
- Department of Chemistry
- Faculty of Science
- Masaryk University
- Brno
- Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- Czech Republic
| |
Collapse
|
39
|
Ben Mefteh W, Chevalier Y, Bala C, Jaffrezic-Renault N. Voltammetric Detection of Copper Ions on a Gold Electrode Modified with a N-methyl-2-naphthyl-cyclam film. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1368531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wahid Ben Mefteh
- Institute of Analytical Sciences, UMR CNRS 5280, University of Lyon, Villeurbanne, France
- Department of Analytical Chemistry, University of Bucharest, Bucharest, Romania
| | - Yves Chevalier
- Laboratory of Automatics and of Process Engineering, UMR CNRS 5007, University of Lyon, Villeurbanne, France
| | - Camelia Bala
- Department of Analytical Chemistry, University of Bucharest, Bucharest, Romania
| | | |
Collapse
|
40
|
1,8-bis(2-hydroxy-3,5-di-tert-butylbenzyl)-4,11-dibenzyl-1,4,8,11-tetraazacyclotetradecane. MOLBANK 2017. [DOI: 10.3390/m963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
41
|
Audras M, Berthon L, Berthon C, Guillaumont D, Dumas T, Illy MC, Martin N, Zilbermann I, Moiseev Y, Ben-Eliyahu Y, Bettelheim A, Cammelli S, Hennig C, Moisy P. Structural Characterization of Am(III)- and Pu(III)-DOTA Complexes. Inorg Chem 2017; 56:12248-12259. [DOI: 10.1021/acs.inorgchem.7b01666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthieu Audras
- Nuclear Energy Division,
Research Department on Mining and Fuel Recycling Processes, CEA, BP17171 F-30207 Bagnols-sur-Cèze, France
| | - Laurence Berthon
- Nuclear Energy Division,
Research Department on Mining and Fuel Recycling Processes, CEA, BP17171 F-30207 Bagnols-sur-Cèze, France
| | - Claude Berthon
- Nuclear Energy Division,
Research Department on Mining and Fuel Recycling Processes, CEA, BP17171 F-30207 Bagnols-sur-Cèze, France
| | - Dominique Guillaumont
- Nuclear Energy Division,
Research Department on Mining and Fuel Recycling Processes, CEA, BP17171 F-30207 Bagnols-sur-Cèze, France
| | - Thomas Dumas
- Nuclear Energy Division,
Research Department on Mining and Fuel Recycling Processes, CEA, BP17171 F-30207 Bagnols-sur-Cèze, France
| | - Marie-Claire Illy
- Nuclear Energy Division,
Research Department on Mining and Fuel Recycling Processes, CEA, BP17171 F-30207 Bagnols-sur-Cèze, France
| | - Nicolas Martin
- Nuclear Energy Division,
Research Department on Mining and Fuel Recycling Processes, CEA, BP17171 F-30207 Bagnols-sur-Cèze, France
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre Negev, IL-84190 Beer Sheva, Israel
| | - Yulia Moiseev
- Chemistry Department, Nuclear Research Centre Negev, IL-84190 Beer Sheva, Israel
| | | | - Armand Bettelheim
- Chemical Engineering
Department, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sebastiano Cammelli
- Synchrotron SOLEIL, L’Orme des Merisiers, BP
48, Saint Aubin, Gif sur Yvette 91192, France
| | - Christoph Hennig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstr. 400, D-01328 Dresden, Germany
| | - Philippe Moisy
- Nuclear Energy Division,
Research Department on Mining and Fuel Recycling Processes, CEA, BP17171 F-30207 Bagnols-sur-Cèze, France
| |
Collapse
|
42
|
Litecká M, Gyepes R, Vargová Z, Vilková M, Almáši M, Walko M, Imrich J. Toxic metal complexes of macrocyclic cyclen molecule – synthesis, structure and complexing properties. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1305493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Litecká
- Faculty of Science, Department of Inorganic Chemistry, P. J. Šafárik University, Košice, Slovak Republic
| | - R. Gyepes
- Faculty of Science, Department of Inorganic Chemistry, Charles University, Praha, Czech Republik
- Faculty of Education, Department of Chemistry, J. Selye University, Komárno, Slovak Republic
| | - Z. Vargová
- Faculty of Science, Department of Inorganic Chemistry, P. J. Šafárik University, Košice, Slovak Republic
| | - M. Vilková
- NMR Laboratory, Faculty of Science, Department of Organic Chemistry, P.J.Šafárik University, Košice, Slovak Republic
| | - M. Almáši
- Faculty of Science, Department of Inorganic Chemistry, P. J. Šafárik University, Košice, Slovak Republic
| | - M. Walko
- Faculty of Science, Department of Organic Chemistry, P.J. Šafárik University, Košice, Slovak Republic
| | - J. Imrich
- NMR Laboratory, Faculty of Science, Department of Organic Chemistry, P.J.Šafárik University, Košice, Slovak Republic
| |
Collapse
|
43
|
Moon D, Choi JH. Crystal structure of 9,20-dimethyl-1,8,12,19-tetra-aza-tetra-cyclo-[17.3.1.0 2,7.0 13,18]tricosane dihydrate from synchrotron X-ray data. Acta Crystallogr E Crystallogr Commun 2017; 73:387-389. [PMID: 28316816 PMCID: PMC5347061 DOI: 10.1107/s2056989017002444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 11/10/2022]
Abstract
The structure of the title compound, C21H40N4·2H2O, has been determined from synchrotron X-ray radiation data. The asymmetric unit comprises one 12-membered macropolycycle and two lattice water mol-ecules. The macropolycycle contains two cyclo-hexane rings and one 1,3-di-aza-cyclo-hexane ring, all in chair conformations. The C-N and C-C bond lengths are in the ranges 1.4526 (16)-1.4786 (17) and 1.517 (2)-1.5414 (17) Å, respectively. One intra-molecular N-H⋯N hydrogen bond helps to stabilize the mol-ecular conformation while medium-strength inter-molecular N-H⋯O, O-H⋯N and O-H⋯O hydrogen bonds involving the lattice water mol-ecules connect the components into a three-dimensional network.
Collapse
Affiliation(s)
- Dohyun Moon
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Jong-Ha Choi
- Department of Chemistry, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
44
|
Chen ML, Zhou ZH. Structural diversity of 1,3-propylenediaminetetraacetato metal complexes: From coordination monomers to coordination polymers and MOF materials. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
A quantum chemistry evaluation of the stereochemical activity of the lone pair in PbII complexes with sequestering ligands. J Mol Model 2017; 23:24. [DOI: 10.1007/s00894-016-3190-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022]
|
46
|
Emerson AJ, Hawes CS, Knowles GP, Chaffee AL, Batten SR, Turner DR. Coordination polymers from a flexible alkyldiamine-derived ligand. CrystEngComm 2017. [DOI: 10.1039/c7ce01133d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A traditionally good chelating motif, propanediamine, has been incorporated into a robust coordination framework with vacant amine sites.
Collapse
|
47
|
Prakash S, Hazari PP, Meena VK, Jaswal A, Khurana H, Kukreti S, Mishra AK. Biotinidase Resistant 68Gallium-Radioligand Based on Biotin/Avidin Interaction for Pretargeting: Synthesis and Preclinical Evaluation. Bioconjug Chem 2016; 27:2780-2790. [PMID: 27723977 DOI: 10.1021/acs.bioconjchem.6b00576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new macrocyclic system 2,2'-(12-amino-11,13-dioxo-1,4,7,10-tetraazacyclotridecane-4,7-diyl)diacetic acid (ATRIDAT) was designed for coordinating metals in +2 and +3 oxidation states particularly 68Ga(III), for PET imaging. ATRIDAT was conjugated to d-biotin for pretargeting via biotin-avidin interaction. This model provides high tumor targeting efficiency and stability to biotinidase activity leading to modest signal amplification at the tumor site. Cyclization of triethylenetetramine with protected diethylamino malonate resulted in the formation of 13 membered diamide ring. d-Biotin was then anchored on the pendant amine rendering α-methyne carbon to the biotinamide bond which blocks the biotinidase enzyme activity. Biotinidase stability assay showed remarkable stability toward the action of biotinidase with ∼95% remaining intact after treatment following 4 h. Binding affinity experiments such as HABA assay, competitive displacement studies with d-biotin and CD showed high binding affinity of the molecule with avidin in nanomolar range. Biotin conjugate was successfully radiolabeled with 68Ga(III) with radiolabeling efficiency of ∼70% and then purified to get 99.9% radiochemical yield. IC50 of the compound was found to be 2.36 mM in HEK cell line and 0.82 mM in A549 as assessed in MTT assay. In biodistribution studies, the major route of excretion was found to be renal. Significant uptake of 4.15 ± 0.35% was observed in tumor in the avidin pretreated mouse at 1 h. μPET images also showed a high tumor to muscle ratio of 26.8 and tumor to kidney ratio of 1.74 at 1 h post-injection after avidin treatment.
Collapse
Affiliation(s)
- Surbhi Prakash
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India.,Department of Chemistry, University of Delhi , Delhi-110007, India
| | - Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Virendra Kumar Meena
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Ambika Jaswal
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Harleen Khurana
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Shrikant Kukreti
- Department of Chemistry, University of Delhi , Delhi-110007, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| |
Collapse
|
48
|
Amendola V, Bergamaschi G, Dacarro G, Denat F, Boschetti F, Nikolantonaki M, Gougeon R, D'Alessio G, Viaux A, Bertheau L, Guyot S, Sok N, Pallavicini P. An Off–On–Off Fluorescent Sensor for pH Windows Based on the 13aneN4–Zn
2+
System. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Valeria Amendola
- Department of ChemistryUniversità di PaviaViale Taramelli12‐27100PaviaItaly
| | - Greta Bergamaschi
- Department of ChemistryUniversità di PaviaViale Taramelli12‐27100PaviaItaly
| | - Giacomo Dacarro
- Department of ChemistryUniversità di PaviaViale Taramelli12‐27100PaviaItaly
| | - Franck Denat
- ICMUBUMR CNRS 6302Université de Bourgogne Franche‐Comté9 avenue Alain Savary21000DijonFrance
| | | | - Maria Nikolantonaki
- UMR PAM A 02.102 Procédés Alimentaires et MicrobiologiquesUniversité de Bourgogne Franche‐Comté/AgroSup Dijon1 esplanade Erasme21000DijonFrance
| | - Regis Gougeon
- UMR PAM A 02.102 Procédés Alimentaires et MicrobiologiquesUniversité de Bourgogne Franche‐Comté/AgroSup Dijon1 esplanade Erasme21000DijonFrance
| | - Giulia D'Alessio
- UMR PAM A 02.102 Procédés Alimentaires et MicrobiologiquesUniversité de Bourgogne Franche‐Comté/AgroSup Dijon1 esplanade Erasme21000DijonFrance
| | - Anne‐Sophie Viaux
- UMR PAM A 02.102 Procédés Alimentaires et MicrobiologiquesUniversité de Bourgogne Franche‐Comté/AgroSup Dijon1 esplanade Erasme21000DijonFrance
| | - Lucie Bertheau
- UMR PAM A 02.102 Procédés Alimentaires et MicrobiologiquesUniversité de Bourgogne Franche‐Comté/AgroSup Dijon1 esplanade Erasme21000DijonFrance
| | - Stéphane Guyot
- UMR PAM A 02.102 Procédés Alimentaires et MicrobiologiquesUniversité de Bourgogne Franche‐Comté/AgroSup Dijon1 esplanade Erasme21000DijonFrance
| | - Nicolas Sok
- UMR PAM A 02.102 Procédés Alimentaires et MicrobiologiquesUniversité de Bourgogne Franche‐Comté/AgroSup Dijon1 esplanade Erasme21000DijonFrance
| | | |
Collapse
|
49
|
Strickland M, Schwieters CD, Göbl C, Opina ACL, Strub MP, Swenson RE, Vasalatiy O, Tjandra N. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes. JOURNAL OF BIOMOLECULAR NMR 2016; 66:125-139. [PMID: 27659040 PMCID: PMC6628275 DOI: 10.1007/s10858-016-0061-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/13/2016] [Indexed: 05/16/2023]
Abstract
Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide's magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using 17O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0-7.4) were not significant.
Collapse
Affiliation(s)
- Madeleine Strickland
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Charles D Schwieters
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christoph Göbl
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Ana C L Opina
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Marie-Paule Strub
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rolf E Swenson
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Olga Vasalatiy
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
50
|
Straightforward grafting approach for cyclam-functionalized screen-printed electrodes for selective Cu(II) determination. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|