1
|
Hamano S, Noguchi T, Asai Y, Ito R, Komatsu R, Sato T, Inoue A, Maruyama T, Kudo TA, Hirata Y, Shindo S, Uchida Y, Hwang GW, Matsuzawa A. Aggregability of the SQSTM1/p62-based aggresome-like induced structures determines the sensitivity to parthanatos. Cell Death Discov 2024; 10:74. [PMID: 38346947 PMCID: PMC10861449 DOI: 10.1038/s41420-024-01838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) triggers a noncanonical form of programmed cell death (PCD) called parthanatos, yet the mechanisms of its induction are not fully understood. We have recently demonstrated that the aggresome-like induced structures (ALIS) composed of the autophagy receptor SQSTM1/p62 and K48-linked polyubiquitinated proteins (p62-based ALIS) mediate parthanatos. In this study, we identified the D1 dopamine receptor agonist YM435 as a unique parthanatos inhibitor that acts as the disaggregating agent for the p62-based ALIS. We found that YM435 structurally reduces aggregability of the ALIS, and then increases its hydrophilicity and liquidity, which prevents parthanatos. Moreover, dopamine and L-DOPA, a dopamine precursor, also prevented parthanatos by reducing the aggregability of the ALIS. Together, these observations suggest that aggregability of the p62-based ALIS determines the sensitivity to parthanatos, and the pharmacological properties of YM435 that reduces the aggregability may be suitable for therapeutic drugs for parthanatos-related diseases such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuhei Hamano
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Yukino Asai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryo Ito
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryuto Komatsu
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tetsu Sato
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Aya Inoue
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomoe Maruyama
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tada-Aki Kudo
- Division of Oral Physiology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sawako Shindo
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Environmental Toxicology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasuo Uchida
- Department of Molecular Systems Pharmaceutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gi-Wook Hwang
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
2
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
3
|
Interactions between the intrarenal dopaminergic and the renin-angiotensin systems in the control of systemic arterial pressure. Clin Sci (Lond) 2022; 136:1205-1227. [PMID: 35979889 DOI: 10.1042/cs20220338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Systemic arterial hypertension is one of the leading causes of morbidity and mortality in the general population, being a risk factor for many cardiovascular diseases. Although its pathogenesis is complex and still poorly understood, some systems appear to play major roles in its development. This review aims to update the current knowledge on the interaction of the intrarenal renin-angiotensin system (RAS) and dopaminergic system in the development of hypertension, focusing on recent scientific hallmarks in the field. The intrarenal RAS, composed of several peptides and receptors, has a critical role in the regulation of blood pressure (BP) and, consequently, the development of hypertension. The RAS is divided into two main intercommunicating axes: the classical axis, composed of angiotensin-converting enzyme, angiotensin II, and angiotensin type 1 receptor, and the ACE2/angiotensin-(1-7)/Mas axis, which appears to modulate the effects of the classical axis. Dopamine and its receptors are also increasingly showing an important role in the pathogenesis of hypertension, as abnormalities in the intrarenal dopaminergic system impair the regulation of renal sodium transport, regardless of the affected dopamine receptor subtype. There are five dopamine receptors, which are divided into two major subtypes: the D1-like (D1R and D5R) and D2-like (D2R, D3R, and D4R) receptors. Mice deficient in any of the five dopamine receptor subtypes have increased BP. Intrarenal RAS and the dopaminergic system have complex interactions. The balance between both systems is essential to regulate the BP homeostasis, as alterations in the control of both can lead to hypertension.
Collapse
|
4
|
Dopamine Receptors and the Kidney: An Overview of Health- and Pharmacological-Targeted Implications. Biomolecules 2021; 11:biom11020254. [PMID: 33578816 PMCID: PMC7916607 DOI: 10.3390/biom11020254] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/21/2022] Open
Abstract
The dopaminergic system can adapt to the different physiological or pathological situations to which the kidneys are subjected throughout life, maintaining homeostasis of natriuresis, extracellular volume, and blood pressure levels. The role of renal dopamine receptor dysfunction is clearly established in the pathogenesis of essential hypertension. Its associations with other pathological states such as insulin resistance and redox balance have also been associated with dysfunction of the dopaminergic system. The different dopamine receptors (D1-D5) show a protective effect against hypertension and kidney disorders. It is essential to take into account the various interactions of the dopaminergic system with other elements, such as adrenergic receptors. The approach to therapeutic strategies for essential hypertension must go through the blocking of those elements that lead to renal vasoconstriction or the restoration of the normal functioning of dopamine receptors. D1-like receptors are fundamental in this role, and new therapeutic efforts should be directed to the restoration of their functioning in many patients. More studies will be needed to allow the development of drugs that can be targeted to renal dopamine receptors in the treatment of hypertension.
Collapse
|
5
|
Abstract
Dopamine is an important regulator of systemic blood pressure via multiple mechanisms. It affects fluid and electrolyte balance by its actions on renal hemodynamics and epithelial ion and water transport and by regulation of hormones and humoral agents. The kidney synthesizes dopamine from circulating or filtered L-DOPA independently from innervation. The major determinants of the renal tubular synthesis/release of dopamine are probably sodium intake and intracellular sodium. Dopamine exerts its actions via two families of cell surface receptors, D1-like receptors comprising D1R and D5R, and D2-like receptors comprising D2R, D3R, and D4R, and by interactions with other G protein-coupled receptors. D1-like receptors are linked to vasodilation, while the effect of D2-like receptors on the vasculature is variable and probably dependent upon the state of nerve activity. Dopamine secreted into the tubular lumen acts mainly via D1-like receptors in an autocrine/paracrine manner to regulate ion transport in the proximal and distal nephron. These effects are mediated mainly by tubular mechanisms and augmented by hemodynamic mechanisms. The natriuretic effect of D1-like receptors is caused by inhibition of ion transport in the apical and basolateral membranes. D2-like receptors participate in the inhibition of ion transport during conditions of euvolemia and moderate volume expansion. Dopamine also controls ion transport and blood pressure by regulating the production of reactive oxygen species and the inflammatory response. Essential hypertension is associated with abnormalities in dopamine production, receptor number, and/or posttranslational modification.
Collapse
Affiliation(s)
- Ines Armando
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Van Anthony M. Villar
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Pedro A. Jose
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| |
Collapse
|
6
|
|
7
|
Yatsu T, Aoki M, Tanaka A. Effect of zelandopam, a dopamine D1-like receptor agonist, in puromycin aminonucleoside nephrosis rats. Eur J Pharmacol 2005; 510:121-6. [PMID: 15740732 DOI: 10.1016/j.ejphar.2005.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/11/2005] [Accepted: 01/13/2005] [Indexed: 01/08/2023]
Abstract
The present experiment was designed to investigate the role of peripheral dopamine D1-like receptors and to evaluate the prophylactic effect of zelandopam, a dopamine D1-like receptor agonist, on puromycin aminonucleoside (PA)-induced nephrosis in rats. Rats were divided into six groups (n=10 per group): 0.9% saline-injected rats (control); PA-injected rats (PAN); PA-injected rats treated with the selective dopamine D1-like receptor agonist zelandopam (30, 100, 300 mg/kg p.o. twice a day); PA-injected rats treated with prednisolone (1 mg/kg p.o. once a day). Nephrosis was induced in rats with a single intravenous injection of PA at a dose of 50 mg/kg. The effects of zelandopam and prednisolone in PA nephrosis rats were evaluated before injection of PA and at 7 and 14 days after injection. PA-induced nephrosis was characterized by an increase in urinary protein excretion (proteinuria) and plasma total cholesterol. Zelandopam dose-dependently attenuated the increase in proteinuria and total cholesterol. Prednisolone significantly attenuated the increase in proteinuria and total cholesterol and resulted in a significant decrease in body weight. The present study demonstrates for the first time that zelandopam, a selective dopamine D1-like receptor agonist, is effective in blunting the development of PA-induced nephrosis, and that the effects of zelandopam are dose dependent.
Collapse
Affiliation(s)
- Takeyuki Yatsu
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | |
Collapse
|
8
|
Yatsu T, Aoki M, Inagaki O. Preventive effect of zelandopam, a dopamine D1 receptor agonist, on cisplatin-induced acute renal failure in rats. Eur J Pharmacol 2003; 461:191-5. [PMID: 12586214 DOI: 10.1016/s0014-2999(03)01305-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To elucidate the role of peripheral dopamine D1 receptors in cisplatin-induced acute renal injury, effect of zelandopam (YM435, (-)-(S)-4-(3,4-dihydroxyphenyl)-7,8-dihydroxy-1,2,3,4-tetrahydroisoquinoline hydrochloride hydrate), a selective renal dopamine D1 receptor agonist, on cisplatin-induced acute renal failure in rats was studied. Rats were divided into six groups: control, cisplatin and cisplatin plus zelandopam (30, 100, 300 mg/kg p.o. twice, 75 and 15 min before cisplatin injection) or the free radical scavenger CV-3611 (2-O-octadecylascorbic acid, 10 mg/kg p.o., 75 min before cisplatin injection) treated groups. Rats received intraperitoneal injection of cisplatin at a dose of 5 mg/kg. Four days after cisplatin injection, plasma creatinine, blood urea nitrogen and body weight were measured and the kidneys were removed for histological examination. Cisplatin induced acute renal failure characterized by the increases in plasma creatinine and blood urea nitrogen with tubular damage, and decreased body weight. Zelandopam dose-dependently prevented all these changes. The free radical scavenger CV-3611 significantly attenuated a decrease in body weight and renal dysfunction without reducing tubular damage. The present study is the first demonstration for that a selective dopamine D1 receptor agonist is effective in preventing acute renal failure induced by cisplatin.
Collapse
Affiliation(s)
- Takeyuki Yatsu
- Pharmacology Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co, Ltd, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | |
Collapse
|
9
|
Abstract
During the past decade, it has become evident that dopamine plays an important role in the regulation of renal function and blood pressure. Dopamine exerts its actions via a class of cell-surface receptors coupled to G-proteins that belong to the rhodopsin family. Dopamine receptors have been classified into two families based on pharmacologic and molecular cloning studies. In mammals, two D1-like receptors that have been cloned, the D1 and D5 receptors (known as D1A and D1B, respectively, in rodents), are linked to stimulation of adenylyl cyclase. Three D2-like receptors that have been cloned (D2, D3, and D4) are linked to inhibition of adenylyl cyclase and Ca2+ channels and stimulation of K+ channels. All the mammalian dopamine receptors, initially cloned from the brain, have been found to be expressed outside the central nervous system, in such sites as the adrenal gland, blood vessels, carotid body, intestines, heart, parathyroid gland, and the kidney and urinary tract. Dopamine receptor subtypes are differentially expressed along the nephron, where they regulate renal hemodynamics and electrolyte and water transport, as well as renin secretion. The ability of renal proximal tubules to produce dopamine and the presence of receptors in these tubules suggest that dopamine can act in an autocrine or paracrine fashion; this action becomes most evident during extracellular fluid volume expansion. This renal autocrine/paracrine function is lost in essential hypertension and in some animal models of genetic hypertension; disruption of the D1 or D3 receptor produces hypertension in mice. In humans with essential hypertension, renal dopamine production in response to sodium loading is often impaired and may contribute to the hypertension. The molecular basis for the dopaminergic dysfunction in hypertension is not known, but may involve an abnormal post-translational modification of the dopamine receptor.
Collapse
Affiliation(s)
- P A Jose
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
10
|
Yatsu T, Arai Y, Takizawa K, Kasai-Nakagawa C, Takanashi M, Uchida W, Inagaki O, Tanaka A, Takenaka T. Effect of YM435, a dopamine DA1 receptor agonist, in a canine model of ischemic acute renal failure. GENERAL PHARMACOLOGY 1998; 31:803-7. [PMID: 9809482 DOI: 10.1016/s0306-3623(98)00085-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1. The effects of (-)-(S)-4-(3,4-dihydroxyphenyl)- 1,2,3,4-tetrahydroisoquinoline-7,8-diol monohydrochloride monohydrate (YM435), a dopamine DA1 receptor agonist, were evaluated in a canine model of ischemic acute renal failure (ARF). 2. ARF was induced by clamping the left renal artery for 1 hr and subsequent reperfusion of the left kidney in anesthetized uninephrectomized dogs. 3. After 1-hr complete renal artery occlusion, an intravenous infusion of either YM435 (0.3 microg/kg/ min) or 0.9% saline (vehicle) was begun and continued for 1 hr. 4. In the vehicle group, renal ischemia markedly decreased glomerular filtration rate, urine flow and urinary sodium excretion. The YM435 group was characterized by significant recoveries in glomerular filtration rate, urine flow, and urinary sodium excretion as compared with the vehicle group. 5. These results indicate that YM435 can facilitate recovery in glomerular filtration rate, urine flow, and urinary sodium excretion in a canine model of ARF induced by ischemia. YM435 may be useful in the preservation of renal function in ischemia-induced ARF.
Collapse
Affiliation(s)
- T Yatsu
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yatsu T, Arai Y, Sudoh K, Shibasaki M, Uchida W, Inagaki O, Tanaka A, Takenaka T. Effect of YM435, a novel dopamine DA1 receptor agonist, in a canine model of acute congestive heart failure. GENERAL PHARMACOLOGY 1998; 30:733-7. [PMID: 9559326 DOI: 10.1016/s0306-3623(97)00340-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. The effects of YM435, a dopamine DA1 receptor agonist, were evaluated in a canine model of acute congestive heart failure. 2. The model was induced in open-chest anesthetized dogs by left anterior descending coronary artery ligation, volume loading, and intravenous infusion of angiotensin II. This resulted in a moderate and stable congestive heart failure characterized by reduction in cardiac output and increases in left ventricular end-diastolic pressure and total peripheral vascular resistance. 3. Intravenous infusion of YM435 (1 microgram/kg/min) significantly decreased left ventricular end-diastolic pressure, total peripheral vascular resistance and mean blood pressure and significantly increased cardiac output and renal blood flow in this model. 4. These results indicate that intravenous infusion of YM435 can improve hemodynamics and cardiac function in a canine model of acute congestive heart failure. YM435 may be a useful therapeutic agent for the treatment of congestive heart failure.
Collapse
Affiliation(s)
- T Yatsu
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co. Ltd, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yatsu T, Miyamoto I, Kaneko-Takanuki F, Watanabe T, Takenaka T. Pharmacological and pharmacokinetic characteristics of YM435, a novel dopamine DA1-receptor agonist, in anaesthetized dogs. J Pharm Pharmacol 1997; 49:892-6. [PMID: 9306257 DOI: 10.1111/j.2042-7158.1997.tb06131.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Time-course of plasma concentration of unchanged drug of the dopamine DA1-receptor agonist (-)-(S)-4-(3,4-dihydroxyphenyl)-7,8-dihydroxy-1,2,3,4- tetrahydroisoquinoline hydrochloride hydrate (YM435), and its effects on blood pressure and renal blood flow were investigated in anaesthetized dogs. Continuous intravenous infusion of YM435 (0.1-3 micrograms kg-1 min-1) rapidly increased renal blood flow and lowered blood pressure in a dose-dependent manner. These effects remained generally stable throughout the infusion period. Following the start of infusion, plasma concentration of unchanged drug also rose rapidly and dose-dependently and remained virtually constant throughout the infusion period. A significant correlation was observed between log YM435 plasma concentration and the increase in renal blood flow (r = 0.93, P < 0.0001) and between the former and the reduction in blood pressure (r = 0.93, P < 0.0001). The present results indicate that YM435 produces renal vasodilatation and lowering of blood pressure in a dose-dependent manner and with rapid onset following continuous intravenous infusion, and that these effects are generally stable throughout the period of infusion. These haemodynamic effects of YM435 were in good agreement with the time-course of plasma concentration of unchanged drug.
Collapse
Affiliation(s)
- T Yatsu
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co. Ltd, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|