1
|
Housset C, Chrétien Y, Debray D, Chignard N. Functions of the Gallbladder. Compr Physiol 2016; 6:1549-77. [PMID: 27347902 DOI: 10.1002/cphy.c150050] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gallbladder stores and concentrates bile between meals. Gallbladder motor function is regulated by bile acids via the membrane bile acid receptor, TGR5, and by neurohormonal signals linked to digestion, for example, cholecystokinin and FGF15/19 intestinal hormones, which trigger gallbladder emptying and refilling, respectively. The cycle of gallbladder filling and emptying controls the flow of bile into the intestine and thereby the enterohepatic circulation of bile acids. The gallbladder also largely contributes to the regulation of bile composition by unique absorptive and secretory capacities. The gallbladder epithelium secretes bicarbonate and mucins, which both provide cytoprotection against bile acids. The reversal of fluid transport from absorption to secretion occurs together with bicarbonate secretion after feeding, predominantly in response to an adenosine 3',5'-cyclic monophosphate (cAMP)-dependent pathway triggered by neurohormonal factors, such as vasoactive intestinal peptide. Mucin secretion in the gallbladder is stimulated predominantly by calcium-dependent pathways that are activated by ATP present in bile, and bile acids. The gallbladder epithelium has the capacity to absorb cholesterol and provides a cholecystohepatic shunt pathway for bile acids. Changes in gallbladder motor function not only can contribute to gallstone disease, but also subserve protective functions in multiple pathological settings through the sequestration of bile acids and changes in the bile acid composition. Cholecystectomy increases the enterohepatic recirculation rates of bile acids leading to metabolic effects and an increased risk of nonalcoholic fatty liver disease, cirrhosis, and small-intestine carcinoid, independently of cholelithiasis. Among subjects with gallstones, cholecystectomy remains a priority in those at risk of gallbladder cancer, while others could benefit from gallbladder-preserving strategies. © 2016 American Physiological Society. Compr Physiol 6:1549-1577, 2016.
Collapse
Affiliation(s)
- Chantal Housset
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares (CMR) des Maladies Inflammatoires des Voies Biliaires (MIVB), Service d'Hépatologie, Paris, France
| | - Yues Chrétien
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares (CMR) des Maladies Inflammatoires des Voies Biliaires (MIVB), Service d'Hépatologie, Paris, France
| | - Dominique Debray
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Medical-Surgical Center, Hepatology and Transplantation, Paris, France
| | - Nicolas Chignard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
2
|
Lee MC, Yang YC, Chen YC, Huang SC. Muscarinic receptor M3 mediates human gallbladder contraction through voltage-gated Ca2+ channels and Rho kinase. Scand J Gastroenterol 2013; 48:205-12. [PMID: 23227858 DOI: 10.3109/00365521.2012.741615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Muscarinic receptors mediate contraction of the human gallbladder through unclear receptor subtypes. The aim of the present study was to characterize muscarinic acetylcholine receptors mediating contraction of the human gallbladder. MATERIALS AND METHODS Contraction of human gallbladder muscle strips caused by agonists carbachol and muscarine was measured and the inhibition of carbachol-induced contraction by muscarinic receptor antagonists was evaluated. Reverse transcription polymerase chain reaction was performed to determine the existence of muscarinic receptor subtypes. RESULTS Carbachol and muscarine caused concentration-dependent contraction of gallbladder strips. Four receptor antagonists, including atropine, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), methoctramine, and pirenzepine, inhibited the carbachol-induced contraction. The relative inhibitory potency of these receptor antagonists was atropine > 4-DAMP > methoctramine > pirenzepine. The antagonist affinity estimates (pA(2) values) correlated with the known affinities at M(3), M(4), and M(5) muscarinic receptors. In addition, the M(4)-selective antagonist muscarinic toxin 3 did not inhibit and the M(5)-selective positive allosteric modulator VU0238429 did not potentiate carbachol-induced gallbladder contraction. This suggests that M(3) muscarinic receptors mediate the muscarinic response predominantly. The contractile response of carbachol was attenuated by the voltage-gated Ca(2+) channel inhibitor nifedipine and Rho-kinase inhibitor H-1152, but not affected by protein kinase C inhibitor chelerythrine. This implies the involvement of voltage-gated Ca(2+) channel and Rho kinase but not protein kinase C. CONCLUSIONS These results suggest a major role of M(3) muscarinic receptors mediating the human gallbladder contraction through voltage-gated Ca(2+) channels and Rho kinase. M(3)-selective muscarinic receptor antagonists could be of therapeutic importance in the treatment of biliary motility disorders.
Collapse
Affiliation(s)
- Ming-Che Lee
- Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien, and Tzu Chi University, Hualien, Taiwan
| | | | | | | |
Collapse
|
3
|
Mitchelson FJ. The pharmacology of McN-A-343. Pharmacol Ther 2012; 135:216-45. [DOI: 10.1016/j.pharmthera.2012.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 01/01/2023]
|
4
|
Cabadak H, Cuadra AE, El-Fakahany EE, Kan B. M2, M3, and M4 muscarinic receptors are expressed in the guinea pig gallbladder. J Recept Signal Transduct Res 2009; 29:63-6. [PMID: 19519171 DOI: 10.1080/10799890802687416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM The identity of muscarinic acetylcholine receptors (mAchR) involved in cholinergic-mediated contraction of the guinea pig gallbladder has been a matter of debate. Different groups have suggested the involvement of M(1), M(2), M(3), or M(4) receptor subtypes in the contraction of this tissue. The objective of this study was to identify the mAchR subtypes expressed in the guinea pig gallbladder by RT-PCR. METHODS Total RNA prepared from frozen guinea pig gallbladder tissue was amplified by using specific primers for the M(1)-M(4) receptor subtypes. RESULTS M(2), M(3), and M(4) transcripts were detected in the following rank order: M(4) > M(2) > M(3). We were unable to demonstrate the expression of the M(1) receptor subtype in this tissue. CONCLUSIONS Our results are in agreement with our previous binding and functional data.
Collapse
Affiliation(s)
- Hulya Cabadak
- Department of Biophysics, Marmara University School of Medicine, Haydarpasa, Istanbul, Turkey
| | | | | | | |
Collapse
|
5
|
Cabadak H, Kan B. Methoctramine and gallamine inhibit PI hydrolysis in guinea-pig gallbladder. Vascul Pharmacol 2005; 43:242-6. [PMID: 16169775 DOI: 10.1016/j.vph.2005.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 07/28/2005] [Indexed: 11/23/2022]
Abstract
The present study aimed to determine the effect of two M2/M4-selective muscarinic receptor antagonists on blocking the hydrolysis of carbachol (CCh) stimulated phospho-inositide (PI) breakdown in order to address the possibility that a muscarinic receptor other than the M(3) receptor is involved in PI hydrolysis in this tissue. Gallbladder tissue slices labeled with myo-[2-3H] inositol were incubated with increasing concentrations of antagonists and agonist. After the reactions were terminated by the addition of chloroform/methanol, labeled inositol phosphates were separated using anion exchange chromatography. Muscarinic M2 antagonists methoctramine and gallamine both inhibited carbachol-induced PI breakdown at high concentrations, with log IC50 values of -5.145 and -6.049, respectively. Gallamine at 10(-5)M concentration failed to displace the dose-response curve for carbachol-induced accumulation of inositol triphosphate (IP3). Our data suggest that M(3) receptors play a major role in stimulation of PI hydrolysis in the guinea-pig gallbladder.
Collapse
Affiliation(s)
- Hulya Cabadak
- Department of Biophysics, Marmara University School of Medicine, Tibbiye Caddesi No 49, Haydarpasa, 34668, Istanbul, Turkey.
| | | |
Collapse
|
6
|
Petkov GV, Balemba OB, Nelson MT, Mawe GM. Identification of a spontaneously active, Na+-permeable channel in guinea pig gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol 2005; 289:G501-7. [PMID: 15920017 DOI: 10.1152/ajpgi.00140.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The action potential in gallbladder smooth muscle (GBSM) is caused by Ca2+ entry through voltage-dependent Ca2+ channels (VDCC), which contributes to the GBSM contractions. Action potential generation in GBSM is critically dependent on the resting membrane potential (about -50 mV), which is approximately 35 mV more positive of the K+ equilibrium potential. We hypothesized that a tonic, depolarizing conductance is present in GBSM and contributes to the regulation of the resting membrane potential and action potential frequency. GBSM cells were isolated from guinea pig gallbladders, and the whole cell patch-camp technique was used to record membrane currents. After eliminating the contribution of VDCC and K+ channels, we identified a novel spontaneously active cation conductance (I(cat)) in GBSM. This I(cat) was mediated predominantly by influx of Na+. Na+ substitution with N-methyl-D-glucamine (NMDG), a large relatively impermeant cation, caused a negative shift in the reversal potential of the ramp current and reduced the amplitude of the inward current at -50 mV by 65%. Membrane potential recordings with intracellular microelectrodes or in current-clamp mode of the patch-clamp technique indicated that the inhibition of I(cat) conductance by NMDG is associated with membrane hyperpolarization and inhibition of action potentials. Extracellular Ca2+, Mg2+, and Gd3+ attenuated the I(cat) in GBSM. Muscarinic stimulation did not activate the I(cat). Our results indicate that, in GBSM, an Na+-permeable channel contributes to the maintenance of the resting membrane potential and action potential generation and therefore plays a critical role in the regulation of GBSM excitability and contractility.
Collapse
Affiliation(s)
- Georgi V Petkov
- Dept. of Pharmacology, College of Medicine, Univ. of Vermont, Burlington, VT 05405-0068, USA.
| | | | | | | |
Collapse
|
7
|
Melchiorre C, Antonello A, Banzi R, Bolognesi ML, Minarini A, Rosini M, Tumiatti V. Polymethylene tetraamine backbone as template for the development of biologically active polyamines. Med Res Rev 2003; 23:200-33. [PMID: 12500289 DOI: 10.1002/med.10029] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The concept that polyamines may represent a universal template in the receptor recognition process is embodied in the design of ligands for different biological targets. As a matter of fact, the insertion of different pharmacophores onto the polymethylene tetraamine backbone can tune both affinity and selectivity for any given receptor. The application of this approach provided a prospect of modifying benextramine (1). structure to achieve specific recognition of muscarinic receptors that led to the discovery of methoctramine (2). which is widely used as a pharmacological tool for muscarinic receptor characterization. In turn, appropriate structural modifications performed on the structure of methoctramine led to the discovery of new polyamines endowed with high affinity and selectivity for (a). muscarinic receptor subtypes, (b). G(i) proteins, and (c). muscle-type nicotinic receptors. Thus, polyamines tripitramine (9) and spirotramine (33), among others, were designed, which were shown to be highly selective for muscarinic M(2) and M(1) receptors, respectively. Several polyamines have been discovered, which inhibit noncompetitively a closed state of the nicotinic receptor. These ligands, such as 66, resulted in important tools for elucidating the mode and site of interaction of polyamines with the ion channel. It was discovered that reducing the flexibility of the diaminohexane spacer of methoctramine led to polyamines, such as 70, which are endowed with a biological profile significantly different from that of the prototype. Most likely, tetraamine (70) is a potent activator of G(i) proteins. Finally, the universal template approach formed the basis for modifying benextramine (1) structure to the design of ligands, which display affinity for acetylcholinesterase and muscarinic M(2) receptors. Thus, these polyamines, such as caproctamine (78), could have potential in the investigation of Alzheimer disease.
Collapse
Affiliation(s)
- Carlo Melchiorre
- Dipartimento di Scienze Farmaceutiche, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Stengel PW, Cohen ML. Muscarinic receptor knockout mice: role of muscarinic acetylcholine receptors M(2), M(3), and M(4) in carbamylcholine-induced gallbladder contractility. J Pharmacol Exp Ther 2002; 301:643-50. [PMID: 11961069 DOI: 10.1124/jpet.301.2.643] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscarinic receptors play a major role in gallbladder function, although the muscarinic receptor(s) mediating smooth muscle contractility is unclear. This study compared smooth muscle contractile responses to carbamylcholine (10(-7)-10(-3) M) in isolated gallbladder from wild-type and M(2), M(3), and M(4) receptor knockout mice. Carbamylcholine-induced contraction in gallbladder was associated with tachyphylaxis and the release of a cyclooxygenase product because indomethacin (10(-6) M) inhibited carbamylcholine-induced contraction. The M(3) receptor was the major muscarinic receptor involved in contraction because carbamylcholine-induced contractility was inhibited in gallbladder from M(3) receptor knockout mice. Furthermore, the muscarinic receptor antagonists 11-[[[2-diethylamino-O-methyl]-1-piperidinyl]acetyl]-5,11-dihydrol-6H-pyridol[2,3-b][1,4]benzodiazepine-6-one (AF-DX 116) and pirenzepine dextrally shifted contraction to carbamylcholine in gallbladder from wild-type, M(2), and M(4) receptor knockout mice, with affinities consistent with M(3) receptor interaction. In addition, maximal contraction to carbamylcholine was reduced in gallbladder from M(2) receptor knockout mice and affinities for AF-DX 116 and pirenzepine in gallbladder from M(3) receptor knockout mice were consistent with their affinities at M(2) receptors. In M(4) receptor knockout mice, contraction to carbamylcholine was dextrally shifted, although the affinities for AF-DX 116 and pirenzepine in gallbladder from M(2) or M(3) knockout mice were not similar to their affinities at M(4) receptors. The M(4) receptor may serve as an accessory protein necessary for optimal potency of M(2) and M(3) receptor-mediated responses. Thus, muscarinic receptor knockout mice provided direct and unambiguous evidence that M(3), and to a lesser extent, M(2) receptors are the predominant muscarinic receptors mediating gallbladder contractility, and M(4) receptors appear necessary for optimal potency of carbamylcholine in gallbladder contraction.
Collapse
Affiliation(s)
- Peter W Stengel
- Eli Lilly and Company, Neuroscience Research, Lilly Corporate Center, Indianapolis, Indiana 46285, USA.
| | | |
Collapse
|
9
|
Verbitsky M, Rothlin CV, Katz E, Elgoyhen AB. Mixed nicotinic-muscarinic properties of the alpha9 nicotinic cholinergic receptor. Neuropharmacology 2000; 39:2515-24. [PMID: 11044723 DOI: 10.1016/s0028-3908(00)00124-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The rat alpha9 nicotinic acetylcholine receptor (nAChR) was expressed in Xenopus laevis oocytes and tested for its sensitivity to a wide variety of cholinergic compounds. Acetylcholine (ACh), carbachol, choline and methylcarbachol elicited agonist-evoked currents, giving maximal or near maximal responses. Both the nicotinic agonist suberyldicholine as well as the muscarinic agonists McN-A-343 and methylfurtrethonium behaved as weak partial agonists of the receptor. Most classical cholinergic compounds tested, being either nicotinic (nicotine, epibatidine, cytisine, methyllycaconitine, mecamylamine, dihydro-beta-erythroidine), or muscarinic (muscarine, atropine, gallamine, pilocarpine, bethanechol) agonists and antagonists, blocked the recombinant alpha9 receptor. Block by nicotine, epibatidine, cytisine, methyllycaconitine and atropine was overcome at high ACh concentrations, suggesting a competitive type of block. The present results indicate that alpha9 displays mixed nicotinic-muscarinic features that resemble the ones described for the cholinergic receptor of cochlear outer hair cells (OHCs). We suggest that alpha9 contains the structural determinants responsible for the pharmacological properties of the native receptor.
Collapse
Affiliation(s)
- M Verbitsky
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
10
|
Darroch S, Irving HR, Mitchelson FJ. Characterisation of muscarinic receptor subtypes in avian smooth muscle. Eur J Pharmacol 2000; 402:161-9. [PMID: 10940370 DOI: 10.1016/s0014-2999(00)00489-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The identity of the muscarinic receptor subtype in the chick ileum was investigated in functional and binding studies. Preliminary studies [Choo, L.-K., Mitchelson, F., Napier, P. 1988. J. Auton. Pharmacol. 8, 259-266] suggested apparent avian and mammalian family differences in the muscarinic receptor profile of ileal smooth muscle. In the current study, further characterisation was undertaken using a greater range of antagonists exhibiting high affinity for specific muscarinic receptor subtypes. Dissociation constants from functional and binding experiments were compared with published values for antagonists at each of the five muscarinic receptor subtypes. Linear regression and correlation analyses revealed the receptor initiating the contractile response was most likely of the muscarinic M(3) receptor subtype as the slope of the linear regression was 1.01+/-0.14 and the corresponding correlation coefficient (r) was 0.95. The mammalian muscarinic M(5) receptor subtype also showed a high correlation with the data giving a slope of 0.89+/-0.27 and r value of 0.76. These findings were in direct contrast to those from binding experiments in which the single binding site detected was of the muscarinic M(2) receptor subtype. The slope of the linear regression was 1.14+/-0.24 with an r value of 0.87. Thus, these results suggest that there exists a high proportion of the muscarinic M(2) receptor subtype within the tissue that does not contribute to the functional response.
Collapse
Affiliation(s)
- S Darroch
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
11
|
Akici A, Karaalp A, Iskender E, Christopoulos A, El-Fakahany EE, Oktay S. Further evidence for the heterogeneity of functional muscarinic receptors in guinea pig gallbladder. Eur J Pharmacol 2000; 388:115-23. [PMID: 10657554 DOI: 10.1016/s0014-2999(99)00832-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies have suggested the presence of multiple muscarinic receptor subtypes in guinea pig gallbladder smooth muscle, although the relative abundance and functional role of these subtypes remains an area of significant research efforts. The present study utilized both radioligand kinetic and functional experiments to further probe the nature of the muscarinic receptors in gallbladder smooth muscle and their mode of coupling to intra- and extra-cellular Ca(2+) sources. Dissociation kinetic studies using [3H]N-methylscopolamine ([3H]NMS) indicated that the binding profile in guinea pig gallbladder smooth muscle could not be reconciled with that expected for a single muscarinic receptor subtype, the latter determined in parallel experiments conducted on the cloned muscarinic M(1)-M(5) subtypes in Chinese hamster ovary (CHO) cells. Furthermore, comparison of the gallbladder data with the dissociation characteristics of [3H]NMS in guinea pig urinary bladder revealed a significantly different kinetic profile, with the urinary bladder, but not the gallbladder, demonstrating biphasic radioligand dissociation kinetics. In functional experiments, carbachol caused a concentration-dependent contraction of guinea pig gallbladder smooth muscle strips in Ca(2+)-free or 5 mM Sr(2+)-substituted physiological salt solutions (PSS) with amplitudes of the maximal contractions corresponding to 45.8+/-8.0% and 33.2+/-6.6% of control responses in normal PSS, respectively. Furthermore, the stimulus-response characteristics of carbachol-mediated contraction appeared significantly altered in Ca(2+)-free PSS relative to normal or Sr(2+)-substituted PSS. The antagonist, methoctramine (1x10(-7)-3x10(-5) M), exerted only a slight inhibition of carbachol (10(-5) M)-induced contractions in 5 mM Sr(2+)-substituted medium, whereas it was significantly more potent in antagonizing gallbladder contractions in response to 10(-5) M carbachol in the absence of extracellular Ca(2+). Both atropine and tripitramine were equipotent in antagonizing carbachol-induced contractions in Ca(2+)-free (pIC(50): 6.85+/-0.11 for atropine and 5.75+/-0.32 for tripitramine) and Sr(2+)-substituted media (pIC(50): 6.88+/-0.25 for atropine and 5.70+/-0.16 for tripitramine), and pirenzepine was only slightly more potent in Ca(2+)-free PSS (pIC(50): 5.66+/-0.23) than in Sr(2+)-substituted PSS (pIC(50): 5.33+/-0.21). Taken together, our data indicate that carbachol contracts guinea pig gallbladder by stimulating two distinct muscarinic receptor subtypes linked to extracellular Ca(2+) influx and intracellular Ca(2+) release. These two subtypes may represent the muscarinic M(3) and M(4) receptors, although the presence of the muscarinic M(2) receptor subtype is also suggested from the binding data.
Collapse
Affiliation(s)
- A Akici
- Department of Pharmacology and Clinical Pharmacology, Marmara University School of Medicine, Haydarpaşa 81326, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
12
|
Akici A, Karaalp A, Skender E, El-Fakahany EE, Oktay S. Muscarinic M(2) receptors are not primarily involved in the contraction of guinea-pig gallbladder smooth muscle. Pharmacol Res 1999; 40:443-9. [PMID: 10527660 DOI: 10.1006/phrs.1999.0536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The presence of M(1)-M(4) receptors in guinea-pig gallbladder smooth muscle cells has been reported recently. The majority of these receptors are said to be of M(2) subtype. However, there are controversial reports about the functional muscarinic receptors that mediate contraction in this tissue. Similar to gallbladder, it was claimed that M(4) receptors mediate guinea-pig uterine contractions, but these receptors have appeared to be of M(2) subtypes later. Therefore, the antagonistic affinities of three M(2)-selective muscarinic antagonists were determined in contraction and radioligand binding experiments in guinea-pig gallbladder in the present study. The antagonistic affinity values (p K(i)) of gallamine, tripitramine and imperialine were as follows, respectively: 6.28+/-0.15, 8.65+/-0.10 and 6.55+/-0.07 against 0.250 n m [(3)H]QNB binding. All three antagonists displaced the concentration- response curves to carbachol to the right in parallel without affecting the maximum responses. The p A(2) values obtained from constrained Schild plots (-log K(B)) were 4.14+/-0.18 for gallamine, 6.79+/-0.09 for tripitramine, and 7.02+/-0.09 for imperialine. The antagonistic affinity values of gallamine, tripitramine and imperialine for M(2) receptors are reported to be 6. 3, 9.6, 7.7, respectively. The p A(2) values obtained in this study clearly indicate that the primary muscarinic receptors involved in carbachol-induced guinea-pig gallbladder contraction are not of M(2) subtype. The poor correlation between the antagonistic affinity values of these antagonists obtained at radioligand binding (p K(i)) and contraction (p A(2)) experiments also support the conclusion that the majority of muscarinic receptors which have been reported to be of M(2) do not mediate the contractile responses.
Collapse
Affiliation(s)
- A Akici
- Department of Pharmacology and Clinical Pharmacology, Marmara University School of Medicine, Haydarpaa, Istanbul, 81326, Turkey
| | | | | | | | | |
Collapse
|
13
|
Parkman HP, Pagano AP, Ryan JP. Subtypes of muscarinic receptors regulating gallbladder cholinergic contractions. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G1243-50. [PMID: 10330016 DOI: 10.1152/ajpgi.1999.276.5.g1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The aim of this study was to determine the functional role of muscarinic receptor subtypes regulating gallbladder cholinergic contractions. Electrical field stimulation (EFS; 16 Hz) produced contractile responses of guinea pig gallbladder muscle strips in vitro that were inhibited by 1 microM tetrodotoxin (2 +/- 2% of control) and 1 microM atropine (1 +/- 1% of control), indicating activation of intrinsic cholinergic nerves. Exogenous ACh (5 microM)-induced contractions were inhibited by atropine (1 +/- 1% of control) but not tetrodotoxin (102 +/- 1% of control), indicating a direct effect on smooth muscle. The M1 receptor antagonist pirenzepine (10 nM) had no effect on ACh-induced contractions but inhibited EFS-induced contractions by 11 +/- 3%. The M2 antagonist methoctramine (10 nM) had no effect on ACh-induced contractions but augmented EFS-induced contractions by 5 +/- 2%. The M3 antagonist 4-DAMP (10 nM) inhibited ACh-induced contractions by 14 +/- 4% and EFS-induced contractions by 22 +/- 5%. In conclusion, specific M1, M2, and M3 receptors modulate gallbladder muscle contractions by regulating ACh release from cholinergic nerves and mediating the contraction. Cholinergic contractions are mediated by M3 receptors directly on the smooth muscle. M2 receptors are on cholinergic nerves and function as prejunctional inhibitory autoreceptors. M1 receptors are on cholinergic nerves and function as prejunctional facilitatory autoreceptors.
Collapse
Affiliation(s)
- H P Parkman
- Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|