1
|
Hughes DM, Won T, Talor MV, Kalinoski HM, Jurčová I, Szárszoi O, Stříž I, Čurnová L, Bracamonte-Baran W, Melenovský V, Čiháková D. The protective role of GATA6 + pericardial macrophages in pericardial inflammation. iScience 2024; 27:110244. [PMID: 39040070 PMCID: PMC11260870 DOI: 10.1016/j.isci.2024.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Prior research has suggested that GATA6+ pericardial macrophages may traffic to the myocardium to prevent interstitial fibrosis after myocardial infarction (MI), while subsequent literature claims that they do not. We demonstrate that GATA6+ pericardial macrophages are critical for preventing IL-33 induced pericarditis and attenuate trafficking of inflammatory monocytes and granulocytes to the pericardial cavity after MI. However, absence of GATA6+ macrophages did not affect myocardial inflammation due to MI or coxsackievirus-B3 induced myocarditis, or late-stage cardiac fibrosis and cardiac function post MI. GATA6+ macrophages are significantly less transcriptionally active following stimulation in vitro compared to bone marrow-derived macrophages and do not induce upregulation of inflammatory markers in fibroblasts. This suggests that GATA6+ pericardial macrophages attenuate inflammation through their interactions with surrounding cells. We therefore conclude that GATA6+ pericardial macrophages are critical in modulating pericardial inflammation, but do not play a significant role in controlling myocardial inflammation or fibrosis.
Collapse
Affiliation(s)
- David M. Hughes
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Taejoon Won
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Monica V. Talor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hannah M. Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ivana Jurčová
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ondrej Szárszoi
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ilja Stříž
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Lenka Čurnová
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | | | - Vojtěch Melenovský
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Der Sarkissian S, Tea BS, Touyz RM, deBlois D, Hale TM. Role of angiotensin II type 2 receptor during regression of cardiac hypertrophy in spontaneously hypertensive rats. ACTA ACUST UNITED AC 2013; 7:118-27. [PMID: 23414835 DOI: 10.1016/j.jash.2013.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/27/2012] [Accepted: 01/07/2013] [Indexed: 12/19/2022]
Abstract
We previously reported that the AT1 receptor antagonist valsartan and the angiotensin converting enzyme (ACE) inhibitor enalapril decrease DNA synthesis and stimulate apoptosis in interstitial fibroblasts and epicardial mesothelial cells during regression of ventricular hypertrophy in spontaneously hypertensive rats (SHR). To examine the role of the AT2 receptor in this model, we studied hearts from SHR treated with valsartan or enalapril either alone or combined with the AT2 antagonist PD123319 for 1 or 2 weeks. Apoptosis was evaluated by quantification of DNA fragmentation or by TUNEL labeling. At 1 week, valsartan significantly increased ventricular DNA fragmentation, increased apoptosis in epicardial mesothelial cells, and decreased DNA synthesis. At 2 weeks, ventricular DNA content and cardiomyocyte cross-sectional area were significantly reduced. These valsartan-induced changes were attenuated by PD123319 co-administration. However, valsartan-induced increases in apoptosis of left ventricular interstitial non-cardiomyocytes was unaffected by the AT2 blocker. Enalapril-induced changes were similar to those observed with valsartan but were not affected by co-treatment with PD123319. These results demonstrate that AT1 and AT2 receptors act in a coordinated yet cell-specific manner to regulate cell growth and apoptosis in the left ventricle of SHR during AT1 receptor blockade but not ACE inhibition.
Collapse
|
3
|
Functional and molecular characterizations of chloride channels in rat pleural mesothelial cells. Eur J Pharmacol 2009; 614:22-9. [DOI: 10.1016/j.ejphar.2009.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/27/2009] [Accepted: 05/07/2009] [Indexed: 11/20/2022]
|
4
|
Kuwahara M, Kuwahara M. Store-mediated calcium entry in pleural mesothelial cells. Eur J Pharmacol 2006; 542:16-21. [PMID: 16824512 DOI: 10.1016/j.ejphar.2006.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 05/15/2006] [Accepted: 05/16/2006] [Indexed: 11/18/2022]
Abstract
Store-mediated Ca2+ entry is thought as the main pathway for Ca2+ influx in non-excitable cells. Although a role for the actin cytoskeleton in store-mediated Ca2+ entry has been proposed in some cell types, the role of actin cytoskeleton in store-mediated Ca2+ entry is still a controversy. To address this question, the effects of cytoskeletal modifiers on store-mediated Ca2+ entry in pleural mesothelial cells were examined. Thapsigargin (1 microM) induced a sufficient signal for the activation of store-mediated Ca2+ entry in pleural mesothelial cells. In the absence of extracellular Ca2+, thapsigargin induced only a transient elevation of [Ca2+]i. Moreover, re-addition of Ca2+ increased the elevation of [Ca2+]i. Passive elevations in [Ca2+]i without thapsigargin, which is induced from Ca2+ containing solution switch to Ca2+ free solution and re-add Ca2+ containing solution, were not observed in pleural mesothelial cells. Thapsigargin-induced Ca2+ entry was still present after nifedipine (1 microM) treatment. However, SKF96365 (1 microM) blocked thapsigargin-induced Ca2+ entry. Mycalolide B (1 microM) completely disrupts actin cytoskeleton in pleural mesothelial cells, but thapsigargin-induced store-mediated Ca2+ entry was preserved. Jasplakinolide (3 microM) prevented thapsigargin-induced store-mediated Ca2+ entry. These results suggest that store-mediated Ca2+ entry in pleural mesothelial cells may be mediated by a recently proposed secretion-like coupling model for store-mediated Ca2+ entry.
Collapse
Affiliation(s)
- Masayoshi Kuwahara
- Department of Comparative Pathophysiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | |
Collapse
|
5
|
Abstract
Pleural fibrosis resembles fibrosis in other tissues and can be defined as an excessive deposition of matrix components that results in the destruction of normal pleural tissue architecture and compromised function. Pleural fibrosis may be the consequence of an organised haemorrhagic effusion, tuberculous effusion, empyema or asbestos-related pleurisy and can manifest itself as discrete localised lesions (pleural plaques) or diffuse pleural thickening and fibrosis. Although the pathogenesis is unknown, it is likely that the complex interactions between resident and inflammatory cells, profibrotic mediators and coagulation, and fibrinolytic pathways are integral to pleural remodelling and fibrosis. It is generally considered that the primary target cell for pleural fibrosis is the subpleural fibroblast. However, increasing evidence suggests that mesothelial cells may also play a significant role in the pathogenesis of this condition, both by initiating inflammatory responses and producing matrix components. A greater understanding of the interactions between pleural and inflammatory cells, cytokines and growth factors, and blood derived proteins is required before adequate therapies can be developed to prevent pleural fibrosis from occurring.
Collapse
Affiliation(s)
- Steven E Mutsaers
- Centre for Asthma, Allergy and Respiratory Research, University of Western Australia, Australia.
| | | | | | | |
Collapse
|
6
|
Lee GR, Bell D, Kelso EJ, Argent CCH, McDermott BJ. Evidence for altered ETB receptor characteristics during development and progression of ventricular cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 2004; 287:H425-32. [PMID: 14988072 DOI: 10.1152/ajpheart.00461.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P < 0.05) relative to WKY cardiomyocytes at 20-24 wk. ET binding-site density was twofold greater in SHR than WKY cells at 12 wk (P < 0.05) but normalized at 20 wk. ET(B) receptors were detected on SHR cardiomyocytes as early as 8 wk and their affinity increased progressively with age (P < 0.05), whereas ET(B) receptors were not detected on WKY cells until 20 wk. ET-1 stimulated protein synthesis with similar maximum responses between strains (21-30%), in contrast with sarafotoxin 6c, which stimulated protein synthesis in SHR (13-20%) but not WKY cells at 12-20 wk. In SHR but not WKY cells, the ET(B) receptor-selective ligand A-192621 increased protein synthesis progressively with the development of LVH (15% maximum effect). In conclusion, the presence of ET(B) receptors (8-12 wk) coupled with functional responsiveness of SHR cells but not WKY cells to sarafotoxin 6c at 12 wk supports the involvement of ET(B) receptors before the onset of cardiomyocyte hypertrophy, whereas altered ET(B) receptor characteristics during active hypertrophy (16-24 wk) indicate that ET(B) receptor mechanisms may also contribute to disease progression.
Collapse
Affiliation(s)
- Graham R Lee
- Department of Therapeutics and Pharmacology, Centre for Cardiovascular and Genetics Research, School of Medicine, Queen's University of Belfast, Whitla Medical Bldg., 97 Lisburn Rd., Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
7
|
Arriero MM, de La Pinta JC, Escribano M, Celdrán A, Muñoz-Alameda L, García-Cañete J, Jiménez AM, Casado S, Farré J, López-Farré A. Aspirin prevents Escherichia coli lipopolysaccharide- and Staphylococcus aureus-induced downregulation of endothelial nitric oxide synthase expression in guinea pig pericardial tissue. Circ Res 2002; 90:719-27. [PMID: 11934841 DOI: 10.1161/01.res.0000013699.74563.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim was to analyze whether pericardial tissue expresses endothelial NO synthase (eNOS) protein and to determine the presence of cytosolic proteins that bind to eNOS mRNA. The effect of aspirin on the above-mentioned parameters was also analyzed. eNOS protein was expressed in pericardial tissue from male guinea pigs. Escherichia coli lipopolysaccharide (LPS, 10 microgram/mL) and Staphylococcus aureus endotoxin (SA, 10 microgram/mL) reduced eNOS protein expression and shortened the half-life of the eNOS messenger. Under basal conditions, cytosolic extracts from pericardial samples bound to the 3'-untranslated region (3'-UTR) of eNOS mRNA, which was enhanced by LPS and SA. Proteinase K fully prevented the binding of cytosolic pericardial extracts to 3'-UTR of eNOS mRNA, suggesting the involvement of proteins that were further characterized as 60- and 51-kDa proteins. Aspirin (1 to 10 mmol/L) restored eNOS expression in either LPS- and SA-stimulated pericardial samples and reduced the binding activity of the pericardial cytosolic proteins to 3'-UTR of eNOS mRNA. Indomethacin also reduced the downregulation of eNOS by LPS and diminished the binding activity of the cytosolic proteins, although higher doses of indomethacin than of aspirin were needed to improve these parameters. In conclusion, eNOS protein is expressed in guinea pig pericardial tissue. LPS and SA stimulate the binding activity of pericardial cytosolic proteins to 3'-UTR of eNOS mRNA and reduce eNOS protein expression. High doses of aspirin and indomethacin protect eNOS protein expression and reduce the binding activity of the cytosolic proteins to 3'-UTR of eNOS mRNA, suggesting an inverse association between the presence of these cytosolic proteins and eNOS expression.
Collapse
Affiliation(s)
- Maria M Arriero
- Cardiovascular Research and Hypertension Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mutsaers SE, Whitaker D, Papadimitriou JM. Stimulation of mesothelial cell proliferation by exudate macrophages enhances serosal wound healing in a murine model. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:681-92. [PMID: 11839589 PMCID: PMC1850647 DOI: 10.1016/s0002-9440(10)64888-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Examination of thermally induced serosal lesions in mice displayed collections of inflammatory cells, predominantly macrophages, on and surrounding the wound within 48 hours of injury. Furthermore, by 2 days a large number of uninjured mesothelial cells adjacent to the wound were synthesizing DNA. From these findings, it was hypothesized that macrophages play a major role in serosal repair by stimulating mesothelial cell proliferation. Again, using a murine model of mesothelial regeneration, depletion of circulating monocytes significantly delayed serosal healing whereas addition of peritoneal exudate cells to the wound site 36 hours before injury increased the healing rate. In vivo assessment of mesothelial cell proliferation using tritiated thymidine incorporation and autoradiography demonstrated that peritoneal exudate cells stimulated mesothelial cell proliferation (12.44 +/- 1.63% labeling index, compared with controls in which medium only was used 4.48 +/- 0.71%). The mesothelial proliferation was predominantly because of macrophage-secreted products with molecular weights of 36 to 53 kd or 67 to 100 kd. These data support the hypothesis that macrophages play an important role in serosal healing by stimulating mesothelial cell proliferation.
Collapse
Affiliation(s)
- Steven E Mutsaers
- Department of Pathology, University of Western Australia, Level 2 Medical Research Foundation Building, Rear 50 Murray St., Perth, 6000, Western Australia.
| | | | | |
Collapse
|
9
|
Kuwahara M, Kuwahara M. Involvement of Rho and tyrosine kinase in angiotensin II-induced actin reorganization in mesothelial cells. Eur J Pharmacol 2002; 436:15-21. [PMID: 11834242 DOI: 10.1016/s0014-2999(01)01591-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the role of angiotensin II type 1 (AT(1)) receptors in angiotensin II-induced actin reorganization and the signaling pathways of the response in pleural mesothelial cells. The effects of angiotensin II on actin reorganization in pleural mesothelial cells were evaluated by dual fluorescence labeling of filamentous (F) and monomeric (G) actin with fluorescein isothiocyanate (FITC)-labeled phalloidin and Texas Red-labeled DNase I, respectively. Angiotensin II (10 microM) induced actin reorganization in the presence and the absence of extracellular Ca(2+). An angiotensin AT(1) receptor antagonist ([Sar(1),Ile(8)]angiotensin II) inhibited angiotensin II-induced actin reorganization. Pretreatment with C3 exoenzyme or tyrosine kinase inhibitors significantly reduced angiotensin II-induced actin reorganization. However, pertussis toxin, phosphatidylinositol-3-kinase and protein kinase C inhibitors had no effect on these responses. These results suggest that angiotensin II-induced actin reorganization in pleural mesothelial cells is extremely dependent on the angiotensin AT(1) receptor coupled with pertussis toxin-insensitive heterotrimeric G proteins, Rho GTPases and tyrosine phosphorylation pathways.
Collapse
Affiliation(s)
- Masayoshi Kuwahara
- Department of Comparative Pathophysiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657, Tokyo, Japan.
| | | |
Collapse
|
10
|
Kuwahara M, Miyaji T, Tsubone H. Angiotensin II type 1 receptor-mediated increase in cytosolic Ca(2+) and proliferation in mesothelial cells. Eur J Pharmacol 2000; 388:21-7. [PMID: 10657543 DOI: 10.1016/s0014-2999(99)00861-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated the Ca(2+) signaling pathways of the response to angiotensin II in pleural mesothelial cells and the role of these Ca(2+) signaling pathways in mesothelial cell proliferation. Rat pleural mesothelial cells were maintained in vitro, and the Ca(2+) movement to angiotensin II was evaluated using the fluorescent Ca(2+) indicator fura 2. Furthermore, proliferation of mesothelial cells was assessed using a spectrophotometric 3-(4, 5-dimethylthazol-2-yl)-2,5-diphenyl-2H-tetrasodium bromide (MTT) assay. Angiotensin II (1 pM-100 microM) induced in mesothelial cells a biphasic elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) that consisted of a transient initial component, followed by a sustained component. Neither removal of extracellular Ca(2+) nor inhibition of Ca(2+) influx by 1 microM nifedipine affected the angiotensin II-induced initial transient elevation of [Ca(2+)](i) in mesothelial cells. Nifedipine did not block angiotensin II-induced sustained elevation of [Ca(2+)](i). Angiotensin II (1 pM-100 microM) had a proliferative effect on mesothelial cells in a dose-dependent manner. Angiotensin II type 1 (AT(1)) receptor antagonist ([Sar(1), Ile(8)]angiotensin II) inhibited both angiotensin II-induced elevation of [Ca(2+)](i) and proliferation of mesothelial cells. Pertussis toxin did not affect angiotensin II-induced responses. These results suggest that angiotensin II-induced responses to mesothelial cells are extremely dependent on the angiotensin AT(1) receptor coupled with pertussis toxin-insensitive G protein.
Collapse
Affiliation(s)
- M Kuwahara
- Department of Comparative Pathophysiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|