1
|
Gudasheva TA, Koliasnikova KN, Alyaeva AG, Nikolaev SV, Antipova TA, Seredenin SB. Neuroprotective Effect of the Neuropeptide Cycloprolylglycine Depends on AMPA- and TrkB-Receptor Activation. DOKL BIOCHEM BIOPHYS 2022; 507:264-267. [PMID: 36786983 DOI: 10.1134/s1607672922060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/15/2023]
Abstract
Previously, we have shown that the endogenous neuropeptide cycloprolylglycine (CPG) is the positive modulator of AMPA receptors and revealed the dependence of its anxiolytic and antihypoxic action on BDNF/Trk signaling. In the present work, we for the first time conducted in vitro experiments using the AMPA receptor blockers DNQX and GYKI 52466 and the Trk receptor blocker K252a. It is shown that the neuroprotective effect of CPG depends on the activation of both AMPA and Trk receptors.
Collapse
Affiliation(s)
- T A Gudasheva
- Zakusov Research Institute of Pharmacology, Moscow, Russia.
| | | | - A G Alyaeva
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - S V Nikolaev
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - T A Antipova
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - S B Seredenin
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
2
|
The effect of AMPA receptor blockade on spatial information acquisition, consolidation and expression in juvenile rats. Neurobiol Learn Mem 2016; 133:145-156. [PMID: 27353718 DOI: 10.1016/j.nlm.2016.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/26/2016] [Accepted: 06/25/2016] [Indexed: 11/21/2022]
Abstract
Improvement on spatial tasks in rats is observed during a late, postnatal developmental period (post-natal day (PND) 18 - PND 20). The developmental emergence of this spatial function occurs in conjunction with hippocampal connectivity changes and enhanced hippocampal-AMPA receptor-mediated synaptic responses. The current work investigated the effect of AMPAr blockade on the emergence and long-term storage of spatial information in juvenile rats and associated neural activity patterns in the dorsal hippocampus CA1 region. Male, Long Evans rats between the ages of PND 18 and PND 20 were systemically (i.p.) administered the AMPAr antagonist, NBQX, (0, 5 or 10mg/kg) every day prior to hidden platform water maze training (PND 18, 19 and 20), every day immediately post-training or immediately before the probe test (PND 41). NBQX administration prior to training prolonged latencies, pathlength and increased thigmotaxis during the acquisition phase. Administration of NBQX immediately posttraining had no effect on the day-to-day performance. When given a probe test 3weeks later, the saline group across all conditions spent more time in the target quadrant. Rats treated with pretraining 5mg NBQX dose showed a preference for the target quadrant while the posttraining and pretesting 5mg NBQX doses impaired the target quadrant preference. Groups injected with 10mg of NBQX pretraining, posttraining or pretesting did not show a preference for the target quadrant. c-Fos labeling in the CA1 reflected these differences in probe performance in that groups showing greater than chance dwell time in the target quadrant showed more c-Fos labeling in the CA1 region than groups that did not show a target quadrant preference. These findings provide support for the critical role of AMPA receptor-mediated function in the organization and long-term storage of spatial memories acquired during the juvenile period.
Collapse
|
3
|
Swedberg MDB. Drug discrimination: A versatile tool for characterization of CNS safety pharmacology and potential for drug abuse. J Pharmacol Toxicol Methods 2016; 81:295-305. [PMID: 27235786 DOI: 10.1016/j.vascn.2016.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 11/26/2022]
Abstract
Drug discrimination studies for assessment of psychoactive properties of drugs in safety pharmacology and drug abuse and drug dependence potential evaluation have traditionally been focused on testing novel compounds against standard drugs for which drug abuse has been documented, e.g. opioids, CNS stimulants, cannabinoids etc. (e.g. Swedberg & Giarola, 2015), and results are interpreted such that the extent to which the test drug causes discriminative effects similar to those of the standard training drug, the test drug would be further characterized as a potential drug of abuse. Regulatory guidance for preclinical assessment of abuse liability by the European Medicines Agency (EMA, 2006), the U.S. Food and Drug Administration (FDA, 2010), the International Conference of Harmonization (ICH, 2009), and the Japanese Ministry of Health Education and Welfare (MHLW, 1994) detail that compounds with central nervous system (CNS) activity, whether by design or not, need abuse and dependence liability assessment. Therefore, drugs with peripheral targets and a potential to enter the CNS, as parent or metabolite, are also within scope (see Swedberg, 2013, for a recent review and strategy). Compounds with novel mechanisms of action present a special challenge due to unknown abuse potential, and should be carefully assessed against defined risk criteria. Apart from compounds sharing mechanisms of action with known drugs of abuse, compounds intended for indications currently treated with drugs with potential for abuse and or dependence are also within scope, regardless of mechanism of action. Examples of such compounds are analgesics, anxiolytics, cognition enhancers, appetite control drugs, sleep control drugs and drugs for psychiatric indications. Recent results (Swedberg et al., 2014; Swedberg & Raboisson, 2014; Swedberg, 2015) on the metabotropic glutamate receptor type 5 (mGluR5) antagonists demonstrate that compounds causing hallucinatory effects in humans did not exhibit clear discriminative effects when tested against classical drugs of abuse in drug discrimination studies, and were not self-administered by rats. However, these compounds did cause salient discriminative effects of their own in animals trained to discriminate them from no drug. Therefore, from a safety pharmacology perspective, novel compounds that do not cause discriminative effects similar to classical drugs of abuse, may still cause psychoactive effects in humans and carry the potential to maintain drug abuse, suggesting that proactive investigation of drug abuse potential is warranted (Swedberg, 2013). These and other findings will be discussed, and the application of drug discrimination procedures beyond the typical standard application of testing novel compounds against known and well characterized reference drugs will be addressed.
Collapse
|
4
|
Regalia G, Biffi E, Achilli S, Ferrigno G, Menegon A, Pedrocchi A. Development of a bench-top device for parallel climate-controlled recordings of neuronal cultures activity with microelectrode arrays. Biotechnol Bioeng 2015; 113:403-13. [DOI: 10.1002/bit.25811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 08/06/2015] [Accepted: 08/18/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Giulia Regalia
- Neuroengineering and Medical Robotics Laboratory; Electronics, Information and Bioengineering Department; Politecnico di Milano; 20133 Milan Italy
| | - Emilia Biffi
- Neuroengineering and Medical Robotics Laboratory; Electronics, Information and Bioengineering Department; Politecnico di Milano; 20133 Milan Italy
| | - Silvia Achilli
- Neuroengineering and Medical Robotics Laboratory; Electronics, Information and Bioengineering Department; Politecnico di Milano; 20133 Milan Italy
| | - Giancarlo Ferrigno
- Neuroengineering and Medical Robotics Laboratory; Electronics, Information and Bioengineering Department; Politecnico di Milano; 20133 Milan Italy
| | - Andrea Menegon
- Advanced Light and Electron Microscopy Bio-Imaging Centre; Experimental Imaging Centre; San Raffaele Scientific Institute; 20132 Milan Italy
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory; Electronics, Information and Bioengineering Department; Politecnico di Milano; 20133 Milan Italy
| |
Collapse
|
5
|
Yang X, Hamner MA, Brown AM, Evans RD, Ye ZC, Chen S, Ransom BR. Novel hypoglycemic injury mechanism: N-methyl-D-aspartate receptor-mediated white matter damage. Ann Neurol 2014; 75:492-507. [DOI: 10.1002/ana.24050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/29/2013] [Accepted: 09/27/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Yang
- Department of Neurology; Ruijin Hospital; affiliated with Shanghai Jiaotong University School of Medicine; Shanghai China
| | | | - Angus M. Brown
- School of Biomedical Sciences; University of Nottingham; Nottingham United Kingdom
| | - Richard D. Evans
- School of Biomedical Sciences; University of Nottingham; Nottingham United Kingdom
| | - Zu-Cheng Ye
- Department of Neurology; University of Washington; Seattle WA
| | - Shengdi Chen
- Department of Neurology; Ruijin Hospital; affiliated with Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Bruce R. Ransom
- Department of Neurology; University of Washington; Seattle WA
| |
Collapse
|
6
|
de Solages C, Szapiro G, Brunel N, Hakim V, Isope P, Buisseret P, Rousseau C, Barbour B, Léna C. High-frequency organization and synchrony of activity in the purkinje cell layer of the cerebellum. Neuron 2008; 58:775-88. [PMID: 18549788 DOI: 10.1016/j.neuron.2008.05.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/21/2007] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
The cerebellum controls complex, coordinated, and rapid movements, a function requiring precise timing abilities. However, the network mechanisms that underlie the temporal organization of activity in the cerebellum are largely unexplored, because in vivo recordings have usually targeted single units. Here, we use tetrode and multisite recordings to demonstrate that Purkinje cell activity is synchronized by a high-frequency (approximately 200 Hz) population oscillation. We combine pharmacological experiments and modeling to show how the recurrent inhibitory connections between Purkinje cells are sufficient to generate these oscillations. A key feature of these oscillations is a fixed population frequency that is independent of the firing rates of the individual cells. Convergence in the deep cerebellar nuclei of Purkinje cell activity, synchronized by these oscillations, likely organizes temporally the cerebellar output.
Collapse
Affiliation(s)
- Camille de Solages
- Laboratoire de Neurobiologie, UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Montero M, Nielsen M, Rønn LCB, Møller A, Noraberg J, Zimmer J. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils. Brain Res 2007; 1177:124-35. [PMID: 17894933 DOI: 10.1016/j.brainres.2007.08.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/08/2007] [Accepted: 08/10/2007] [Indexed: 11/17/2022]
Abstract
PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD) and in transient global cerebral ischemia in gerbils. For in vitro studies, hippocampal slice cultures derived from 7-day-old mice and grown for 14 days, were submersed in oxygen-glucose deprived medium for 30 min and exposed to PNQX for 24 h, starting together with OGD, immediately after OGD, or 2 h after OGD. For comparison, other cultures were exposed to the NMDA antagonist MK-801 using the same protocol. Both PNQX and MK-801 displayed significant neuroprotective effects in all hippocampal subfields when present during and after OGD. When added just after OGD, only PNQX retained some neuroprotective effect. When added 2 h after OGD neither PNQX nor MK-801 had an effect. Transient global cerebral ischemia was induced in Mongolian gerbils by occlusion of both common carotid arteries for 4.5 min, with PNQX (10 mg/kg) being injected i.p. 30, 60 and 90 min after the insult. Subsequent analysis of brain sections stained for the neurodegeneration marker Fluoro-Jade B and immunostained for the astroglial marker glial fibrillary acidic protein revealed a significant PNQX-induced decrease in neuronal cell death and astroglial activation. We conclude that, PNQX provided neuroprotection against both global cerebral ischemia in gerbils in vivo and oxygen-glucose deprivation in mouse hippocampal slice cultures.
Collapse
Affiliation(s)
- Maria Montero
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winslowparken 21st, DK-5000 Odense C, Denmark.
| | | | | | | | | | | |
Collapse
|
8
|
Burman MA, Gewirtz JC. Hippocampal activity, but not plasticity, is required for early consolidation of fear conditioning with a short trace interval. Eur J Neurosci 2007; 25:2483-90. [PMID: 17445243 DOI: 10.1111/j.1460-9568.2007.05493.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dorsal hippocampus is required for explicit cue fear conditioning only when a temporal gap is inserted between conditioned stimulus (CS) termination and unconditioned stimulus (US) onset (trace fear conditioning). To examine the role of the dorsal hippocampus in associating temporally discontiguous stimuli and to minimize the potential contribution of contextual cues, fear conditioning was conducted using a relatively short (3-s) trace interval. Inactivation of the dorsal hippocampus using the AMPA receptor antagonist NBQX (3 microg/hemisphere) or the GABA(A) agonist muscimol (5 microg/hemisphere) disrupted trace fear conditioning when conducted immediately following training. Trace conditioning was not disrupted significantly when NBQX was infused either before or 2 h after training. Similarly, NBQX infusions were not effective when the CS and US overlapped (delay conditioning). Moreover, trace conditioning was not impaired by intrahippocampal infusion of either the NMDA receptor antagonist AP5 (5 microg/hemisphere) or the L-type voltage-gated calcium channel (VGCC) blocker diltiazem (20 or 40 microg/hemisphere). These data suggest that the involvement of the dorsal hippocampus in short trace interval fear conditioning is largely restricted to the early period of memory consolidation, during which time it mediates the storage of long-term memory in other brain regions.
Collapse
Affiliation(s)
- Michael A Burman
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Rd, Minneapolis, MN 55455, USA
| | | |
Collapse
|
9
|
Harpsøe K, Varming T, Gouliaev AH, Peters D, Liljefors T. Identification of a putative binding site for 5-alkyl-benzothiadiazides in the AMPA receptor dimer interface. J Mol Graph Model 2006; 26:213-25. [PMID: 16916614 DOI: 10.1016/j.jmgm.2006.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/05/2006] [Accepted: 07/05/2006] [Indexed: 11/29/2022]
Abstract
Crystal structures of three different allosteric modulators co-crystallized with the iGluR2 ligand-binding domain are currently available. The modulators, cyclothiazide, aniracetam and CX614, bind at overlapping binding sites in the dimer interface between two iGluR2 subunits. However, pharmacological data indicate that there are one or more additional binding sites for this class of compounds. Based on differences in structure-activity relationship data we show that 5-alkyl-benzothiadiazide (5ABTD) modulators and a series of close analogs of cyclothiazide, despite having a common core structure, do not have the same binding site. In the present work, a new potential binding site for allosteric modulators has been identified in the dimer interface of the iGluR2 ligand-binding domain. By comparing different iGluR2 crystal structures including different co-crystallized agonists, this cavity is shown to be a structurally conserved part of the dimer interface. The cavity is characterized with respect to shape and potential favorable interactions with ligands and docking is used to find a reasonable binding mode for the core structure of the 5ABTDs. The extensive structure-activity data available for this series of compounds are in agreement with the proposed binding mode, supporting the conclusion that the identified cavity most likely is the binding site for the 5ABTDs.
Collapse
Affiliation(s)
- Kasper Harpsøe
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
10
|
Nielsen AN, Mathiesen C, Blackburn-Munro G. Pharmacological characterisation of acid-induced muscle allodynia in rats. Eur J Pharmacol 2004; 487:93-103. [PMID: 15033380 DOI: 10.1016/j.ejphar.2004.01.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 12/22/2003] [Accepted: 01/21/2004] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that repeated injections of acidic saline, given into the lateral gastrocnemius muscle of rats, results in a bilateral reduction in withdrawal threshold to tactile stimulation of the hindpaws. We have now characterised this model of muscoskeletal pain pharmacologically, by evaluating the antinociceptive effects of various analgesics after systemic administration. The micro-opioid receptor agonist morphine (3 and 6 mg/kg) produced a particularly prolonged antiallodynic effect. The glutamate receptor antagonists ([8-methyl-5-(4-(N,N-dimethylsulfamoyl)phenyl)-6,7,8,9,-tetrahydro-1H-pyrrolo[3,2-h]-iso-quinoline-2,3-dione-3-O-(4-hydroxybutyric acid-2-yl)oxime] NS1209 and ketamine (6 and 15 mg/kg, respectively), the KCNQ K(+) channel openers retigabine and flupirtine (10 and 20 mg/kg, respectively) and the Na(+) channel blocker mexiletine (37.5 mg/kg) also significantly increased paw withdrawal threshold, although to a lesser degree than morphine. In contrast, the anticonvulsant lamotrigine (30 mg/kg), the cyclooxygenase-2 inhibitor carprofen (15 mg/kg) and the benzodiazepine diazepam (3 mg/kg) were ineffective. All antinociceptive effects were observed at nonataxic doses as determined by the rotarod test. These results suggest that in this model, muscle-mediated pain can be alleviated by various analgesics with differing mechanisms of action, and that once established ongoing inflammation does not appear to contribute to this process.
Collapse
|
11
|
Yasuda S, Ishida N, Higashiyama A, Morinobu S, Kato N. Characterization of audiogenic-like seizures in naive rats evoked by activation of AMPA and NMDA receptors in the inferior colliculus. Exp Neurol 2000; 164:396-406. [PMID: 10915578 DOI: 10.1006/exnr.2000.7401] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of glutamate receptors in the inferior colliculus (IC) in audiogenic and audiogenic-like seizures was investigated in adult rats with transient neonatal hypothyroidism by 0.02% propylthiouracil (PTU) treatment through mother's milk (PTU rats) and in naive rats treated intracisternally with N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA), or cyclothiazide, an inhibitor of rapid AMPA receptor desensitization. All rats showed audiogenic or audiogenic-like seizures characterized by running fit (RF) and generalized tonic-clonic seizures (GTCS). While systemically administered MK-801 inhibited GTCS, intracisternally administered NBQX inhibited RF and GTCS in both audiogenic and audiogenic-like seizures. Auditory stimulation shortened the latency to GTCS induced by AMPA, but not NMDA, at a subclinical dose and further elongated the shortened duration of RF, but not GTCS, induced by MK-801 pretreatment. Furthermore, Northern blot analysis was used to evaluate the expression of the immediate-early gene c-fos in the IC following induction of audiogenic or audiogenic-like seizures. The significant induction of c-fos mRNA by audiogenic seizures in PTU rats or by AMPA- or cyclothiazide-induced seizures in naive rats was prominent in the IC. MK-801 suppressed c-fos mRNA expression in the IC induced by audiogenic seizures in PTU rats or by AMPA-induced seizures in naive rats. NBQX suppressed the expression of c-fos mRNA in the IC induced by AMPA-induced seizures but did not suppress c-fos mRNA in PTU rats or rats with cyclothiazide-induced seizures. Auditory stimuli failed to affect c-fos mRNA induction by AMPA. The present study suggests that audiogenic-like seizures can be reproduced by glutamate receptor agonists in which AMPA receptors are primarily linked to the initiation of audiogenic seizures (RF) while NMDA receptors presumably located within the IC are involved in the propagation of GTCS in audiogenic seizures.
Collapse
Affiliation(s)
- S Yasuda
- Department of Psychiatry, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, 520-2192, Japan
| | | | | | | | | |
Collapse
|
12
|
Abstract
Proton-gated ion channels in cultured mouse cortical neurons were characterized using the patch clamp technique. In voltage clamp, rapid shifts of the extracellular saline from pH 7.4 to < 7.0 invariably triggered inward currents carried by sodium. The currents were inhibited by Amiloride (IC50: 6.2 microM). In current clamp, acidic saline depolarized the neurons and triggered trains of action potentials. Concentration-response experiments revealed an extreme intercell variance as the EC50-value for protons varied from pH 6.8 to 5.6, indicating heterogeneity in channel type expression from cell to cell. The possible involvement of acid sensing ion channels in ischemic neurodegeneration is discussed.
Collapse
Affiliation(s)
- T Varming
- NeuroSearch A/S, Smedeland, Glostrup, Denmark.
| |
Collapse
|
13
|
Mathiesen C, Caesar K, Akgören N, Lauritzen M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 1998; 512 ( Pt 2):555-66. [PMID: 9763643 PMCID: PMC2231204 DOI: 10.1111/j.1469-7793.1998.555be.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Mechanisms of activity-dependent increases in cerebral blood flow (CBF) were examined in rat cerebellar cortex using the laser Doppler flow technique and extracellular recordings of single unit activity and field potentials. 2. Stimulation of the monosynaptic climbing fibre system evoked long-lasting complex spikes in Purkinje cells, and extracellular field potentials with a characteristic profile that indicated contributions from both passive and active membrane mechanisms. The concomitant CBF increases were reproducible at fairly short intervals, and suggest that both synaptic activity and spikes may contribute to increased CBF. 3. Stimulation of the disynaptic parallel fibre system inhibited the spiking activity in Purkinje cells, while the postsynaptic activity increased as indicated by the simultaneously recorded field potential. Nevertheless, CBF always increased. The inhibition of spike firing activity was partly dependent on GABAergic transmission, but may also relate to the intrinsic membrane properties of Purkinje cells. 4. The CBF increases evoked by parallel or climbing fibre stimulation were highly correlated to the sum of neural activities, i.e. the negativity of field potentials multiplied by the stimulus frequency. This suggests a robust link between extracellular current flow and activity-dependent increases in CBF. 5. AMPA receptor blockade attenuated CBF increases and field potential amplitudes, while NMDA receptor antagonism did not. This is consistent with the idea that the CBF responses are of neuronal origin. 6. This study has shown that activity-dependent CBF increases evoked by stimulation of cerebellar parallel fibres are dependent on synaptic excitation, including excitation of inhibitory interneurones, whereas the net activity of Purkinje cells, the principal neurones of the cerebellar cortex, is unimportant for the vascular response. For the climbing fibre system, not only synaptic activity but also the generation of complex spikes from Purkinje cells contribute to the increases in CBF. The strong correlation between CBF and field potential amplitudes suggests that extracellular ion fluxes contribute to the coupling of brain activity to blood flow.
Collapse
Affiliation(s)
- C Mathiesen
- Department of Medical Physiology, The Panum Institute, University of Copenhagen and NeuroSearch A/S, Glostrup, Glostrup Hospital, Denmark.
| | | | | | | |
Collapse
|