1
|
Zhang J, Wang S, Yu J, Li B, Wang S, Suo N, Guo R, Xie X. A Dual Role of HGF-ERK Signaling in IL6/HGF-induced Hepatocyte Proliferation. Cell Mol Gastroenterol Hepatol 2025:101538. [PMID: 40409686 DOI: 10.1016/j.jcmgh.2025.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND & AIMS Primary hepatocytes are difficult to expand in vitro. Hepatocyte growth factor (HGF) and epidermal growth factor (EGF) have long been used to maintain primary hepatocytes in vitro but with limited growth promotion effect. Previously, we reported that the combination of interleukin 6 (IL6) with HGF and EGF (or the combination of IL6 with either of these growth factors) could support almost infinite growth of hepatocytes. However, the downstream pathways of these growth factors in hepatocyte proliferation remain elusive. METHODS Transcriptome analysis was carried out to analyze the activation of pathways under various culture condition. Pathway inhibitors were used in cell culture and a hepatectomy mouse model to study the function of different pathways in hepatocyte growth and liver regeneration. RESULTS We surprisingly discovered, that under growth condition, the transforming growth factor β (TGFβ) pathway, which is typically linked to growth inhibition, is activated. TGFβ activation is mainly induced by HGF via mitogen-activated protein kinase (MAPK)- extracellular regulated protein kinase (ERK) signaling; blocking the TGFβ pathway significantly enhances H6 (HGF and IL6)-induced hepatocyte expansion in vitro. However, blocking the MAPK-ERK signaling almost completely blocks H6-induced cell growth, indicating a dual effect of the ERK pathway. Further study demonstrates that the HGF-ERK pathway could also upregulate the protein level of YAP and the downstream genes associated with the Hippo-YAP signaling pathway, exerting a positive effect in hepatocyte proliferation. In a mouse partial hepatectomy model, blockade of the activated TGFβ signaling also significantly promotes liver regeneration in vivo. CONCLUSIONS We report a dual role of HGF-ERK signaling in hepatocyte culture. By blocking the growth-inhibiting TGFβ pathway, we could further promote H6-induced hepatocyte proliferation.
Collapse
Affiliation(s)
- Jingwei Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shitong Wang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiani Yu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bing Li
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Shun Wang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Suo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ren Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
| | - Xin Xie
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
| |
Collapse
|
2
|
Role of Hepatocyte Growth Regulators in Liver Regeneration. Cells 2023; 12:cells12020208. [PMID: 36672143 PMCID: PMC9856461 DOI: 10.3390/cells12020208] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
We have studied whether growth factors, cytokines, hormones, neurotransmitters, and local hormones (autacoids) promote the proliferation of hepatic parenchymal cells (i.e., hepatocytes) using in vitro primary cultured hepatocytes. The indicators used for this purpose include changes in DNA synthesis activity, nuclear number, cell number, cell cycle, and gene expression. In addition, the intracellular signaling pathways from the plasma membrane receptors to the nucleus have been examined in detail for representative growth-promoting factors that have been found to promote DNA synthesis and cell proliferation of hepatocytes. In examining intracellular signaling pathways, the effects of specific inhibitors of presumed signaling factors involved have been pharmacologically confirmed, and the phosphorylation activities of the signaling factors (e.g., RTK, ERK, mTOR, and p70 S6K) have been evaluated. As a result, it has been found that there are many factors that promote the proliferation of hepatocytes (e.g., HGF, EGF, TGF-α, IL-1β, TNF-α, insulin, growth hormone (GH), prostaglandin (PG)), and serotonin (5-HT)), while there are very few factors (e.g., TGF-β1 and glucocorticoids) that inhibit the effects of growth-promoting factors. We have also found that 5-HT and GH promote the proliferation of hepatocytes via different autocrine factors (e.g., TGF-α and IGF-I, respectively). Using primary cultured hepatocytes, it will be possible to further study the molecular and cellular aspects of liver regeneration.
Collapse
|
3
|
Tu T, Calabro SR, Lee A, Maczurek AE, Budzinska MA, Warner FJ, McLennan SV, Shackel NA. Hepatocytes in liver injury: Victim, bystander, or accomplice in progressive fibrosis? J Gastroenterol Hepatol 2015; 30:1696-704. [PMID: 26239824 DOI: 10.1111/jgh.13065] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/26/2015] [Indexed: 12/11/2022]
Abstract
Chronic liver disease causes significant morbidity and mortality through progressive fibrosis, cirrhosis, and liver cancer. The classical theory of fibrogenesis has hepatic stellate cells (HSCs) as the principal and only significant source of abnormal extracellular matrix (ECM). Further, HSCs have the major role in abnormal ECM turnover. It is the death of hepatocytes, as the initial target of injury, that initiates a sequence of events including the recruitment of inflammatory cells and activation of HSCs. Following this initial response, the ongoing insult to hepatocytes is regarded as perpetuating injury, but otherwise, hepatocytes are regarded as "victims" and "bystanders" in progressive fibrosis. Recent developments, however, challenge this view and suggest the concept of the hepatocyte being an active participant in liver injury. It is clear now that hepatocytes undergo phenotypic changes, adapt to injury, and react to the altered microenvironment. In this review, we describe studies showing that hepatocytes contribute to progressive fibrosis by direct manipulation of the surrounding ECM and through signaling to effector cells, particularly HSCs and intrahepatic immune cells. Together, these findings suggest an active "accomplice" role for the hepatocyte in progressive liver fibrosis and highlight novel pathways that could be targeted for development of future anti-fibrotic therapies.
Collapse
Affiliation(s)
- Thomas Tu
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah R Calabro
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Aimei Lee
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Annette E Maczurek
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Magdalena A Budzinska
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Fiona J Warner
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Susan V McLennan
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Nicholas A Shackel
- Liver Injury and Cancer, Centenary Institute, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,A. W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Moon MY, Kim HJ, Kim JG, Lee JY, Kim J, Kim SC, Choi IG, Kim PH, Park JB. Small GTPase Rap1 regulates cell migration through regulation of small GTPase RhoA activity in response to transforming growth factor-β1. J Cell Physiol 2013; 228:2119-26. [PMID: 23559363 DOI: 10.1002/jcp.24383] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/21/2013] [Indexed: 01/24/2023]
Abstract
Transforming growth factor (TGF)-β1 regulates diverse cellular functions. Particularly, TGF-β1 induces monocyte migration to sites of injury or inflammation in early period, whereas TGF-β1 inhibits cell migration in late phase. In this study, we attempted to understand how TGF-β1 suppresses cell migration in late phase. We found that TGF-β1 of short exposure induces the production of chemokines, such as macrophage inflammatory protein (MIP)-1α, by Raw 264.7 cells. However, knock-down of small GTPase RhoA by sh-RhoA inhibited the production of MIP-1α and macrophage migration, suggesting that RhoA is essential for expression of this chemokine. An activator of Epac (exchange proteins directly activated by cAMP; a guanine nucleotide exchange factor of Rap1), 8CPT-2Me-cAMP which leads to Rap1 activation abrogated MIP-1α expression and macrophage migration. Indeed, GTP-RhoA and GTP-Rap1 levels were reciprocally regulated in a time-dependent manner following TGF-β1 stimulation. 8CPT-2Me-cAMP suppressed GTP-RhoA levels, whereas si-Rap1 augmented GTP-RhoA levels and cell migration. TGF-β1 produced cAMP in late period and si-RNAs of Epac1 and Epac2 reduced GTP-Rap1 levels leading to promotion of GTP-RhoA levels. Furthermore, si-RNA of ARAP3 (Rap-dependent RhoGAP) increased GTP-RhoA level and cell migration. Therefore, we propose the mechanism that prolonged TGF-β1 treatment produce cAMP, which activates sequentially Epac, Rap1 and ARAP3, resulting in suppression of RhoA, chemokine expression, and macrophage migration. Contrary to the general concept that Rap1 stimulates cell migration, we demonstrated in this study that Rap1 inhibits cell migration by suppression of RhoA activity in response to TGF-β1.
Collapse
Affiliation(s)
- Mi-Young Moon
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chang HM, Klausen C, Leung PC. Antimüllerian hormone inhibits follicle-stimulating hormone-induced adenylyl cyclase activation, aromatase expression, and estradiol production in human granulosa-lutein cells. Fertil Steril 2013; 100:585-92.e1. [DOI: 10.1016/j.fertnstert.2013.04.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
|
6
|
Shah R, Reyes-Gordillo K, Arellanes-Robledo J, Lechuga CG, Hernández-Nazara Z, Cotty A, Rojkind M, Lakshman MR. TGF-β1 up-regulates the expression of PDGF-β receptor mRNA and induces a delayed PI3K-, AKT-, and p70(S6K) -dependent proliferative response in activated hepatic stellate cells. Alcohol Clin Exp Res 2013; 37:1838-48. [PMID: 23895226 DOI: 10.1111/acer.12167] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/01/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Transforming growth factor beta 1 (TGF-β1) is a pleiotropic cytokine that activates hepatic stellate cell (HSC) proliferation, but inhibits parenchymal cell proliferation. Therefore, we hypothesize that TGF-β1 regulates HSC proliferation and elucidated its molecular action. METHODS In order to elucidate the molecular mechanism whereby TGF-β1 up-regulates platelet derived growth factor beta (PDGF-β) receptor mRNA and induces a delayed proliferation of HSC, we used proliferation and apoptosis assays as well as RT-PCR, Western blot analysis, immunostaining, and flow cytometry in mouse and rat HSC. RESULTS We show that TGF-β1 markedly induces the proliferation of mouse HSC in culture with concomitant 2.1-fold (p < 0.001) stimulation in [(3) H]-thymidine incorporation into cellular DNA. This induction is maximal between 24 and 36 hours postcytokine exposure that is triggered by 7.6-fold (p < 0.001) up-regulation of PDGF-β receptor mRNA and associated increase in PDGF-β receptor protein after 48 hours. TGF-β1-dependent HSC proliferation is mimicked by H2 O2 that is inhibited by catalase, implying that TGF-β1 action is mediated via reactive oxygen species. HSC proliferation is blunted by PDGF-β receptor-neutralizing antibody as well as by specific inhibitors of PI3 kinase (PI3K), AKT, and p70(S6K) , indicating that the action of TGF-β1 involves the activation of PDGF-β receptor via the PI3K/AKT/p70(S6K) signaling pathway. TGF-β1 also induces a reorganization of actin and myosin filaments and cell morphology leading to the formation of palisades although their myosin and actin contents remained constant. These findings suggest that TGF-β1-mediated oxidative stress causes the transdifferentiation of HSC and primes them for extracellular matrix (ECM) deposition and scar contraction. CONCLUSIONS We conclude that liver injury up-regulates TGF-β1 that inhibits parenchymal cell proliferation, but stimulates HSC proliferation leading to the production of ECM and type I collagen resulting in fibrosis.
Collapse
Affiliation(s)
- Ruchi Shah
- Lipid Research Laboratory, VA Medical Center, Washington, District of Columbia; Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, District of Columbia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kimura M, Watanabe M, Ishibashi N, Yanagida S, Ogihara M. Acyclic retinoid NIK-333 accelerates liver regeneration and lowers serum transaminase activities in 70% partially hepatectomized rats, in vivo. Eur J Pharmacol 2010; 643:267-73. [DOI: 10.1016/j.ejphar.2010.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/27/2010] [Accepted: 06/21/2010] [Indexed: 12/26/2022]
|
8
|
Seeland U, Schäffer A, Selejan S, Hohl M, Reil JC, Müller P, Rosenkranz S, Böhm M. Effects of AT1- and beta-adrenergic receptor antagonists on TGF-beta1-induced fibrosis in transgenic mice. Eur J Clin Invest 2009; 39:851-9. [PMID: 19522835 DOI: 10.1111/j.1365-2362.2009.02183.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transforming growth factor-beta1 (TGF-beta1) is involved in interstitial remodelling promoting collagen synthesis and suppressing collagen degradation by inhibition of collagenases. TGF-beta1 mediates angiotensin II-dependent effects and modulates beta1-adrenergic signalling. To study the effect of neuroendocrine antagonism on TGF-beta-induced hypertrophic and fibrotic phenotype, we treated TGF-beta1 (Cys223,225Ser) transgenic mice (TGF-beta1-TG) with either the beta1-receptor blocker metoprolol (MET), the angiotensin II type I (AT1)-receptor antagonist telmisartan (TEL) or an antibody blocking TGF-beta1 signalling (TGFbeta1-sR-Ab). MATERIAL AND METHODS Transforming growth factor-beta1-TG mice (8 weeks) overexpressing TGF-beta1 were treated with either TEL (10 mg kg(-1)), MET (350 mg kg(-1)) or a soluble TGF-beta1 receptor antibody (1 mg kg(-1)) for 6 weeks. Morphological analyses of interstitium and cardiomyocytes were related to expression of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) by immunoblotting and zymography. RESULTS In TGF-beta1-TG mice, myocardial interstitial total collagen content was fourfold elevated compared to that of controls (P < 0.05) and was lowered under the treatment with TEL (P < 0.05). Protein expression of TIMP-1 and -4 was increased in TGF-beta1-TG but inhibited by TEL (TIMP-1 and TIMP-4) and MET (TIMP-1), while collagenase activity was decreased in TGF-beta1-TG and normalized by treatment with TEL (MMP-1 and MMP-13) and MET (MMP-1) (P < 0.05). Morphometric measurements of cardiomyocyte diameter and area demonstrated similar antihypertrophic effects for all treatment groups. CONCLUSION The AT1-antagonist TEL reduced myocardial hypertrophy and interstitial fibrosis in TGF-beta1-TG mice by normalizing MMP/TIMP ratio. beta1-Adrenergic inhibition by MET as well as TGF-beta1 antagonism induced antihypertrophic rather than antifibrotic effects. Inhibition of both renin-angiotensin system and beta1-adrenergic system may exert different but synergistic effects to reduce myocardial remodelling.
Collapse
Affiliation(s)
- U Seeland
- Universitätsklinikum des Saarlandes, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Usynin IF, Panin LE. Mechanisms determining phenotypic heterogeneity of hepatocytes. BIOCHEMISTRY (MOSCOW) 2008; 73:367-80. [PMID: 18457566 DOI: 10.1134/s0006297908040019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review summarizes results of biochemical and immunohistochemical studies indicating the existence of functional heterogeneity of hepatocytes depending on their localization in the hepatic acinus; this determines characteristic features of metabolism of carbohydrates, lipids, and xenobiotics. The physiological significance of hepatocyte heterogeneity is discussed. According to the proposed model of intercellular communication, the metabolic specialization of hepatocytes is determined by secretory activity of hepatic resident macrophages (Kupffer cells) localized mainly in the periportal zone of the liver acinus. Macrophages participate in secretion of a wide spectrum of intercellular mediators (cytokines, prostaglandins, growth factors) and also in metabolism of numerous blood metabolites and biologically active substances (hormones, lipoproteins, etc.). In the sinusoid and in the space of Disse (also known as perisinusoidal space) they form a concentration gradient of regulatory factors and metabolites inducing the phenotypic differences between hepatocytes.
Collapse
Affiliation(s)
- I F Usynin
- Institute of Biochemistry, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk 630117, Russia.
| | | |
Collapse
|
10
|
Bailey L, Kuroyanagi Y, Franco-Penteado CF, Conran N, Costa FF, Ausenda S, Cappellini MD, Ikuta T. Expression of the gamma-globin gene is sustained by the cAMP-dependent pathway in beta-thalassaemia. Br J Haematol 2007; 138:382-95. [PMID: 17614826 DOI: 10.1111/j.1365-2141.2007.06673.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study found that the cyclic adenosine monophosphate (cAMP)-dependent pathway efficiently induced gamma-globin expression in adult erythroblasts, and this pathway plays a role in gamma-globin gene (HBG) expression in beta-thalassaemia. Expression of HBG mRNA increased to about 46% of non-HBA mRNA in adult erythroblasts treated with forskolin, while a cyclic guanosine monophosphate (cGMP) analogue induced HBG mRNA to levels <20% of non-HBA mRNA. In patients with beta-thalassaemia intermedia, cAMP levels were elevated in both red blood cells and nucleated erythroblasts but no consistent elevation was found with cGMP levels. The transcription factor cAMP response element binding protein (CREB) was phosphorylated in nucleated erythroblasts and its phosphorylation levels correlated with HBG mRNA levels of the patients. Other signalling molecules, such as mitogen-activated protein kinases and signal transducers and activators of transcription proteins, were phosphorylated at variable levels and showed no correlations with the HBG mRNA levels. Plasma levels of cytokines, such as erythropoietin, stem cell factor and transforming growth factor-beta were increased in patients, and these cytokines induced both HBG mRNA expression and CREB phosphorylation. These results demonstrate that the cAMP-dependent pathway, the activity of which is augmented by multiple cytokines, plays a role in regulating HBG expression in beta-thalassaemia.
Collapse
Affiliation(s)
- Lakiea Bailey
- Department of Medicine, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kovach SJ, Price JA, Shaw CM, Theodorakis NG, McKillop IH. Role of cyclic-AMP responsive element binding (CREB) proteins in cell proliferation in a rat model of hepatocellular carcinoma. J Cell Physiol 2006; 206:411-9. [PMID: 16110470 DOI: 10.1002/jcp.20474] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of cyclic adenosine monophosphate (cAMP) is poorly understood in the regulation of normal and abnormal hepatic cell growth. In this study, we examined the regulation of intracellular cAMP levels and its effect on nuclear cAMP responsive elements (CREs) in a rat model of hepatocellular carcinoma (HCC). Tumorigenic liver cells were cultured from an in vivo model of HCC and the role of cAMP in cell mitogenesis determined. These data demonstrated agents that elevate intracellular cAMP ([cAMP]i) levels caused significant dose-dependent inhibition of serum-stimulated mitogenesis in HCC cells. Cells were next analyzed for transcription factor expression and activity following increased [cAMP]i. These data demonstrated time- and dose-dependent increases in CRE binding protein (pCREB) activity, a maximal response occurring after 10-20 min before returning to basal levels within 60 min. In contrast, increased [cAMP]i levels led to sustained inducible cAMP early repressor (ICER) II/IIgamma mRNA and protein induction. To understand these data in relation to the in vivo setting, HCC tumors were analyzed and compared to pair-matched normal liver (NL) samples. These studies demonstrated significantly elevated Gsalpha-protein expression in HCC versus NL in the absence of significant changes in basal cAMP levels. Analysis of total and active CREB demonstrated significantly increased total CREB/pCREB in HCC versus NL. Further analysis of CRE expression demonstrated significantly increased expression of ICER mRNA and protein in HCC versus sham operated (Sh). These data demonstrate cAMP, while capable of stimulating promitogenic CREB activation inhibits cell mitogenesis in HCC possibly via ICER induction.
Collapse
Affiliation(s)
- Stephen J Kovach
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | |
Collapse
|
12
|
Bhanu NV, Trice TA, Lee YT, Gantt NM, Oneal P, Schwartz JD, Noel P, Miller JL. A sustained and pancellular reversal of gamma-globin gene silencing in adult human erythroid precursor cells. Blood 2004; 105:387-93. [PMID: 15367428 DOI: 10.1182/blood-2004-04-1599] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We systematically compared cytokine-mediated increases or decreases in proliferation with globin gene and protein expression in adult human erythroblasts. Despite their opposite effects on growth, stem cell factor (SCF) and transforming growth factor beta (TGF-B) had synergistic effects with respect to fetal hemoglobin (HbF): average HbF/HbF + adult hemoglobin (HbA) ratio in erythropoietin (EPO) = 1.4 +/- 1.0%; EPO + TGF-B = 10.8 +/- 1.9%; EPO + SCF = 19.1 +/- 6.2%; and EPO + SCF + TGF-B (EST) = 39.3 +/- 6.3%. Polymerase chain reaction (PCR) revealed significant increases in gamma-globin transcripts that were balanced by reduced beta-globin transcripts. Single-cell quantitative PCR demonstrated a complete reversal of gamma-globin gene silencing with detectable gamma-globin mRNA in more than 95% of the cells. Immunostaining with HbF antibodies also showed a pancellular distribution in EST (96.2 +/- 0.01% HbF positive) compared with a heterocellular distribution in EPO (42.9 +/- 0.01% HbF positive). As shown here for the first time, a robust and pancellular reversal of gamma-globin gene silencing among hemoglobinized erythroblasts from adult humans may be achieved in the absence of hereditary mutation or direct genomic manipulation.
Collapse
Affiliation(s)
- Natarajan V Bhanu
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Rosenkranz S, Flesch M, Amann K, Haeuseler C, Kilter H, Seeland U, Schlüter KD, Böhm M. Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). Am J Physiol Heart Circ Physiol 2002; 283:H1253-62. [PMID: 12181157 DOI: 10.1152/ajpheart.00578.2001] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transforming growth factor-beta(1) (TGF-beta(1)) promotes or inhibits cell proliferation and induces fibrotic processes and extracellular matrix production in numerous cell types. Several cardiac diseases are associated with an increased expression of TGF-beta(1) mRNA, particularly during the transition from stable cardiac hypertrophy to heart failure. In vitro studies suggest a link between TGF-beta(1) signaling and the beta-adrenergic system. However, the in vivo effects of this growth factor on myocardial tissue have been poorly identified. In transgenic mice overexpressing TGF-beta(1) (TGF-beta), we investigated the in vivo effects on cardiac morphology, beta-adrenergic signaling, and contractile function. When compared with nontransgenic controls (NTG), TGF-beta mice revealed significant cardiac hypertrophy (heart weight, 164 +/- 7 vs. 130 +/- 3 mg, P < 0.01; heart weight-to-body weight ratio, 6.8 +/- 0.3 vs. 5.1 +/- 0.1 mg/g, P < 0.01), accompanied by interstitial fibrosis. These morphological changes correlated with an increased expression of hypertrophy-associated proteins such as atrial natriuretic factor (ANF). Furthermore, overexpression of TGF-beta(1) led to alterations of beta-adrenergic signaling as myocardial beta-adrenoceptor density increased from 7.3 +/- 0.3 to 11.2 +/- 1.1 fmol/mg protein (P < 0.05), whereas the expression of beta-adrenoceptor kinase-1 and inhibitory G proteins decreased by 56 +/- 9.7% and 58 +/- 7.6%, respectively (P < 0.05). As a consequence of altered beta-adrenergic signaling, hearts from TGF-beta showed enhanced contractile responsiveness to isoproterenol stimulation. In conclusion, we conclude that TGF-beta(1) induces cardiac hypertrophy and enhanced beta-adrenergic signaling in vivo. The morphological alterations are either induced by direct effects of TGF-beta(1) or may at least in part result from increased beta-adrenergic signaling, which may contribute to excessive catecholamine stimulation during the transition from compensated hypertrophy to heart failure.
Collapse
Affiliation(s)
- Stephan Rosenkranz
- Klinik III für Innere Medizin, Universität zu Köln, 50924 Köln, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wenzel S, Taimor G, Piper HM, Schlüter KD. Redox-sensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-beta expression in adult ventricular cardiomyocytes. FASEB J 2001; 15:2291-3. [PMID: 11511516 DOI: 10.1096/fj.00-0827fje] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cardiac hypertrophy as an adaptation to increased blood pressure leads to an increase in ventricular expression of transforming growth factor Cardiac hypertrophy as an adaptation to increased blood pressure leads to an increase in ventricular expression of transforming growth factor b (TGF-b), probably via the renin-angiotensin system. We studied in vivo to determine whether angiotensin II affects TGF-b expression independent from mechanical effects caused by the concomitant increase in blood pressure and in vitro intracellular signaling involved in angiotensin II-dependent TGF-b1 induction. In vivo, the AT1 receptor antagonist losartan, but not reduction of blood pressure by hydralazine, inhibited the increase in TGF-b1 expression caused by angiotensin II. In vitro, angiotensin II caused an induction of TGF-b1 expression in adult ventricular cardiomyocytes and induced AP-1 binding activity. Transfection with "decoys" directed against the binding site of AP-1 binding proteins inhibited the angiotensin II-dependent TGF-b induction. Angiotensin II induced TGF-b expression in a p38-MAP kinase-dependent way. p38-MAP kinase activation was diminished in presence of the antioxidants or diphenyleneiodium chloride, or by pretreatment with antisense nucleotides directed against phox22 and nox, components of smooth muscle type NAD(P)H oxidase. Thus, our study identifies a previously unrecognized coupling of cardiac AT receptors to a NAD(P)H oxidase complex similar to that expressed in smooth muscle cells and identifies p38-MAP kinase activation as an important downstream target.
Collapse
Affiliation(s)
- S Wenzel
- Physiologisches Institut, Universität Giessen, Germany
| | | | | | | |
Collapse
|