1
|
Lima C, Verdaguer IB, Wunderlich G, Katzin AM, Crabb BS, Gilson PR, Azevedo MF. Conditional expression of NanoLuc luciferase through a multimodular system offers rapid detection of antimalarial drug activity. Exp Parasitol 2023; 254:108620. [PMID: 37716462 DOI: 10.1016/j.exppara.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Conditional gene expression is a powerful tool to investigate putative vaccine and drug targets, especially in a haploid organism such as Plasmodium falciparum. Inducible systems based on regulation of either transcription, translation, protein or mRNA stability, among others, allow switching on an off the expression of any desired gene causing specific gain or loss of function phenotypes. However, those systems can be cumbersome involving the construction of large plasmids and generation of multiple transgenic parasite lines. In addition, the dynamic range of regulation achieved is not predictable for each individual gene and can be insufficient to generate detectable phenotypes when the genes of interest are silenced. Here, we combined up to three distinct inducible systems to regulate the expression of a single gene. Expression of the reporter NanoLuc luciferase was regulated over 40-fold, which correlates to the regulation achieved by each individual system multiplied by each other. We applied the conditionally expressed NanoLuc to evaluate the effect of fast-acting antimalarials such as chloroquine and artesunate as well as of slower-acting ones such as atovaquone. The conditionally expressed reporter allowed faster and more reliable detection of toxicity to the parasite, which correlated to the expected action of each compound. Bioluminescence achieved by the expression of this inducible highly sensitive reporter is therefore a promising tool to investigate the temporal effect of potential new antimalarials. This single plasmid combination system might also prove useful to achieve sufficient regulation of genes of interest to produce loss-of-function phenotypes.
Collapse
Affiliation(s)
- Caroline Lima
- Federal University of Sao Paulo, Santos, Sao Paulo, Brazil
| | - Ignasi B Verdaguer
- Departamento de Parasitologia, Instituto de Ciência Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-900, Brazil
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciência Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-900, Brazil
| | - Alejandro M Katzin
- Departamento de Parasitologia, Instituto de Ciência Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-900, Brazil
| | - Brendan S Crabb
- Burnet Institute, Melbourne, VIC, 3004, Australia; University of Melbourne, VIC, 3052, Australia; Monash University, Melbourne, VIC, 3004, Australia
| | - Paul R Gilson
- Burnet Institute, Melbourne, VIC, 3004, Australia; University of Melbourne, VIC, 3052, Australia
| | | |
Collapse
|
2
|
Otsuki H, Kaneko O, Ito D, Kondo Y, Iriko H, Ishino T, Tachibana M, Tsuboi T, Torii M. Cysteine Residues in Region 6 of the Plasmodium yoelii Erythrocyte-Binding-like Ligand That Are Related to Its Localization and the Course of Infection. Biomolecules 2023; 13:458. [PMID: 36979393 PMCID: PMC10046610 DOI: 10.3390/biom13030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Plasmodium malaria parasites use erythrocyte-binding-like (EBL) ligands to invade erythrocytes in their vertebrate host. EBLs are released from micronemes, which are secretory organelles located at the merozoite apical end and bind to erythrocyte surface receptors. Because of their essential nature, EBLs have been studied as vaccine candidates, such as the Plasmodium vivax Duffy binding protein. Previously, we showed through using the rodent malaria parasite Plasmodium yoelii that a single amino acid substitution within the EBL C-terminal Cys-rich domain (region 6) caused mislocalization of this molecule and resulted in alteration of the infection course and virulence between the non-lethal 17X and lethal 17XL strains. In the present study, we generated a panel of transgenic P. yoelii lines in which seven of the eight conserved Cys residues in EBL region 6 were independently substituted to Ala residues to observe the consequence of these substitutions with respect to EBL localization, the infection course, and virulence. Five out of seven transgenic lines showed EBL mislocalizations and higher parasitemias. Among them, three showed increased virulence, whereas the other two did not kill the infected mice. The remaining two transgenic lines showed low parasitemias similar to their parental 17X strain, and their EBL localizations did not change. The results indicate the importance of Cys residues in EBL region 6 for EBL localization, parasite infection course, and virulence and suggest an association between EBL localization and the parasite infection course.
Collapse
Affiliation(s)
- Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Yoko Kondo
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon 791-0295, Japan
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon 791-0295, Japan
| |
Collapse
|
3
|
Thawnashom K, Kaneko M, Xangsayarath P, Chaiyawong N, Yahata K, Asada M, Adams JH, Kaneko O. Validation of Plasmodium vivax centromere and promoter activities using Plasmodium yoelii. PLoS One 2019; 14:e0226884. [PMID: 31860644 PMCID: PMC6924662 DOI: 10.1371/journal.pone.0226884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/06/2019] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax is the leading cause of malaria outside Africa and represents a significant health and economic burden on affected countries. A major obstacle for P. vivax eradication is the dormant hypnozoite liver stage that causes relapse infections and the limited antimalarial drugs that clear this stage. Advances in studying the hypnozoite and other unique biological aspects of this parasite are hampered by the lack of a continuous in vitro laboratory culture system and poor availability of molecular tools for genetic manipulation. In this study, we aim to develop molecular tools that can be used for genetic manipulation of P. vivax. A putative P. vivax centromere sequence (PvCEN) was cloned and episomal centromere based plasmids expressing a GFP marker were constructed. Centromere activity was evaluated using a rodent malaria parasite Plasmodium yoelii. A plasmid carrying PvCEN was stably maintained in asexual-stage parasites in the absence of drug pressure, and approximately 45% of the parasites retained the plasmid four weeks later. The same retention rate was observed in parasites possessing a native P. yoelii centromere (PyCEN)-based control plasmid. The segregation efficiency of the plasmid per nuclear division was > 99% in PvCEN parasites, compared to ~90% in a control parasite harboring a plasmid without a centromere. In addition, we observed a clear GFP signal in both oocysts and salivary gland sporozoites isolated from mosquitoes. In blood-stage parasites after liver stage development, GFP positivity in PvCEN parasites was comparable to control PyCEN parasites. Thus, PvCEN plasmids were maintained throughout the parasite life cycle. We also validated several P. vivax promoter activities and showed that hsp70 promoter (~1 kb) was active throughout the parasite life cycle. This is the first data for the functional characterization of a P. vivax centromere that can be used in future P. vivax biological research.
Collapse
Affiliation(s)
- Kittisak Thawnashom
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
| | - Miho Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Phonepadith Xangsayarath
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Nattawat Chaiyawong
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
4
|
Kegawa Y, Asada M, Ishizaki T, Yahata K, Kaneko O. Critical role of Erythrocyte Binding-Like protein of the rodent malaria parasite Plasmodium yoelii to establish an irreversible connection with the erythrocyte during invasion. Parasitol Int 2018; 67:706-714. [PMID: 30025976 DOI: 10.1016/j.parint.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 01/14/2023]
Abstract
Plasmodium malaria parasites multiply within erythrocytes and possess a repertoire of proteins whose function is to recognize and invade these vertebrate host cells. One such protein involved in erythrocyte invasion is the micronemal protein, Erythrocyte Binding-Like (EBL), which has been studied as a potential target of vaccine development in Plasmodium vivax (PvDBP) and Plasmodium falciparum (EBA-175). In the rodent malaria parasite model Plasmodium yoelii, specific substitutions in the EBL regions responsible for intracellular trafficking (17XL parasite line) or receptor recognition (17X1.1pp. parasite line), paradoxically increase invasion ability and virulence rather than abolish EBL function. Attempts to disrupt the ebl gene locus in the 17XL and 17XNL lines were unsuccessful, suggesting EBL essentiality. To understand the mechanisms behind these potentially conflicting outcomes, we generated 17XL-based transfectants in which ebl expression is suppressed with anhydrotetracycline (ATc) and investigated merozoite behavior during erythrocyte invasion. In the absence of ATc, EBL was secreted to the merozoite surface, whereas following ATc administration parasitemia was negligible in vivo. Merozoites lacking EBL were unable to invade erythrocytes in vitro, indicating that EBL has a critical role for erythrocyte invasion. Quantitative time-lapse imaging revealed that with ATc administration a significant number of merozoites were detached from the erythrocyte after the erythrocyte deformation event and no echinocytosis was observed, indicating that EBL is required for merozoites to establish an irreversible connection with erythrocytes during invasion.
Collapse
Affiliation(s)
- Yuto Kegawa
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Masahito Asada
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Takahiro Ishizaki
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Osamu Kaneko
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
5
|
Plasmodium falciparum Calcium-Dependent Protein Kinase 2 Is Critical for Male Gametocyte Exflagellation but Not Essential for Asexual Proliferation. mBio 2017; 8:mBio.01656-17. [PMID: 29042501 PMCID: PMC5646254 DOI: 10.1128/mbio.01656-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Drug development efforts have focused mostly on the asexual blood stages of the malaria parasite Plasmodium falciparum. Except for primaquine, which has its own limitations, there are no available drugs that target the transmission of the parasite to mosquitoes. Therefore, there is a need to validate new parasite proteins that can be targeted for blocking transmission. P. falciparum calcium-dependent protein kinases (PfCDPKs) play critical roles at various stages of the parasite life cycle and, importantly, are absent in the human host. These features mark them as attractive drug targets. In this study, using CRISPR/Cas9 we successfully knocked out PfCDPK2 from blood-stage parasites, which was previously thought to be an indispensable protein. The growth rate of the PfCDPK2 knockout (KO) parasites was similar to that of wild-type parasites, confirming that PfCDPK2 function is not essential for the asexual proliferation of the parasite in vitro. The mature male and female gametocytes of PfCDPK2 KO parasites become round after induction. However, they fail to infect female Anopheles stephensi mosquitoes due to a defect(s) in male gametocyte exflagellation and possibly in female gametes. Despite reductions in the number of deaths it causes, malaria continues to be a leading infectious disease of the developing world. For effective control and elimination of malaria, multiple stages of the parasite need to be targeted. One such stage includes the transmission of the parasite to mosquitoes. Here, we demonstrate the successful knockout of PfCDPK2, which was previously thought to be indispensable for parasite growth in red blood cells. The PfCDPK2 KO parasites are incapable of establishing an infection in mosquitoes. Therefore, our study suggests that targeting PfCDPK2 may be a good strategy to control malaria transmission in countries with high transmission. Moreover, molecular understanding of the signaling pathway of PfCDPK2 may provide additional targets for malaria control.
Collapse
|
6
|
Abkallo HM, Martinelli A, Inoue M, Ramaprasad A, Xangsayarath P, Gitaka J, Tang J, Yahata K, Zoungrana A, Mitaka H, Acharjee A, Datta PP, Hunt P, Carter R, Kaneko O, Mustonen V, Illingworth CJR, Pain A, Culleton R. Rapid identification of genes controlling virulence and immunity in malaria parasites. PLoS Pathog 2017; 13:e1006447. [PMID: 28704525 PMCID: PMC5507557 DOI: 10.1371/journal.ppat.1006447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022] Open
Abstract
Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites. Developing a greater understanding of malaria genetics is a key step in combating the threat posed by the disease. Here we use a novel approach to study two important properties of the parasite; the rate at which parasites grow within a single host, and the means by which parasites are affected by the host immune system. Two malaria strains with different biological properties were crossed in mosquitoes to produce a hybrid population, which was then grown in naïve and vaccinated mice. Parasites with genes conveying increased growth or immune evasion are favoured under natural selection, leaving a signature on the genetic composition of the cross population. We describe a novel mathematical approach to interpret this signature, identifying selected genes within the parasite population. We discover new genetic variants conveying increased within-host growth and resistance to host immunity in a mouse malaria strain. Experimental validation highlights the ability of this rapid experimental process for generating insights into malaria biology.
Collapse
Affiliation(s)
- Hussein M. Abkallo
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Axel Martinelli
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Megumi Inoue
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Abhinay Ramaprasad
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Phonepadith Xangsayarath
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jesse Gitaka
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Centre for Malaria Elimination, School of Medicine, Mount Kenya University, Thika, Kenya
| | - Jianxia Tang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Jiangsu, China
| | - Kazuhide Yahata
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Augustin Zoungrana
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hayato Mitaka
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Arita Acharjee
- Indian Institute of Science Education and Research Kolkata, Mohanpur - 741 246, West Bengal, India
| | - Partha P. Datta
- Indian Institute of Science Education and Research Kolkata, Mohanpur - 741 246, West Bengal, India
| | - Paul Hunt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Carter
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Osamu Kaneko
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Ville Mustonen
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Christopher J. R. Illingworth
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (CJRI); (AP); (RC)
| | - Arnab Pain
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- * E-mail: (CJRI); (AP); (RC)
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- * E-mail: (CJRI); (AP); (RC)
| |
Collapse
|
7
|
Mongui A, Pérez-Llanos FJ, Yamamoto MM, Lozano M, Zambrano MM, Del Portillo P, Fernández-Becerra C, Restrepo S, Del Portillo HA, Junca H. Development of a genetic tool for functional screening of anti-malarial bioactive extracts in metagenomic libraries. Malar J 2015; 14:233. [PMID: 26040274 PMCID: PMC4464701 DOI: 10.1186/s12936-015-0748-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/26/2015] [Indexed: 12/25/2022] Open
Abstract
Background The chemical treatment of Plasmodium falciparum for human infections is losing efficacy each year due to the rise of resistance. One possible strategy to find novel anti-malarial drugs is to access the largest reservoir of genomic biodiversity source on earth present in metagenomes of environmental microbial communities. Methods A bioluminescent P. falciparum parasite was used to quickly detect shifts in viability of microcultures grown in 96-well plates. A synthetic gene encoding the Dermaseptin 4 peptide was designed and cloned under tight transcriptional control in a large metagenomic insert context (30 kb) to serve as proof-of-principle for the screening platform. Results Decrease in parasite viability consistently correlated with bioluminescence emitted from parasite microcultures, after their exposure to bacterial extracts containing a plasmid or fosmid engineered to encode the Dermaseptin 4 anti-malarial peptide. Conclusions Here, a new technical platform to access the anti-malarial potential in microbial environmental metagenomes has been developed.
Collapse
Affiliation(s)
- Alvaro Mongui
- RG Microbial Ecology: Metabolism, Genomics & Evolution - CorpoGen, Bogotá, Colombia. .,Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
| | - Francy J Pérez-Llanos
- RG Microbial Ecology: Metabolism, Genomics & Evolution - CorpoGen, Bogotá, Colombia. .,Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
| | - Marcio M Yamamoto
- Departamento de Parasitologia, Universidade de São Paulo, São Paulo, Brazil.
| | - Marcela Lozano
- RG Microbial Ecology: Metabolism, Genomics & Evolution - CorpoGen, Bogotá, Colombia.
| | - Maria M Zambrano
- RG Microbial Ecology: Metabolism, Genomics & Evolution - CorpoGen, Bogotá, Colombia.
| | - Patricia Del Portillo
- RG Microbial Ecology: Metabolism, Genomics & Evolution - CorpoGen, Bogotá, Colombia.
| | - Carmen Fernández-Becerra
- ICREA at ISGlobal, Barcelona Ctr Int Health Res (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| | - Silvia Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
| | - Hernando A Del Portillo
- ICREA at ISGlobal, Barcelona Ctr Int Health Res (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.
| | - Howard Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution - CorpoGen, Bogotá, Colombia. .,Present Address: Applied Biology Program, Faculty of Basic & Applied Sciences, Universidad Militar Nueva Granada-UMNG, Campus Cajicá, Bogotá, DC, Colombia.
| |
Collapse
|
8
|
Siciliano G, Alano P. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research. Front Microbiol 2015; 6:391. [PMID: 26029172 PMCID: PMC4426725 DOI: 10.3389/fmicb.2015.00391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022] Open
Abstract
The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.
Collapse
Affiliation(s)
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di SanitàRome, Italy
| |
Collapse
|
9
|
Squalestatin is an inhibitor of carotenoid biosynthesis in Plasmodium falciparum. Antimicrob Agents Chemother 2015; 59:3180-8. [PMID: 25779575 DOI: 10.1128/aac.04500-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/09/2015] [Indexed: 01/01/2023] Open
Abstract
The increasing resistance of malaria parasites to almost all available drugs calls for the characterization of novel targets and the identification of new compounds. Carotenoids are polyisoprenoids from plants, algae, and some bacteria, and they are biosynthesized by Plasmodium falciparum but not by mammalian cells. Biochemical and reverse genetics approaches were applied to demonstrate that phytoene synthase (PSY) is a key enzyme for carotenoid biosynthesis in P. falciparum and is essential for intraerythrocytic growth. The known PSY inhibitor squalestatin reduces biosynthesis of phytoene and kills parasites during the intraerythrocytic cycle. PSY-overexpressing parasites showed increased biosynthesis of phytoene and its derived product phytofluene and presented a squalestatin-resistant phenotype, suggesting that this enzyme is the primary target of action of this drug in the parasite.
Collapse
|
10
|
Transfection of live, tick derived sporozoites of the protozoan Apicomplexan parasite Theileria parva. Vet Parasitol 2015; 208:238-41. [DOI: 10.1016/j.vetpar.2015.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 01/12/2015] [Accepted: 01/17/2015] [Indexed: 01/18/2023]
|
11
|
Plasmodium falciparum transfected with ultra bright NanoLuc luciferase offers high sensitivity detection for the screening of growth and cellular trafficking inhibitors. PLoS One 2014; 9:e112571. [PMID: 25392998 PMCID: PMC4231029 DOI: 10.1371/journal.pone.0112571] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/08/2014] [Indexed: 11/19/2022] Open
Abstract
Drug discovery is a key part of malaria control and eradication strategies, and could benefit from sensitive and affordable assays to quantify parasite growth and to help identify the targets of potential anti-malarial compounds. Bioluminescence, achieved through expression of exogenous luciferases, is a powerful tool that has been applied in studies of several aspects of parasite biology and high throughput growth assays. We have expressed the new reporter NanoLuc (Nluc) luciferase in Plasmodium falciparum and showed it is at least 100 times brighter than the commonly used firefly luciferase. Nluc brightness was explored as a means to achieve a growth assay with higher sensitivity and lower cost. In addition we attempted to develop other screening assays that may help interrogate libraries of inhibitory compounds for their mechanism of action. To this end parasites were engineered to express Nluc in the cytoplasm, the parasitophorous vacuole that surrounds the intraerythrocytic parasite or exported to the red blood cell cytosol. As proof-of-concept, these parasites were used to develop functional screening assays for quantifying the effects of Brefeldin A, an inhibitor of protein secretion, and Furosemide, an inhibitor of new permeation pathways used by parasites to acquire plasma nutrients.
Collapse
|
12
|
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology 2014; 141:1563-1592. [PMID: 25068315 DOI: 10.1017/s0031182014000961] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
- ADRU-ARS, United States Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Anabel E Rodriguez
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
| | - Daniela A Flores
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- ANPCyT, C1425FQD Ciudad Autonoma de Buenos Aires, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
Transfection systems for Babesia bovis: A review of methods for the transient and stable expression of exogenous genes. Vet Parasitol 2010; 167:205-15. [DOI: 10.1016/j.vetpar.2009.09.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Single amino acid substitution in Plasmodium yoelii erythrocyte ligand determines its localization and controls parasite virulence. Proc Natl Acad Sci U S A 2009; 106:7167-72. [PMID: 19346470 DOI: 10.1073/pnas.0811313106] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major virulence determinant of the rodent malaria parasite, Plasmodium yoelii, has remained unresolved since the discovery of the lethal line in the 1970s. Because virulence in this parasite correlates with the ability to invade different types of erythrocytes, we evaluated the potential role of the parasite erythrocyte binding ligand, PyEBL. We found 1 amino acid substitution in a domain responsible for intracellular trafficking between the lethal and nonlethal parasite lines and, furthermore, that the intracellular localization of PyEBL was distinct between these lines. Genetic modification showed that this substitution was responsible not only for PyEBL localization but also the erythrocyte-type invasion preference of the parasite and subsequently its virulence in mice. This previously unrecognized mechanism for altering an invasion phenotype indicates that subtle alterations of a malaria parasite ligand can dramatically affect host-pathogen interactions and malaria virulence.
Collapse
|
15
|
Stable expression of a GFP-BSD fusion protein in Babesia bovis merozoites. Int J Parasitol 2009; 39:289-97. [DOI: 10.1016/j.ijpara.2008.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/29/2008] [Accepted: 08/08/2008] [Indexed: 11/22/2022]
|
16
|
Epp C, Raskolnikov D, Deitsch KW. A regulatable transgene expression system for cultured Plasmodium falciparum parasites. Malar J 2008; 7:86. [PMID: 18492282 PMCID: PMC2409362 DOI: 10.1186/1475-2875-7-86] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/20/2008] [Indexed: 11/16/2022] Open
Abstract
Background The ability to transfect and create transgenic cultured malaria parasites has transformed the study of Plasmodium falciparum over the last decade. With the completion of the annotated genome sequence, the process of gene discovery now routinely includes gene knockouts, over-expression and complementation analysis. However, while this technology has proven extremely valuable, significant limitations exist. In particular, P. falciparum DNA is often unstable and difficult to clone because of its AT-rich, repetitive nature. As a result, transgene expression constructs can be difficult to assemble due to the need to include two expression cassettes on a single plasmid, one to drive expression of the transgene of interest and a second for expression of the selectable marker. In addition, transgene expression levels are usually not regulatable, making it difficult to assess phenotypes that are sensitive to the amount of protein expressed. Results A plasmid based system for transgene expression is described that uses a single, bidirectional promoter to drive expression of both the transgene and the selectable marker, thus greatly reducing the size of the construct and enhancing stability. Further, by altering the concentration of drug used for selection, it is possible to modulate the copy number of the concatameric episomes and thereby regulate the expression level of the transgene through a range greater than 10 fold. Conclusion The transgene expression system described here should prove useful for both routine protein over-expression and complementation experiments as well as for experiments in which precisely manipulating the expression level of candidate proteins is desirable. This should provide an additional level of precision to the tools used to study the molecular biology of malaria parasites.
Collapse
Affiliation(s)
- Christian Epp
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, W-704, Box 62, New York, NY 10021, USA.
| | | | | |
Collapse
|
17
|
Promoter regions of Plasmodium vivax are poorly or not recognized by Plasmodium falciparum. Malar J 2007; 6:20. [PMID: 17313673 PMCID: PMC1805447 DOI: 10.1186/1475-2875-6-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 02/21/2007] [Indexed: 11/18/2022] Open
Abstract
Background Heterologous promoter analysis in Plasmodium has revealed the existence of conserved cis regulatory elements as promoters from different species can drive expression of reporter genes in heterologous transfection assays. Here, the functional characterization of different Plasmodium vivax promoters in Plasmodium falciparum using luciferase as the reporter gene is presented. Methods Luciferase reporter plasmids harboring the upstream regions of the msp1, dhfr, and vir3 genes as well as the full-length intergenic regions of the vir23/24 and ef-1α genes of P. vivax were constructed and transiently transfected in P. falciparum. Results Only the constructs with the full-length intergenic regions of the vir23/24 and ef-1α genes were recognized by the P. falciparum transcription machinery albeit to values approximately two orders of magnitude lower than those reported by luc plasmids harbouring promoter regions from P. falciparum and Plasmodium berghei. A bioinformatics approach allowed the identification of a motif (GCATAT) in the ef-1α intergenic region that is conserved in five Plasmodium species but is degenerate (GCANAN) in P. vivax. Mutations of this motif in the P. berghei ef-1α promoter region decreased reporter expression indicating it is active in gene expression in Plasmodium. Conclusion Together, this data indicates that promoter regions of P. vivax are poorly or not recognized by the P. falciparum transcription machinery suggesting the existence of P. vivax-specific transcription regulatory elements.
Collapse
|
18
|
Sá JM, Yamamoto MM, Fernandez-Becerra C, de Azevedo MF, Papakrivos J, Naudé B, Wellems TE, Del Portillo HA. Expression and function of pvcrt-o, a Plasmodium vivax ortholog of pfcrt, in Plasmodium falciparum and Dictyostelium discoideum. Mol Biochem Parasitol 2006; 150:219-28. [PMID: 16987557 DOI: 10.1016/j.molbiopara.2006.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/12/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Chloroquine resistance in Plasmodium vivax threatens the use of this drug as first-line treatment for millions of people infected each year worldwide. Unlike Plasmodium falciparum, in which chloroquine resistance is associated with mutations in the pfcrt gene encoding a digestive vacuole transmembrane protein, no point mutations have been associated with chloroquine resistance in the P. vivax ortholog gene, pvcrt-o (also called pvcg10). However, the question remains whether pvcrt-o can affect chloroquine response independent of mutations. Since P. vivax cannot be cultured in vitro, we used two heterologous expression systems to address this question. Results from the first system, in which chloroquine sensitive P. falciparum parasites were transformed with pvcrt-o, showed a 2.2-fold increase in chloroquine tolerance with pvcrt-o expression under a strong promoter; this effect was reversed by verapamil. In the second system, wild type pvcrt-o or a mutated form of the gene was expressed in Dictyostelium discoideum. Forms of PvCRT-o engineered to express either lysine or threonine at position 76 produced a verapamil-reversible reduction of chloroquine accumulation in this system to approximately 60% of that in control cells. Our data support an effect of PvCRT-o on chloroquine transport and/or accumulation by P. vivax, independent of the K76T amino acid substitution.
Collapse
Affiliation(s)
- Juliana Martha Sá
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-900, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|