1
|
Xu C, Zhang Q, Yusupu Y. Radical Strategy Towards N-glycosides: Current Advances and Future Prospects. Chembiochem 2025; 26:e202400864. [PMID: 39887831 DOI: 10.1002/cbic.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
N-glycosides exhibit diverse biological and pharmacological activities, making their efficient synthesis crucial for both biological research and drug development. Traditional acid-promoted N-glycosylation methods, which rely on the formation of oxocarbenium intermediates, often face significant challenges. These methods are water-sensitive and typically require neighboring group participation to achieve high selectivity. Furthermore, they depend on acid activation, rendering them incompatible with alkyl amine. Additionally, low-nucleophilicity amides often need to be converted into their TMS-derivatives to enhance reactivity, limiting the direct use of such substrates. In contrast, radical-based strategies have emerged as a promising alternative, addressing many of these limitations and leading to notable advances in N-glycosylation. This review explores the unique properties of N-glycosides, the inherent challenges of traditional N-glycosylation techniques, and the transformative advantages offered by radical-based approaches. Specifically, it highlights recent advancements in radical-mediated N-glycosylation, including photoredox radical strategies, radical/ionic hybrid approaches, and metallaphotoredox catalysis, accompanied by a detailed discussion of the underlying mechanisms. Finally, the ongoing challenges and potential future directions of N-glycoside synthesis using radical strategies are presented.
Collapse
Affiliation(s)
- Chunfa Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou, University, Fuzhou, 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qinshuo Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou, University, Fuzhou, 350108, China
| | - Yimuran Yusupu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou, University, Fuzhou, 350108, China
| |
Collapse
|
2
|
Muhamad N, Na-Bangchang K. Metabolite Profiling in Anticancer Drug Development: A Systematic Review. Drug Des Devel Ther 2020; 14:1401-1444. [PMID: 32308372 PMCID: PMC7154001 DOI: 10.2147/dddt.s221518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Drug metabolism is one of the most important pharmacokinetic processes and plays an important role during the stage of drug development. The metabolite profile investigation is important as the metabolites generated could be beneficial for therapy or leading to serious toxicity. This systematic review aims to summarize the research articles relating to the metabolite profile investigation of conventional drugs and herb-derived compounds for cancer chemotherapy, to examine factors influencing metabolite profiling of these drugs/compounds, and to determine the relationship between therapeutic efficacy and toxicity of their metabolites. The literature search was performed through PubMed and ScienceDirect databases up to January 2019. Out of 830 published articles, 78 articles were included in the analysis based on pre-defined inclusion and exclusion criteria. Both phase I and II enzymes metabolize the anticancer agents/herb-derived compounds . The major phase I reactions include oxidation/hydroxylation and hydrolysis, while the major phase II reactions are glucuronidation, methylation, and sulfation. Four main factors were found to influence metabolite formation, including species, gender, and route and dose of drug administration. Some metabolites were identified as active or toxic metabolites. This information is critical for cancer chemotherapy and anticancer drug development.
Collapse
Affiliation(s)
- Nadda Muhamad
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand.,Drug Discovery and Development Center, Office of Advanced Sciences and Technology, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
3
|
Zhao G, Zhu M, Provot O, Alami M, Messaoudi S. Synthesis of 2,3-Substituted β-N-Glycosyl Indoles through C–H Activation/Annulation Process under Rh(III)-Catalysis. Org Lett 2019; 22:57-61. [PMID: 31860311 DOI: 10.1021/acs.orglett.9b03893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guangkuan Zhao
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| | - Mingxiang Zhu
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| | - Olivier Provot
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| |
Collapse
|
4
|
Del Mundo IMA, Vasquez KM, Wang G. Modulation of DNA structure formation using small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:118539. [PMID: 31491448 PMCID: PMC6851491 DOI: 10.1016/j.bbamcr.2019.118539] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Genome integrity is essential for proper cell function such that genetic instability can result in cellular dysfunction and disease. Mutations in the human genome are not random, and occur more frequently at "hotspot" regions that often co-localize with sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures. Non-B DNA-forming sequences are mutagenic, can stimulate the formation of DNA double-strand breaks, and are highly enriched at mutation hotspots in human cancer genomes. Thus, small molecules that can modulate the conformations of these structure-forming sequences may prove beneficial in the prevention and/or treatment of genetic diseases. Further, the development of molecular probes to interrogate the roles of non-B DNA structures in modulating DNA function, such as genetic instability in cancer etiology are warranted. Here, we discuss reported non-B DNA stabilizers, destabilizers, and probes, recent assays to identify ligands, and the potential biological applications of these DNA structure-modulating molecules.
Collapse
Affiliation(s)
- Imee M A Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| |
Collapse
|
5
|
Aneja B, Arif R, Perwez A, Napoleon JV, Hasan P, Rizvi MMA, Azam A, Rahisuddin, Abid M. N-Substituted 1,2,3-Triazolyl-Appended Indole-Chalcone Hybrids as Potential DNA Intercalators Endowed with Antioxidant and Anticancer Properties. ChemistrySelect 2018. [DOI: 10.1002/slct.201702913] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Babita Aneja
- Department of Biosciences; Jamia Millia Islamia; Medicinal Chemistry Laboratory, Jamia Nagar; New Delhi 110025 India
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Rizwan Arif
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Ahmad Perwez
- Department of Biosciences; Jamia Millia Islamia; Genome Biology Laboratory, Jamia Nagar; New Delhi 110025 India
| | - John V. Napoleon
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE 68198-6805 USA
| | - Phool Hasan
- Department of Biosciences; Jamia Millia Islamia; Medicinal Chemistry Laboratory, Jamia Nagar; New Delhi 110025 India
| | - M. Moshahid A. Rizvi
- Department of Biosciences; Jamia Millia Islamia; Genome Biology Laboratory, Jamia Nagar; New Delhi 110025 India
| | - Amir Azam
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Rahisuddin
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Mohammad Abid
- Department of Biosciences; Jamia Millia Islamia; Medicinal Chemistry Laboratory, Jamia Nagar; New Delhi 110025 India
| |
Collapse
|
6
|
Redjdal W, Ibrahim N, Benmerad B, Alami M, Messaoudi S. Convergent Synthesis of N,S-bis Glycosylquinolin-2-ones via a Pd-G3-XantPhos Precatalyst Catalysis. Molecules 2018; 23:molecules23030519. [PMID: 29495402 PMCID: PMC6017768 DOI: 10.3390/molecules23030519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 11/20/2022] Open
Abstract
Buchwald-Hartwig-Migita cross-coupling of 1-thiosugars with α- or β-3-iodo-N-glycosylquinolin-2-ones has been accomplished under mild and operationally simple reaction conditions through the use of a Pd-G3 XantPhos palladacycle precatalyst. This new methodology has been successfully applied to a variety of α- or β-mono-, di-, and poly-thiosugar derivatives to efficiently synthesize a series of α- or β-N,S-bis-glycosyl quinolin-2-ones, which are difficult to synthesize by classical methods.
Collapse
Affiliation(s)
- Wafa Redjdal
- Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, 0600 Bejaia, Algeria.
| | - Nada Ibrahim
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92296, France.
| | - Belkacem Benmerad
- Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, 0600 Bejaia, Algeria.
| | - Mouad Alami
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92296, France.
| | - Samir Messaoudi
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92296, France.
| |
Collapse
|
7
|
Luong TTH, Touchet S, Alami M, Messaoudi S. Selective Palladium-Catalyzed Domino Heck/Buchwald-Hartwig Arylations ofN-Glycosylcinnamamides: An Efficient Route to 4-Aryl-N-glycosylquinolin-2-ones. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Thi Thanh Huyen Luong
- Univ Paris-Sud, CNRS, BioCIS-UMR 8076, Equipe Labellisée Ligue Contre le Cancer, Laboratoire de Chimie Thérapeutique; Faculté de Pharmacie; 5 rue J.-B. Clément 92296 Châtenay-Malabry France
| | - Sabrina Touchet
- Univ Paris-Sud, CNRS, BioCIS-UMR 8076, Equipe Labellisée Ligue Contre le Cancer, Laboratoire de Chimie Thérapeutique; Faculté de Pharmacie; 5 rue J.-B. Clément 92296 Châtenay-Malabry France
| | - Mouad Alami
- Univ Paris-Sud, CNRS, BioCIS-UMR 8076, Equipe Labellisée Ligue Contre le Cancer, Laboratoire de Chimie Thérapeutique; Faculté de Pharmacie; 5 rue J.-B. Clément 92296 Châtenay-Malabry France
| | - Samir Messaoudi
- Univ Paris-Sud, CNRS, BioCIS-UMR 8076, Equipe Labellisée Ligue Contre le Cancer, Laboratoire de Chimie Thérapeutique; Faculté de Pharmacie; 5 rue J.-B. Clément 92296 Châtenay-Malabry France
| |
Collapse
|
8
|
Uda RM, Matsui T, Takei M. Binding of malachite green promotes stability and shows preference for a human telomere DNA G-quadruplex. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1297447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ryoko M. Uda
- Department of Chemical Engineering, National Institute of Technology, Nara College, Yamato-koriyama, Japan
| | - Takashi Matsui
- Department of Chemical Engineering, National Institute of Technology, Nara College, Yamato-koriyama, Japan
| | - Michiko Takei
- Department of Chemical Engineering, National Institute of Technology, Nara College, Yamato-koriyama, Japan
| |
Collapse
|
9
|
Bansal S, Bajaj P, Pandey S, Tandon V. Topoisomerases: Resistance versus Sensitivity, How Far We Can Go? Med Res Rev 2016; 37:404-438. [PMID: 27687257 DOI: 10.1002/med.21417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases are ubiquitously present remarkable molecular machines that help in altering topology of DNA in living cells. The crucial role played by these nucleases during DNA replication, transcription, and recombination vis-à-vis less sequence similarity among different species makes topoisomerases unique and attractive targets for different anticancer and antibacterial drugs. However, druggability of topoisomerases by the existing class of molecules is increasingly becoming questationable due to resistance development predominated by mutations in the corresponding genes. The current scenario facing a decline in the development of new molecules further comprises an important factor that may challenge topoisomerase-targeting therapy. Thus, it is imperative to wisely use the existing inhibitors lest with this rapid rate of losing grip over the target we may not go too far. Furthermore, it is important not only to design new molecules but also to develop new approaches that may avoid obstacles in therapies due to multiple resistance mechanisms. This review provides a succinct account of different classes of topoisomerase inhibitors, focuses on resistance acquired by mutations in topoisomerases, and discusses the various approaches to increase the efficacy of topoisomerase inhibitors. In a later section, we also suggest the possibility of using bisbenzimidazoles along with efflux pump inhibitors for synergistic bactericidal effects.
Collapse
Affiliation(s)
- Sandhya Bansal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Priyanka Bajaj
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Stuti Pandey
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
10
|
Chaires JB. A small molecule--DNA binding landscape. Biopolymers 2016; 103:473-9. [PMID: 25913470 DOI: 10.1002/bip.22660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/16/2015] [Indexed: 02/03/2023]
Abstract
This brief account traces the development of a "competition dialysis" method used to characterize the structural and sequence selectivity of DNA binding compounds. The method was inspired by a simple "differential dialysis" method pioneered by Don Crothers to explore base-selective intercalator binding. Results from compiled competition dialysis studies provide a small-molecule DNA binding landscape that shows a rich diversity of interactions and molecular recognition.
Collapse
Affiliation(s)
- Jonathan B Chaires
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| |
Collapse
|
11
|
Biological potential of carbazole derivatives. Eur J Med Chem 2015; 94:405-26. [DOI: 10.1016/j.ejmech.2015.02.059] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 11/21/2022]
|
12
|
Kathiravan MK, Khilare MM, Nikoomanesh K, Chothe AS, Jain KS. Topoisomerase as target for antibacterial and anticancer drug discovery. J Enzyme Inhib Med Chem 2012; 28:419-35. [DOI: 10.3109/14756366.2012.658785] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy,
Maharashtra, India
| | - Madhavi M. Khilare
- Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy,
Maharashtra, India
| | - Kiana Nikoomanesh
- Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy,
Maharashtra, India
| | - Aparna S. Chothe
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy,
Pune, Maharashtra, India
| | - Kishor S. Jain
- Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy,
Maharashtra, India
| |
Collapse
|
13
|
Kaluzhny DN, Shchyolkina AK, Ilyinsky NS, Borisova OF, Shtil AA. Novel Indolocarbazole Derivative 12-(α-L-arabinopyranosyl)indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7-dione Is a Preferred c-Myc Guanine Quadruplex Ligand. J Nucleic Acids 2011; 2011:184735. [PMID: 21772991 PMCID: PMC3136114 DOI: 10.4061/2011/184735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/04/2011] [Indexed: 12/31/2022] Open
Abstract
The indolocarbazole derivative 12-(α-L-arabinopyranosyl)indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7-dione (AIC) has demonstrated a high potency (at nanomolar to submicromolar concentrations) towards the NCI panel of human tumor cell lines and transplanted tumors. Intercalation into the DNA double helix has been identified as an important prerequisite for AIC cytotoxicity. In this study, we provide evidence for preferential binding to the G-quadruplex derived from the c-Myc oncogene promoter (Pu18 d(AG(3)TG(4))(2); G-c-Myc). The association constant for AIC:G-c-Myc complex was ~100 times and 10 times greater than the respective values for the complexes AIC:c-Myc duplex and AIC:telomeric d(TTAGGG)(4) G-quadruplex. The concentrations at which AIC formed complexes with G-c-Myc were close to those that attenuated the steady-state level of the c-Myc mRNA in the human HCT116 colon carcinoma cell line. We suggest that preferential binding of AIC to G-c-Myc rather than to the c-Myc duplex might favor the quadruplex formation in the cells, thereby contributing to downregulation of the c-Myc expression by AIC.
Collapse
Affiliation(s)
- Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
14
|
Song Y, Feng L, Ren J, Qu X. Stabilization of unstable CGC+ triplex DNA by single-walled carbon nanotubes under physiological conditions. Nucleic Acids Res 2011; 39:6835-43. [PMID: 21576218 PMCID: PMC3159473 DOI: 10.1093/nar/gkr322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Triplex formation is a promising strategy for realizing artificially controlling of gene expression, reversible assembly of nanomaterials and DNA nanomachine and single-walled nanotubes (SWNTs) have been widely used as gene and drug delivery vector or as 'building blocks' in nano-/microelectronic devices. CGC(+) triplex is not as stable as TAT triplex. The poor stability of CGC(+) triplex limits its use in vitro and in vivo. There is no ligand that has been reported to selectively stabilize CGC(+) triplets rather than TAT. Here, we report that SWNTs can cause d(CT) • d(AG) duplex disproportionation into triplex d(C(+)T) • d(AG) • d(CT) and single-strand d(AG) under physiological conditions. SWNTs can reduce the stringency of conditions for CGC(+) triplex formation studied by UV-vis, CD, DNA melting, light scattering and atomic force microscopy. Further studies indicate that electrostatic interaction is crucial for d(CT) • d(AG) repartition into triplex d(C(+)T) • d(AG) • d(CT). Our findings may facilitate utilization of SWNTs-DNA complex in artificially controlling of gene expression, nanomaterials assembly and biosensing.
Collapse
Affiliation(s)
- Yujun Song
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | | | | | | |
Collapse
|
15
|
Song G, Ren J. Recognition and regulation of unique nucleic acid structures by small molecules. Chem Commun (Camb) 2010; 46:7283-94. [DOI: 10.1039/c0cc01312a] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Feng L, Li X, Peng Y, Geng J, Ren J, Qu X. Spectral and electrochemical detection of protonated triplex formation by a small-molecule anticancer agent. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Holt PA, Ragazzon P, Strekowski L, Chaires JB, Trent JO. Discovery of novel triple helical DNA intercalators by an integrated virtual and actual screening platform. Nucleic Acids Res 2009; 37:1280-7. [PMID: 19136469 PMCID: PMC2651796 DOI: 10.1093/nar/gkn1043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Virtual Screening is an increasingly attractive way to discover new small molecules with potential medicinal value. We introduce a novel strategy that integrates use of the molecular docking software Surflex with experimental validation by the method of competition dialysis. This integrated approach was used to identify ligands that selectively bind to the triplex DNA poly(dA)-[poly(dT)]2. A library containing ∼2 million ligands was virtually screened to identify compounds with chemical and structural similarity to a known triplex intercalator, the napthylquinoline MHQ-12. Further molecular docking studies using compounds with high structural similarity resulted in two compounds that were then demonstrated by competition dialysis to have a superior affinity and selectivity for the triplex nucleic acid than MHQ-12. One of the compounds has a different chemical backbone than MHQ-12, which demonstrates the ability of this strategy to ‘scaffold hop’ and to identify small molecules with novel binding properties. Biophysical characterization of these compounds by circular dichroism and thermal denaturation studies confirmed their binding mode and selectivity. These studies provide a proof-of-principle for our integrated screening strategy, and suggest that this platform may be extended to discover new compounds that target therapeutically relevant nucleic acid morphologies.
Collapse
Affiliation(s)
- Patrick A Holt
- James Graham Brown Cancer Center, Department of Biochemistry and Molecular Biology, University of Louisville, 529 S. Jackson Street, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
18
|
Chaires JB. A competition dialysis assay for the study of structure-selective ligand binding to nucleic acids. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2008; Chapter 8:8.3.1-8.3.8. [PMID: 18428915 DOI: 10.1002/0471142700.nc0803s11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unique DNA structures represent potential targets for small molecules, and provide a promising new avenue for drug development. However, attempts to rationally design small molecules that bind selectively to a particular DNA structure have been hampered by the lack of a rapid and convenient assay for structural selectivity. Determination of structure-selective ligand binding using competition dialysis is described in this unit. The competition dialysis assay is simple, straightforward, and rapid once stock solutions of the nucleic acid structures of interest have been prepared as described.
Collapse
|
19
|
Cerná A, López-Fernández C, Fernández JL, Moreno Díaz de la Espina S, de la Torre C, Gosálvez J. Triplex configuration in the nick-free DNAs that constitute the chromosomal scaffolds in grasshopper spermatids. Chromosoma 2007; 117:15-24. [PMID: 17763864 DOI: 10.1007/s00412-007-0121-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
After applying proper deoxyribonucleic acid (DNA) probes, fluorescence in situ hybridization (FISH) showed that the 8/9 centromeres-one per chromatid of the male haploid complement (X0) of Pyrgomorpha conica grasshopper-colocalized at the spermatid blunt end, where the spermatozoa flagellum inserts. A bundle of aligned 4',6-diamidino-2-phenylindole-positive chromatid scaffolds, which formed the central spermatid core, was observed after DNA breakage detection followed by FISH. Modular nature of scaffold DNA was occasionally evident. The technique also showed that in the early spermatid, the chromatid scaffolds lacked any DNA nick, whereas abundant breaks accumulated in the surrounding loops. Moreover, immunodetection showed that scaffold DNA participated in the formation of triplex DNA, while this configuration was absent from the loops. During spermatid maturation, triplex DNA disappeared from the scaffold in parallel with loop retraction, while protamines replace histones. Thus, the presence of triplex DNA in the chromatid scaffold correlates with the anchoring of expanded DNA loops to it. After loop retraction, the scaffolds of all chromatids coiled as a single unit in the spermatid head. This cooperative coiling produced enlargement and tilting of the distal telomeric signals, which were distributed along the spermatid head according to the length of each chromosome. We propose that specific DNA sequences dispersed throughout the whole chromatid fold forward and backward coaxially to chromatid length, forming individual scaffold modules whose linear assembly accounts for the minimum length of each individual chromatid. Finally, the core of the grasshopper male spermatid should be considered as a single chromosome in which the DNA scaffolds of the whole set of the nonhomologous chromosomes of the haploid complement are interconnected. This pattern of chromatin organization applies probably to other elongated spermatids.
Collapse
Affiliation(s)
- Adriana Cerná
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid, 8040, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Granzhan A, Ihmels H. Selective Stabilization of Triple‐Helical DNA by Diazoniapolycyclic Intercalators. Chembiochem 2006; 7:1031-3. [PMID: 16700089 DOI: 10.1002/cbic.200600065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Guittat L, Alberti P, Rosu F, Van Miert S, Thetiot E, Pieters L, Gabelica V, De Pauw E, Ottaviani A, Riou JF, Mergny JL. Interactions of cryptolepine and neocryptolepine with unusual DNA structures. Biochimie 2003; 85:535-47. [PMID: 12763313 DOI: 10.1016/s0300-9084(03)00035-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cryptolepine, the main alkaloid present in the roots of Cryptolepis sanguinolenta, presents a large spectrum of biological properties. It has been reported to behave like a DNA intercalator with a preference for GC-rich sequences. In this study, dialysis competition assay and mass spectrometry experiments were used to determine the affinity of cryptolepine and neocryptolepine for DNA structures among duplexes, triplexes, quadruplexes and single strands. Our data confirm that cryptolepine and neocryptolepine prefer GC over AT-rich duplex sequences, but also recognize triplex and quadruplex structures. These compounds are weak telomerase inhibitors and exhibit a significant preference for triplexes over quadruplexes or duplexes.
Collapse
Affiliation(s)
- Lionel Guittat
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM UR 565, CNRS UMR 8646, 43, rue Cuvier, 75231 Paris cedex 5, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Das S, Kumar GS, Ray A, Maiti M. Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA and RNA structures. J Biomol Struct Dyn 2003; 20:703-14. [PMID: 12643773 DOI: 10.1080/07391102.2003.10506887] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A comparative study on the interaction of sanguinarine and berberine with DNA and RNA triplexes and their parent duplexes was performed, by using a combination of spectrophotometric, UV thermal melting, circular dichroic and thermodynamic techniques. Formation of the DNA and RNA triplexes was confirmed from UV-melting and circular dichroic measurements. The interaction process was characterized by increase of thermal melting temperature, perturbation in circular dichroic spectrum and the typical hypochromic and bathochromic effects in the absorption spectrum. Scatchard analysis indicated that both the alkaloids bound to the triplex and duplex structures in a non-cooperative manner and the binding was stronger to triplexes than to parent duplexes. Thermal melting studies further indicated that sanguinarine stabilized the Hoogsteen base paired third strand of both DNA and RNA triplexes more tightly compared to their Watson-Crick strands, while berberine stabilized the third strand only without affecting the Watson-Crick strand. However, sanguinarine stabilized the parent duplexes while no stabilization was observed with berberine under identical conditions. Circular dichroic studies were also consistent with the observation that perturbations of DNA and RNA triplexes were more compared to their parent duplexes in presence of the alkaloids. Thermodynamic data revealed that binding of sanguinarine and berberine to triplexes (T.AxT and U.AxU) and duplexes (A.T and A.U) showed negative enthalpy changes and positive entropy changes but that of sanguinarine to C.GxC(+) triplex and G.C duplex exhibited negative enthalpy and negative entropy changes. Taken together, these results suggest that both sanguinarine and berberine can bind and stabilize the DNA and RNA triplexes more strongly than their respective parent duplexes.
Collapse
Affiliation(s)
- Suman Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|
23
|
Alberti P, Schmitt P, Nguyen CH, Rivalle C, Hoarau M, Grierson DS, Mergny JL. Benzoindoloquinolines interact with DNA tetraplexes and inhibit telomerase. Bioorg Med Chem Lett 2002; 12:1071-4. [PMID: 11909720 DOI: 10.1016/s0960-894x(02)00080-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Telomeric G-rich single-stranded DNA can adopt a G-tetraplex structure which has been shown to inhibit telomerase activity. We have examined benzoindoloquinolines derivatives for their ability to stabilize an intramolecular G-quadruplex. The increase in T(m) value of the G-quadruplex was associated with telomerase inhibition in vitro.
Collapse
Affiliation(s)
- Patrizia Alberti
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U 201, CNRS UMR 8646, 43 rue Cuvier, 75231 Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Alberti P, Ren J, Teulade-Fichou MP, Guittat L, Riou JF, Chaires J, Hélène C, Vigneron JP, Lehn JM, Mergny JL. Interaction of an acridine dimer with DNA quadruplex structures. J Biomol Struct Dyn 2001; 19:505-13. [PMID: 11790148 DOI: 10.1080/07391102.2001.10506758] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The reactivation of telomerase activity in most cancer cells supports the concept that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. The telomeric G-rich single-stranded DNA can adopt an intramolecular G-quadruplex structure in vitro, which has been shown to inhibit telomerase activity. The C-rich sequence can also adopt a quadruplex (intercalated) structure (i-DNA). Two acridine derivatives were shown to increase the melting temperature of the G- quadruplex and the C-quadruplex at 1 microM dye concentration. The increase in Tm value of the G-quadruplex was associated with telomerase inhibition in vitro. The most active compound, "BisA", showed an IC(50) value of 0.75 microM in a standard TRAP assay.
Collapse
Affiliation(s)
- P Alberti
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U 201,CNRS UMR 8646, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- J Ren
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | |
Collapse
|
26
|
Ren J, Qu X, Dattagupta N, Chaires JB. Molecular recognition of a RNA:DNA hybrid structure. J Am Chem Soc 2001; 123:6742-3. [PMID: 11439081 DOI: 10.1021/ja015649y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|