1
|
Vats K, Tandon R, Roshanara, Beg MA, Corrales RM, Yagoubat A, Reyaz E, Wani TH, Baig MS, Chaudhury A, Krishnan A, Puri N, Salotra P, Sterkers Y, Selvapandiyan A. Interaction of novel proteins, centrin4 and protein of centriole in Leishmania parasite and their effects on the parasite growth. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119416. [PMID: 36623775 DOI: 10.1016/j.bbamcr.2022.119416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/08/2023]
Abstract
Centrins are cytoskeletal proteins associated with the centrosomes or basal bodies in the eukaryotes. We previously reported the involvement of Centrin 1-3 proteins in cell division in the protozoan parasites Leishmania donovani and Trypanosoma brucei. Centrin4 and 5, unique to such parasites, had never been characterized in Leishmania parasite. In the current study, we addressed the function of centrin4 (LdCen4) in Leishmania. By dominant-negative study, the episomal expression of C-terminal truncated LdCen4 in the parasite reduced the parasite growth. LdCen4 double allele gene deletion by either homologous recombination or CRISPR-Cas9 was not successful in L. donovani. However, CRISPR-Cas9-based deletion of the homologous gene was possible in L. mexicana, which attenuated the parasite growth in vitro, but not ex vivo in the macrophages. LdCen4 also interacts with endogenous and overexpressed LdPOC protein, a homolog of centrin reacting human POC (protein of centriole) in a calcium sensitive manner. LdCen4 and LdPOC binding has also been confirmed through in silico analysis by protein structural docking and validated by co-immunoprecipitation. By immunofluorescence studies, we found that both the proteins share a common localization at the basal bodies. Thus, for the first time, this article describes novel centrin4 and its binding protein in the protozoan parasites.
Collapse
Affiliation(s)
- Kavita Vats
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India; Department of Bio & Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; MiVEGEC, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier 34295, France
| | - Rati Tandon
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Roshanara
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Mirza A Beg
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Rosa M Corrales
- MiVEGEC, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier 34295, France
| | - Akila Yagoubat
- MiVEGEC, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier 34295, France
| | - Enam Reyaz
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Tasaduq H Wani
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Mirza S Baig
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Ashok Chaudhury
- Department of Bio & Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India
| | - Yvon Sterkers
- MiVEGEC, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier 34295, France
| | | |
Collapse
|
2
|
Yang J, Zhao Y, Yang B. Phosphorylation promotes the endonuclease-like activity of human centrin 2. RSC Adv 2022; 12:21892-21903. [PMID: 36043059 PMCID: PMC9361469 DOI: 10.1039/d2ra03402f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Centrin is a member of the EF-hand superfamily of calcium-binding proteins, which is involved in the nucleotide excision repair (NER). Reversible phosphorylation of centrin is an important regulatory mechanism in vivo and is closely related to many physiological processes. To explore the possible role of centrin in NER, the endonuclease-like activity of human centrin 2 (HsCen2) regulated by phosphorylation in the absence or presence of Tb3+ was investigated by spectroscopy techniques, gel electrophoresis, and molecular docking simulation in 10 mM Hepes, pH 7.4. The results showed that phosphorylation weakened the binding of Tb3+ to HsCen2 and enhanced the binding of DNA to HsCen2. Phosphorylation improves the endonuclease-like activity of HsCen2. In addition, Tb3+ is favorable for DNA binding and endonuclease-like activity of HsCen2 before and after phosphorylation. These results provide clear insights into the effects of phosphorylation on the properties of HsCen2 and offer important clues for further exploration of how phosphorylation affects protein-driven functions. Phosphorylation weakened the binding of Tb3+ to HsCen2, enhanced the binding of DNA to HsCen2; and improves the endonuclease-like activity of HsCen2; Additionally, the endonuclease-like activity of HsCen2 or HsCen2p is regulated up by Tb3+-binding.![]()
Collapse
Affiliation(s)
- Jing Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular, Shanxi University Taiyuan 030006 China +86 351 7016358
| | - Yaqin Zhao
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular, Shanxi University Taiyuan 030006 China +86 351 7016358
| | - Binsheng Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular, Shanxi University Taiyuan 030006 China +86 351 7016358
| |
Collapse
|
3
|
Lin Y, Gross ML. Mass Spectrometry-Based Structural Proteomics for Metal Ion/Protein Binding Studies. Biomolecules 2022; 12:135. [PMID: 35053283 PMCID: PMC8773722 DOI: 10.3390/biom12010135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Metal ions are critical for the biological and physiological functions of many proteins. Mass spectrometry (MS)-based structural proteomics is an ever-growing field that has been adopted to study protein and metal ion interactions. Native MS offers information on metal binding and its stoichiometry. Footprinting approaches coupled with MS, including hydrogen/deuterium exchange (HDX), "fast photochemical oxidation of proteins" (FPOP) and targeted amino-acid labeling, identify binding sites and regions undergoing conformational changes. MS-based titration methods, including "protein-ligand interactions by mass spectrometry, titration and HD exchange" (PLIMSTEX) and "ligand titration, fast photochemical oxidation of proteins and mass spectrometry" (LITPOMS), afford binding stoichiometry, binding affinity, and binding order. These MS-based structural proteomics approaches, their applications to answer questions regarding metal ion protein interactions, their limitations, and recent and potential improvements are discussed here. This review serves as a demonstration of the capabilities of these tools and as an introduction to wider applications to solve other questions.
Collapse
Affiliation(s)
- Yanchun Lin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Structural Basis for the Functional Diversity of Centrins: A Focus on Calcium Sensing Properties and Target Recognition. Int J Mol Sci 2021; 22:ijms222212173. [PMID: 34830049 PMCID: PMC8622359 DOI: 10.3390/ijms222212173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022] Open
Abstract
Centrins are a family of small, EF hand-containing proteins that are found in all eukaryotes and are often complexed with centrosome-related structures. Since their discovery, centrins have attracted increasing interest due to their multiple, diverse cellular functions. Centrins are similar to calmodulin (CaM) in size, structure and domain organization, although in contrast to CaM, the majority of centrins possess at least one calcium (Ca2+) binding site that is non-functional, thus displaying large variance in Ca2+ sensing abilities that could support their functional versatility. In this review, we summarize current knowledge on centrins from both biophysical and structural perspectives with an emphasis on centrin-target interactions. In-depth analysis of the Ca2+ sensing properties of centrins and structures of centrins complexed with target proteins can provide useful insight into the mechanisms of the different functions of centrins and how these proteins contribute to the complexity of the Ca2+ signaling cascade. Moreover, it can help to better understand the functional redundancy of centrin isoforms and centrin-binding proteins.
Collapse
|
5
|
Feltes BC. Every protagonist has a sidekick: Structural aspects of human xeroderma pigmentosum-binding proteins in nucleotide excision repair. Protein Sci 2021; 30:2187-2205. [PMID: 34420242 DOI: 10.1002/pro.4173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
The seven xeroderma pigmentosum proteins (XPps), XPA-XPG, coordinate the nucleotide excision repair (NER) pathway, promoting the excision of DNA lesions caused by exposition to ionizing radiation, majorly from ultraviolet light. Significant efforts are made to investigate NER since mutations in any of the seven XPps may cause the xeroderma pigmentosum and trichothiodystrophy diseases. However, these proteins collaborate with other pivotal players in all known NER steps to accurately exert their purposes. Therefore, in the old and ever-evolving field of DNA repair, it is imperative to reexamine and describe their structures to understand NER properly. This work provides an up-to-date review of the protein structural aspects of the closest partners that directly interact and influence XPps: RAD23B, CETN2, DDB1, RPA (RPA70, 32, and 14), p8 (GTF2H5), and ERCC1. Structurally and functionally vital domains, regions, and critical residues are reexamined, providing structural lessons and perspectives about these indispensable proteins in the NER and other DNA repair pathways. By gathering all data related to the major human xeroderma pigmentosum-interacting proteins, this review will aid newcomers on the subject and guide structural and functional future studies.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Yuan J, Zhang X, Gao Y, Zhang X, Liu C, Xiang J, Li F. Adaptation and molecular evidence for convergence in decapod crustaceans from deep‐sea hydrothermal vent environments. Mol Ecol 2020; 29:3954-3969. [DOI: 10.1111/mec.15610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Jianbo Yuan
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Xiaojun Zhang
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Yi Gao
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Xiaoxi Zhang
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Chengzhang Liu
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| |
Collapse
|
7
|
Bombardi L, Pedretti M, Conter C, Dominici P, Astegno A. Distinct Calcium Binding and Structural Properties of Two Centrin Isoforms from Toxoplasma gondii. Biomolecules 2020; 10:E1142. [PMID: 32759683 PMCID: PMC7465447 DOI: 10.3390/biom10081142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022] Open
Abstract
Centrins are calcium (Ca2+)-binding proteins that have been implicated in several regulatory functions. In the protozoan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, three isoforms of centrin have been identified. While increasing information is now available that links the function of centrins with defined parasite biological processes, knowledge is still limited on the metal-binding and structural properties of these proteins. Herein, using biophysical and structural approaches, we explored the Ca2+ binding abilities and the subsequent effects of Ca2+ on the structure of a conserved (TgCEN1) and a more divergent (TgCEN2) centrin isoform from T. gondii. Our data showed that TgCEN1 and TgCEN2 possess diverse molecular features, suggesting that they play nonredundant roles in parasite physiology. TgCEN1 binds two Ca2+ ions with high/medium affinity, while TgCEN2 binds one Ca2+ with low affinity. TgCEN1 undergoes significant Ca2+-dependent conformational changes that expose hydrophobic patches, supporting a role as a Ca2+ sensor in toxoplasma. In contrast, Ca2+ binding has a subtle influence on conformational features of TgCEN2 without resulting in hydrophobic exposure, suggesting a different Ca2+ relay mode for this isoform. Furthermore, TgCEN1 displays a Ca2+-dependent ability to self-assemble, while TgCEN2 did not. We discuss our findings in the context of Ca2+ signaling in toxoplasma.
Collapse
Affiliation(s)
| | | | | | | | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (L.B.); (M.P.); (C.C.); (P.D.)
| |
Collapse
|
8
|
Khouj EM, Prosser SL, Tada H, Chong WM, Liao JC, Sugasawa K, Morrison CG. Differential requirements for the EF-hand domains of human centrin 2 in primary ciliogenesis and nucleotide excision repair. J Cell Sci 2019; 132:jcs.228486. [PMID: 31492759 DOI: 10.1242/jcs.228486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Centrin 2 is a small conserved calcium-binding protein that localizes to the centriolar distal lumen in human cells. It is required for efficient primary ciliogenesis and nucleotide excision repair (NER). Centrin 2 forms part of the xeroderma pigmentosum group C protein complex. To explore how centrin 2 contributes to these distinct processes, we mutated the four calcium-binding EF-hand domains of human centrin 2. Centrin 2 in which all four EF-hands had been mutated to ablate calcium binding (4DA mutant) was capable of supporting in vitro NER and was as effective as the wild-type protein in rescuing the UV sensitivity of centrin 2-null cells. However, we found that mutation of any of the EF-hand domains impaired primary ciliogenesis in human TERT-RPE1 cells to the same extent as deletion of centrin 2. Phenotypic analysis of the 4DA mutant revealed defects in centrosome localization, centriole satellite assembly, ciliary assembly and function and in interactions with POC5 and SFI1. These observations indicate that centrin 2 requires calcium-binding capacity for its primary ciliogenesis functions, but not for NER, and suggest that these functions require centrin 2 to be capable of forming complexes with partner proteins.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ebtissal M Khouj
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway H91 W2TY, Ireland
| | - Suzanna L Prosser
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway H91 W2TY, Ireland.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Haruto Tada
- Biosignal Research Center, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.,Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Weng Man Chong
- IAMS Academia Sinica, No 1 Roosevelt Rd Sec 4, 10617 Taipei City, Taiwan
| | - Jung-Chi Liao
- IAMS Academia Sinica, No 1 Roosevelt Rd Sec 4, 10617 Taipei City, Taiwan
| | - Kaoru Sugasawa
- Biosignal Research Center, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.,Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
9
|
Zhao Y, Guo X, Yang B. Calcium-induced human centrin 1 self-assembly and double-regulating the binding with peptide R18-Sfi1p. Int J Biol Macromol 2019; 128:314-323. [PMID: 30682474 DOI: 10.1016/j.ijbiomac.2019.01.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/02/2019] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
Abstract
Centrin is a member of the EF-hand super-family that plays pivotal role in the centrosome duplication and separation. In the present paper, we characterized the properties of metal ions as well as peptide R18-Sfi1p binding to human centrin 1 (HsCen1) by fluorescence spectra and isothermal titration calorimetry (ITC). Four metal ions binding sites on HsCen1 were identified through ITC experiments. The conditional binding constants of the EF-hand domain on HsCen1 with Ca2+ were quantitatively calculated. In reversible manner, Ca2+ can induce HsCen1 self-assembly. In addition, HsCen1 bound with peptide R18-Sfi1p in calcium-dependent with middle-affinity. Phosphorylation at Ser170 weakened interaction HsCen1 with the substrate and removal calcium ions further weakened interactions of the two molecules. Hence, we inferred that centrin initiating downstream peptides may be a double-regulated process by calcium and phosphorylation. These results are of significance for understanding the relationship between PTM and metal regulation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaojuan Guo
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Binsheng Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
10
|
Inhibitory effect of melittin on endonuclease-like activity of centrin. J Inorg Biochem 2018; 186:280-293. [PMID: 29990752 DOI: 10.1016/j.jinorgbio.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 07/01/2018] [Indexed: 11/21/2022]
Abstract
The xeroderma pigmentosum group C protein (XPC) and centrin2 are the primary initiators of global genome nucleotide excision repair (NER). Centrin, acts as a member of the EF-hand super family of calcium-binding proteins, playing roles in reconstitution of the vitro NER reaction. To understand the possible molecular and structural properties of the multiprotein process, the interactions of Euplotes octocarinatus centrin (EoCen), melittin, and DNA are described. EoCen shares a sequence identity of 66% with centrin2. Melittin possesses inverse direction hydrophobic triads-leucine-leucine-tryptophan (LLW) which are responsible for centrin binding. It is applied as a natural peptide to mimic centrin target peptide. As a result, it is proved that the integrated protein shows an endonuclease-like activity to DNA. Melittin is capable of interaction with both EoCen and DNA. More importantly, it is found that melittin displays an inhibitory effect on the endonuclease-like activity of centrin when it co-exists with EoCen and DNA in solution. Meanwhile, the DNA-melittin-EoCen ternary complex forms in the process. Quantitative analyses demonstrated by extensive biophysical assays reveal that binding of the peptide to DNA or centrin modulates the binding properties of it to another component. Furthermore, a possible positioning model of DNA and EoCen on melittin is proposed. This finding may constitute a model for that existing between centrin and its target peptide in NER process.
Collapse
|
11
|
La Verde V, Trande M, D'Onofrio M, Dominici P, Astegno A. Binding of calcium and target peptide to calmodulin-like protein CML19, the centrin 2 of Arabidopsis thaliana. Int J Biol Macromol 2017; 108:1289-1299. [PMID: 29129631 DOI: 10.1016/j.ijbiomac.2017.11.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
Abstract
Calmodulin-like protein 19 (CML19) is an Arabidopsis centrin that modulates nucleotide excision repair (NER) by binding to RAD4 protein, the Arabidopsis homolog of human Xeroderma pigmentosum complementation group C protein. Although the necessity of CML19 as a part of the RAD4 plant recognition complex for functional NER is known at a cellular level, little is known at a molecular level. Herein, we used a combination of biophysical and biochemical approaches to investigate the structural and ion and target-peptide binding properties of CML19. We found that CML19 possesses four Ca2+-specific binding sites, two of high affinity in the N-terminal domain and two of low affinity in the C-terminal domain. Binding of Ca2+ to CML19 increases its alpha-helix content, stabilizes the tertiary structure, and triggers a conformational change, resulting in the exposure of a hydrophobic patch instrumental for target protein recognition. Using bioinformatics tools we identified a CML19-binding site at the C-terminus of RAD4, and through in vitro binding experiments we analyzed the interaction between a 17-mer peptide representing this site and CML19. We found that the peptide shows a high affinity for CML19 in the presence of Ca2+ (stoichiometry 1:1) and the interaction primarily involves the C-terminal half of CML19.
Collapse
Affiliation(s)
- Valentina La Verde
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Italy
| | - Matteo Trande
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Italy
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Italy
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Italy.
| |
Collapse
|
12
|
Shi E, Zhang W, Zhao Y, Yang B. Modulation of XPC peptide on binding Tb 3+ to Euplotes octocarinatus centrin. Metallomics 2017; 9:1796-1808. [PMID: 29114686 DOI: 10.1039/c7mt00263g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Centrins are Ca2+-binding proteins found throughout eukaryotic organisms. Xeroderma pigmentosum group C protein (XPC), a dominant component of the nuclear excision repair (NER) pathway, is a critical target protein of centrins. A 22-residue peptide (K842-R863) from XPC was used to investigate the effect of metal ions (Ca2+ and Tb3+) on the peptide binding of Euplotes octocarinatus centrin (EoCen) by isothermal titration calorimetry (ITC) and fluorescence spectroscopy. ITC and tryptophan spectrofluorimetric titrations revealed that metal ions (Ca2+ and Tb3+) could enhance the affinity between EoCen and the XPC peptide, and the enhanced effects were closely related to the ion potential of metal ions. Since the ion potential of Tb3+ (e/r = 0.0325) is larger than that of Ca2+ (e/r = 0.0202), the conformational change in the protein induced by Tb3+ is larger than that induced by Ca2+, and the enhanced affinity of Tb3+ is stronger than that of Ca2+. This interaction was driven by enthalpy in the presence of EDTA and enthalpy and entropy in the presence of Ca2+ or Tb3+. Similar to that observed in the presence of EDTA, the N-terminal domain did not participate in the interaction with the XPC peptide even in the presence of metal ions. Resonance light scattering (RLS) and the band shift in native polyacrylamide gel electrophoresis (PAGE) suggested that peptide binding resulted in the dissociation of EoCen aggregates and complex formation via the monomer-peptide form. Tb3+-Sensitized emission suggested that peptide binding in turn also had an impact on the Tb3+ binding of the protein: the C-terminal domain was slightly strengthened and the N-terminal domain was weakened about 225 fold. RLS and native PAGE indicated that the self-assembly induced by Tb3+ binding to the N-terminal domain of EoCen was inhibited in the presence of the XPC peptide. This study elucidates the molecular mechanism of EoCen function in the cellular context.
Collapse
Affiliation(s)
- Enxian Shi
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, P. R. China. and Department of Pharmacy, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Wenlong Zhang
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yaqin Zhao
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, P. R. China.
| | - Binsheng Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
13
|
Kim SY, Kim DS, Hong JE, Park JH. Crystal structure of wild-type centrin 1 from Mus musculus occupied by Ca2+. BIOCHEMISTRY (MOSCOW) 2017; 82:1129-1139. [DOI: 10.1134/s0006297917100054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Zhao Y, Chu X, Yang B. Electrochemical behavior of hemin binding with human centrin 3. Bioelectrochemistry 2017; 117:15-22. [DOI: 10.1016/j.bioelechem.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/30/2023]
|
15
|
Shi E, Zhang W, Zhao Y, Yang B. Binding of Euplotes octocarinatus centrin to peptide from xeroderma pigmentosum group C protein (XPC). RSC Adv 2017. [DOI: 10.1039/c7ra03079g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trp is buried in the hydrophobic cavity, the peptide folds into an α-helix, and the interaction is enthalpically driven from ITC.
Collapse
Affiliation(s)
- Enxian Shi
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| | - Wenlong Zhang
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| | - Yaqin Zhao
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| | - Binsheng Yang
- Institute of Molecular Science
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry
- Shanxi University
- Taiyuan 030006
- PR China
| |
Collapse
|
16
|
Liu W, Duan L, Sun T, Yang B. Role of four conserved aspartic acid residues of EF-loops in the metal ion binding and in the self-assembly of ciliate Euplotes octocarinatus centrin. Biometals 2016; 29:1047-1058. [PMID: 27743149 DOI: 10.1007/s10534-016-9975-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
Ciliate Euplotes octocarinatus centrin (EoCen) is an EF-hand calcium-binding protein closely related to the prototypical calcium sensor protein calmodulin. Four mutants (D37K, D73K, D110K and D146K) were created firstly to elucidate the importance of the first aspartic acid residues (Asp37, Asp73, Asp110 and Asp146) in the beginning of the four EF-loops of EoCen. Aromatic-sensitized Tb3+ fluorescence indicates that the aspartic acid residues are very important for the metal-binding of EoCen, except for Asp73 (in EF-loop II). Resonance light scattering (RLS) measurements for different metal ions (Ca2+ and Tb3+) binding proteins suggest that the order of four conserved aspartic acid residues for contributing to the self-assembly of EoCen is Asp37 > Asp146 > Asp110 > Asp73. Cross-linking experiment also exhibits that Asp37 and Asp146 play critical role in the self-assembly of EoCen. Asp37, in site I, which is located in the N-terminal domain, plays the most important role in the metal ion-dependent self-assembly of EoCen, and there is cooperativity between N-terminal and C-terminal domain (especially the site IV). In addition, the dependence of Tb3+ induced self-assembly of EoCen and the mutants on various factors, including ionic strength and pH, were characterized using RLS. Finally, 2-p-toluidinylnaphthalene-6-sulfonate (TNS) binding, ionic strength and pH control experiments indicate that in the process of EoCen self-assembly, molecular interactions are mediated by both electrostatic and hydrophobic forces, and the hydrophobic interaction has the important status.
Collapse
Affiliation(s)
- Wen Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China.
| | - Lian Duan
- Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Tijian Sun
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Binsheng Yang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
17
|
Pastrana-Rios B, Del Valle Sosa L, Santiago J. Trifluoroacetic acid as excipient destabilizes melittin causing the selective aggregation of melittin within the centrin-melittin-trifluoroacetic acid complex. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:041711. [PMID: 26798810 PMCID: PMC4711628 DOI: 10.1063/1.4921219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/28/2015] [Indexed: 06/05/2023]
Abstract
Trifluoroacetic acid (TFA) may be the cause of the bottleneck in high resolution structure determination for protein-peptide complexes. Fragment based drug design often involves the use of synthetic peptides which contain TFA (excipient). Our goal was to explore the effects of this excipient on a model complex: centrin-melittin-TFA. We performed Fourier transform infrared, two-dimensional infrared correlation spectroscopies and spectral simulations to analyze the amide I'/I'* band for the components and the ternary complex. Melittin (MLT) was observed to have increased helicity upon its interaction with centrin, followed by the thermally induced aggregation of MLT within the ternary complex in the TFA presence.
Collapse
Affiliation(s)
| | - Liliana Del Valle Sosa
- Department of Chemistry, University of Puerto Rico , Mayagüez Campus, Call Box 9019, Mayagüez, Puerto Rico 00681, USA
| | - Jorge Santiago
- Department of Chemistry, University of Puerto Rico , Mayagüez Campus, Call Box 9019, Mayagüez, Puerto Rico 00681, USA
| |
Collapse
|
18
|
Wang X, Yao M, Yang B, Fu Y, Hu F, Liang A. Enzymology and thermal stability of phytase appA mutants. RSC Adv 2015. [DOI: 10.1039/c5ra02199e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(A) The comparison of different melting temperature (Tm) of appA ( ), appAM8 ( ) and appAM10 ( ). TheTmvalues were 60 °C for appA, 64.1 °C for appAM8, and 67.5 °C for appAM10. (B) Titration curves of the addition TNS to appAM10 (a) and appA (b).
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan 030006
- China
| | - Mingze Yao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan 030006
- China
| | - Binsheng Yang
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan 030006
- China
| | - Fengyun Hu
- Department of Neurology
- Shanxi Provincial People's Hospital
- Taiyuan 030012
- China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
19
|
Cox JA. Divers models of divalent cation interaction to calcium-binding proteins: techniques and anthology. Methods Mol Biol 2013; 963:15-35. [PMID: 23296602 DOI: 10.1007/978-1-62703-230-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Intracellular Ca(2+)-binding proteins (CaBPs) are sensors of the calcium signal and several of them even shape the signal. Most of them are equipped with at least two EF-hand motifs designed to bind Ca(2+). Their affinities are very variable, can display cooperative effects, and can be modulated by physiological Mg(2+) concentrations. These binding phenomena are monitored by four major techniques: equilibrium dialysis, fluorimetry with fluorescent Ca(2+) indicators, flow dialysis, and isothermal titration calorimetry. In the last quarter of the twentieth century reports on the ion-binding characteristics of several abundant wild-type CaBPs were published. With the advent of recombinant CaBPs it became possible to determine these properties on previously inaccessible proteins. Here I report on studies by our group carried out in the last decade on eight families of recombinant CaBPs, their mutants, or truncated domains. Moreover this chapter deals with the currently used methods for quantifying the binding of Ca(2+) and Mg(2+) to CaBPs.
Collapse
Affiliation(s)
- Jos A Cox
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
20
|
Sperry JB, Ryan ZC, Kumar R, Gross ML. Hydrogen/Deuterium Exchange Reflects Binding of Human Centrin 2 to Ca(2+) and Xeroderma Pigmentosum Group C Peptide: An Example of EX1 Kinetics. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2012; 330-332:302-309. [PMID: 23439742 PMCID: PMC3578700 DOI: 10.1016/j.ijms.2012.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Xeroderma pigmentosum (XP) is a genetic disease affecting 1 in 10,000-100,000 and predisposes people to early-age skin cancer, a disease that is increasing. Those with XP have decreased ability to repair UV-induced DNA damage, leading to increased susceptibility of cancerous non-melanomas and melanomas. A vital, heterotrimeric protein complex is linked to the nucleotide excision repair pathway for the damaged DNA. The complex consists of XPC protein, human centrin 2, and RAD23B. One of the members, human centrin 2, is a ubiquitous, acidic, Ca(2+)-binding protein belonging to the calmodulin superfamily. The XPC protein contains a sequence motif specific for binding to human centrin 2. We report here the Ca(2+)-binding properties of human centrin 2 and its interaction with the XPC peptide motif. We utilized a region-specific H/D exchange protocol to localize the interaction of the XPC peptide with the C-terminal domain of centrin, the binding of which is different than that of calmodulin complexes. The binding dynamics of human centrin 2 to the XPC peptide in the absence and presence of Ca(2+) are revealed by the observation of EX1 H/D exchange regime, indicating that a locally unfolded population exists in solution and undergoes fast H/D exchange.
Collapse
Affiliation(s)
- Justin B Sperry
- Analytical Research and Development, Pfizer Inc., Chesterfield, MO 63017 ; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | | | | | | |
Collapse
|
21
|
Herbert-Pucheta JE, Chan-Huot M, Duma L, Abergel D, Bodenhausen G, Assairi L, Blouquit Y, Charbonnier JB, Tekely P. Probing Structural and Motional Features of the C-Terminal Part of the Human Centrin 2/P17-XPC Microcrystalline Complex by Solid-State NMR Spectroscopy. J Phys Chem B 2012. [DOI: 10.1021/jp3099472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jose-Enrique Herbert-Pucheta
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
| | - Monique Chan-Huot
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
- Institut Curie - Centre de Recherche, 91405 Orsay, France
- INSERM U759, 91405 Orsay, France
| | - Luminita Duma
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
| | - Daniel Abergel
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
| | - Geoffrey Bodenhausen
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
| | - Liliane Assairi
- Institut Curie - Centre de Recherche, 91405 Orsay, France
- INSERM U759, 91405 Orsay, France
| | - Yves Blouquit
- Institut Curie - Centre de Recherche, 91405 Orsay, France
- INSERM U759, 91405 Orsay, France
| | - Jean-Baptiste Charbonnier
- UMR 8221,
Laboratoire de Biologie Structurale
et Radiobiologie, iBiTec-S, CEA, 91191
Gif-sur-Yvette, France
| | - Piotr Tekely
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
| |
Collapse
|
22
|
Zhao YQ, Yan J, Chao JB, Liang AH, Yang BS. The biochemical effect of Ser166 phosphorylation on Euplotes octocarinatus centrin. J Biol Inorg Chem 2012. [DOI: 10.1007/s00775-012-0957-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Bowers RR, Manevich Y, Townsend DM, Tew KD. Sulfiredoxin redox-sensitive interaction with S100A4 and non-muscle myosin IIA regulates cancer cell motility. Biochemistry 2012; 51:7740-54. [PMID: 22934964 DOI: 10.1021/bi301006w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sulfiredoxin (Srx) is a redox active protein that participates in the reduction of oxidized cysteine residues. Here we identify a novel function of Srx through its specific binding to S-glutathionylated S100A4 affecting its interaction with non-muscle myosin (NMIIA), thereby modulating the effect of S100A4 on NMIIA function and impacting cell adhesion and migration. Srx forms a complex with S100A4 (and has stronger affinity for S-glutathionylated S100A4), regulates its activity, and mediates redox regulation of the interaction of S100A4 with NMIIA. The consequence of this regulation is microfilament remodeling and altered cellular motility and adhesion. Srx-overexpressing cells had reduced levels of adhesion, decreased levels of Tyr(397)-phosphorylated focal adhesion kinase, and increased cell motility in wound healing assays. These results describe a novel redox-sensitive role for Srx in mediating complex protein interactions with plausible consequences for cancer cell motility.
Collapse
Affiliation(s)
- Robert R Bowers
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | | | | | | |
Collapse
|
24
|
Dantas TJ, Daly OM, Morrison CG. Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell Mol Life Sci 2012; 69:2979-97. [PMID: 22460578 PMCID: PMC11114748 DOI: 10.1007/s00018-012-0961-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 01/11/2023]
Abstract
Centrins are small, highly conserved members of the EF-hand superfamily of calcium-binding proteins that are found throughout eukaryotes. They play a major role in ensuring the duplication and appropriate functioning of the ciliary basal bodies in ciliated cells. They have also been localised to the centrosome, which is the major microtubule organising centre in animal somatic cells. We describe the identification, cloning and characterisation of centrins in multiple eukaryotic species. Although centrins have been implicated in centriole biogenesis, recent results have indicated that centrosome duplication can, in fact, occur in the absence of centrins. We discuss these data and the non-centrosomal functions that are emerging for the centrins. In particular, we discuss the involvement of centrins in nucleotide excision repair, a process that repairs the DNA lesions that are induced primarily by ultraviolet irradiation. We discuss how centrin may be involved in these diverse processes and contribute to nuclear and cytoplasmic events.
Collapse
Affiliation(s)
- Tiago J. Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Owen M. Daly
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
25
|
Gibrat G, Assairi L, Craescu CT, Hui Bon Hoa G, Loew D, Lombard B, Blouquit L, Bellissent-Funel MC. Use of SANS and biophysical techniques to reveal subtle conformational differences between native apo-calmodulin and its unfolded states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1097-106. [PMID: 22709575 DOI: 10.1016/j.bbapap.2012.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 05/24/2012] [Accepted: 06/01/2012] [Indexed: 11/16/2022]
Abstract
Apo-calmodulin, a small, mainly α, soluble protein is a calcium-dependent protein activator. It is made of two N- and C-terminal domains having a sequence homology of 70%, an identical folding but different stabilities, and is thus an interesting system for unfolding studies. The use of small angle neutron scattering (SANS) and other biophysical techniques has permitted to reveal conformational difference between native and thermal denatured states of apo-calmodulin. The results show that secondary and tertiary structures of apo-calmodulin evolve in a synchronous way, indicating the absence in the unfolding pathway of molten-globule state sufficiently stable to affect transition curves. From SANS experiments, at 85 °C, apo-calmodulin adopts a polymer chain conformation with some residual local structures. After cooling down, apo-calmodulin recovers a compact state, with a secondary structure close to the native one but with a higher radius of gyration and a different tyrosine environment. In fact on a timescale of few minutes, heat denaturation of apo-calmodulin is partially reversible, but on a time scale of hours (for SANS experiments), the long exposure to heat may lead to a non-reversibility due to some chemical perturbation of the protein. In fact, from Mass Spectrometry measurements, we got evidence of dehydration and deamidation of heated apo-calmodulin.
Collapse
|
26
|
Zhao Y, Yan J, Feng Y, Liang A, Yang B. Analysis of the role of Mg²⁺ on conformational change and target recognition by ciliate Euplotes octocarinatus centrin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2011; 105:60-68. [PMID: 21788140 DOI: 10.1016/j.jphotobiol.2011.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 05/31/2023]
Abstract
The binding of Mg(2+) with the Euplotes octocarinatus centrin (EoCen) and the effect of Mg(2+) on the binding of EoCen with the peptide melittin were examined by spectroscopic methods. In this study, it was found that Mg(2+) may bind with Ca(2+)-binding sites, at least partly, on EoCen, which displays ∼10-fold weaker affinity than Ca(2+). In the presence of Mg(2+), Ca(2+)-saturated EoCen undergoes significant conformational changes resulting in decreased exposure of hydrophobic surfaces on the protein. Additionally, excess Mg(2+) did not change the stoichiometry, but rather reduced the affinity of EoCen to melittin. The Mg(2+)-dependent decrease in the affinities of EoCen to melittin is an intrinsic property of Mg(2+), rather than a nonspecific ionic effect. The inhibitory effect of Mg(2+) on the formation of complexes between EoCen and melittin may contribute to the specificity of EoCen in target activation in response to cellular Ca(2+) concentration fluctuations.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | | | | | | | | |
Collapse
|
27
|
Analysis of Lanthanide-Induced Conformational Change of the C-Terminal Domain on Centrin. J Fluoresc 2011; 22:485-94. [DOI: 10.1007/s10895-011-0982-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
28
|
Sosa LDV, Alfaro E, Santiago J, Narváez D, Rosado MC, Rodríguez A, Gómez AM, Schreiter ER, Pastrana-Ríos B. The structure, molecular dynamics, and energetics of centrin-melittin complex. Proteins 2011; 79:3132-43. [PMID: 21989934 DOI: 10.1002/prot.23142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/25/2011] [Accepted: 07/08/2011] [Indexed: 11/09/2022]
Abstract
Centrin is a calcium binding protein (CaBP) belonging to the EF-hand superfamily. As with other proteins within this family, centrin is a calcium sensor with multiple biological target proteins. We chose to study Chlamydomonas reinhardtii centrin (Crcen) and its interaction with melittin (MLT) as a model for CaBP complexes due to its amphipathic properties. Our goal was to determine the molecular interactions that lead to centrin-MLT complex formation, their relative stability, and the conformational changes associated with the interaction, when compared to the single components. For this, we determined the thermodynamic parameters that define Crcen-MLT complex formation. Two-dimensional infrared (2D IR) correlation spectroscopy were used to study the amide I', I'*, and side chain bands for (13)C-Crcen, MLT, and the (13)C-Crcen-MLT complex. This approach resulted in the determination of MLT's increased helicity, while centrin was stabilized within the complex. Herein we provide the first complete molecular description of centrin-MLT complex formation and the dissociation process. Also, discussed is the first structure of a CaBP-MLT complex by X-ray crystallography, which shows that MLT has a different binding orientation than previously characterized centrin-bound peptides. Finally, all of the experimental results presented herein are consistent with centrin maintaining an extended conformation while interacting with MLT. The molecular implications of these results are: (1) the recognition of hydrophobic contacts as requirements for initial binding, (2) minimum electrostatic interactions within the C-terminal end of the peptide, and (3) van der Waals interactions within MLTs N-terminal end are required for complex formation.
Collapse
|
29
|
Miron S, Durand D, Chilom C, Pérez J, Craescu CT. Binding of calcium, magnesium, and target peptides to Cdc31, the centrin of yeast Saccharomyces cerevisiae. Biochemistry 2011; 50:6409-22. [PMID: 21714500 DOI: 10.1021/bi200518d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cdc31, the Saccharomyces cerevisiae centrin, is an EF-hand calcium-binding protein essential for the cell division and mRNA nuclear export. We used biophysical techniques to investigate its calcium, magnesium, and protein target binding properties as well as their conformations in solution. We show here that Cdc31 displays one Ca(2+)/Mg(2+) mixed site in the N-terminal domain and two low-affinity Ca(2+) sites in the C-terminal domain. The affinity of Cdc31 for different natural target peptides (from Kar1, Sfi1, Sac3) that we obtained by isothermal titration calorimetry shows weakly Ca(2+), but also Mg(2+) dependence. The characteristics of target surface binding were shown to be similar; we highlight that the 1-4 hydrophobic amino acid motif, in a stable amphipathic α-helix, is critical for binding. Ca(2+) and Mg(2+) binding increase the α-helix content and stabilize the structure. Analysis of small-angle X-ray scattering experiments revealed that N- and C-terminal domains are not individualized in apo-Cdc31; in contrast, they are separated in the Mg(2+) state, creating a groove in the middle of the molecule that is occupied by the target peptide in the liganded form. Consequently, Mg(2+) seems to have consequences on Cdc31's function and could be important to stimulate interactions in resting cells.
Collapse
Affiliation(s)
- Simona Miron
- Institut Curie Centre de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
30
|
Isvoran A, Badel A, Craescu CT, Miron S, Miteva MA. Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions. BMC STRUCTURAL BIOLOGY 2011; 11:24. [PMID: 21569443 PMCID: PMC3116463 DOI: 10.1186/1472-6807-11-24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/12/2011] [Indexed: 02/04/2023]
Abstract
Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Adriana Isvoran
- MTi, Inserm U973 - University Paris Diderot, 35 rue Helene Brion, Bat, Lamarck, 75013 Paris, France
| | | | | | | | | |
Collapse
|
31
|
Metal ion-binding properties of wild-type and mutant D37K of ciliate Euplotes octocarinatus centrin. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3279-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Duan L, Liu W, Wang ZJ, Liang AH, Yang BS. Critical role of tyrosine 79 in the fluorescence resonance energy transfer and terbium(III)-dependent self-assembly of ciliate Euplotes octocarinatus centrin. J Biol Inorg Chem 2010; 15:995-1007. [DOI: 10.1007/s00775-010-0660-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/11/2010] [Indexed: 11/30/2022]
|
33
|
Radu L, Durussel I, Assairi L, Blouquit Y, Miron S, Cox JA, Craescu CT. Scherffelia dubia Centrin Exhibits a Specific Mechanism for Ca2+-Controlled Target Binding. Biochemistry 2010; 49:4383-94. [DOI: 10.1021/bi901764m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Radu
- Institut Curie Centre de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
- INSERM U759, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
| | - Isabelle Durussel
- Department of Biochemistry, University of Geneva, Geneva 4, Switzerland
| | - Liliane Assairi
- Institut Curie Centre de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
- INSERM U759, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
| | - Yves Blouquit
- Institut Curie Centre de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
- INSERM U759, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
| | - Simona Miron
- Institut Curie Centre de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
- INSERM U759, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
| | - Jos A. Cox
- Department of Biochemistry, University of Geneva, Geneva 4, Switzerland
| | - Constantin T. Craescu
- Institut Curie Centre de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
- INSERM U759, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
| |
Collapse
|
34
|
Tirone F, Radu L, Craescu CT, Cox JA. Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5. Biochemistry 2010; 49:761-71. [PMID: 20028137 DOI: 10.1021/bi901846y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NADPH oxidases (NOX) are important superoxide producing enzymes that regulate a variety of physiological and pathological processes such as bacteria killing, angiogenesis, sperm-oocyte fusion, and oxygen sensing. NOX5 is a member of the NOX family but distinct from the others by the fact that it contains a long N-terminus with four EF-hand Ca(2+)-binding sites (NOX5-EF). NOX5 generates superoxide in response to intracellular Ca(2+) elevation in vivo and in a cell-free system. Previously, we have shown that the regulatory N-terminal EF-hand domain interacts directly and in a Ca(2+)-dependent manner with the catalytic C-terminal catalytic dehydrogenase domain (CDHD) of the enzyme, leading to its activation. Here we have characterized the interaction site for the regulatory NOX5-EF in the catalytic CDHD of NOX5 using cloned fragments and synthetic peptides of the CDHD. The interaction was monitored with pull-down techniques, cross-linking experiments, tryptophan fluorescence, hydrophobic exposure, isothermal titration calorimetry, and cell-free system enzymatic assays. This site is composed of two short segments: the 637-660 segment, referred to as the regulatory EF-hand-binding domain (REFBD), and the 489-505 segment, previously identified as the phosphorylation region (PhosR). NOX5-EF binds to these two segments in a Ca(2+)-dependent way, and the superoxide generation by NOX5 depends on this interaction. Controlled proteolysis suggests that the REFBD is autoinhibitory and inhibition is relieved by NOX5-EF.
Collapse
Affiliation(s)
- Fabiana Tirone
- Departement of Biochemistry, University of Geneva, Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
35
|
Martinez-Sanz J, Kateb F, Assairi L, Blouquit Y, Bodenhausen G, Abergel D, Mouawad L, Craescu CT. Structure, Dynamics and Thermodynamics of the Human Centrin 2/hSfi1 Complex. J Mol Biol 2010; 395:191-204. [DOI: 10.1016/j.jmb.2009.10.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 10/20/2022]
|
36
|
Zhao Y, Song L, Liang A, Yang B. Characterization of self-assembly of Euplotes octocarinatus centrin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 95:26-32. [DOI: 10.1016/j.jphotobiol.2008.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/12/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022]
|
37
|
Yaqin Z, Jiuying F, Aihua L, Binsheng Y. The characterization for the binding of calcium and terbium to Euplotes octocarinatus centrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2009; 71:1756-1761. [PMID: 18757233 DOI: 10.1016/j.saa.2008.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 06/11/2008] [Accepted: 06/25/2008] [Indexed: 05/26/2023]
Abstract
Centrin is a member of the EF-hand superfamily that plays critical role in the centrosome duplication and separation. In the present paper, we characterized properties of metal ions binding to Euplotes octocarinatus centrin (EoCen) by fluorescence spectra and circular dichroism (CD) spectra. Changes of fluorescence spectra and alpha-helix contents of EoCen proved that Tb(3+) and Ca(2+) induced great conformational changes of EoCen resulting in exposing hydrophobic surfaces. At pH 7.4, Ca(2+) (and Tb(3+)) bond with EoCen at the ratio of 4:1. Equilibrium experiment indicated that Ca(2+) and Tb(3+) exhibited different binding capabilities for C- and N-terminal domains of protein. C-terminal domain bond with Ca(2+) or Tb(3+) approximately 100-fold more strongly than N-terminal. Aromatic residue-sensitized Tb(3+) energy transfer suggested that site IV bond to Tb(3+) or Ca(2+) more strongly than site III. Based on fluorescence titration curves, we reckoned the conditional binding constants of EoCen site IV quantitatively to be K(IV)=(1.23+/-0.51)x10(8)M(-1) and K(IV)=(6.82+/-0.33)x10(5)M(-1) with Tb(3+) and Ca(2+), respectively. Metal ions bond to EoCen in the order of IV>III>II, I.
Collapse
Affiliation(s)
- Zhao Yaqin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | | | | | | |
Collapse
|
38
|
Wang ZJ, Ren LX, Zhao YQ, Li GT, Duan L, Liang AH, Yang BS. Investigation on the binding of TNS to centrin, an EF-hand protein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 70:892-897. [PMID: 18054271 DOI: 10.1016/j.saa.2007.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/21/2007] [Accepted: 10/04/2007] [Indexed: 05/25/2023]
Abstract
The interaction between 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and ciliate Euplotes Octocarinatus centrin (Cen) has been studied by fluorescence spectroscopy. The binding constants of TNS with Cen were measured at different temperature in the 0.01M Hepes, pH 7.4. The binding process is exothermic and involves a positive entropy change. The negative value of enthalpy predominately contributes to the negative free energy of binding between TNS and Cen. The salt (KCl) increases the association constant of TNS and Cen. These results and resonance light scattering experiment suggest that the binding force between TNS and Cen is hydrophobic. The distance (r) between TNS and tryptophan of mutant G115W, which sheds more insight into the binding of TNS to Cen, was determined as 4.85nm based on Förster non-radiative energy transfer theory.
Collapse
Affiliation(s)
- Zhi-Jun Wang
- Chemical Department, Changzhi University, Changzhi 046011, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhao Y, Feng J, Wang Z, Liang A, Yang B. Characterization of melittin binding to Euplotes octocarinatus centrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 70:884-887. [PMID: 18054274 DOI: 10.1016/j.saa.2007.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 10/03/2007] [Indexed: 05/25/2023]
Abstract
In the presence of 1.0mM Ca2+, the interaction between Euplotes octocarinatus centrin (EoCen) and melittin (ME) was studied by means of fluorescence spectra. In 0.1M N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (Hepes) and 150mM NaCl at pH 7.4, fluorescence peak of ME was observed at about 353nm indicating that micro-environment of Tryptophan (Trp) residue in ME was hydrophilic. With the addition of 3.2x10(-4)M calcium saturated EoCen (holoEoCen), the peak of ME was blue-shifted to 339nm, which may be resulted from micro-environmental changes of the peptide. At the same time, fluorescence emission of ME was increased significantly suggesting that new complex of ME-holoEoCen was formed under the experimental conditions. Based on the fluorescence titration curves, the 1:1 stoichiometric ratio of holoEoCen to ME was confirmed. In addition, the conditional binding constant of holoEoCen with ME was calculated to be logKME-holoEoCen=6.59+/-0.14.
Collapse
Affiliation(s)
- Yaqin Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | | | | | | | | |
Collapse
|
40
|
Li HQ, Zheng XY, Pang EG, Zhao YQ, Yang BS. The effect of Trp83 mutant on the properties of CopC. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 70:384-388. [PMID: 18068424 DOI: 10.1016/j.saa.2007.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 10/30/2007] [Indexed: 05/25/2023]
Abstract
CopC, a protein involved in copper resistance, is essentially constituted by two sheets forming a Greek key beta barrel motif. The aromatic ring of Trp83, sandwiched between the two beta sheets, has numerous contacts with residues in strands beta and stabilizes the protein fold. In the paper Trp83 was mutated to Leu to study the effect of this mutation on CopC by means of fluorescence spectra and UV spectra. The experiments indicate that the mutation bind Cu(2+) with a decreased formation constant of 3.95 x 10(11) M(-1) in 20 mM PB buffer at pH 7.0; mutagenesis make hydrophobic region to be exposed to an extent. Compared with the wild, thermal stability of the mutant was shown to decrease by stronger fluorescence of TNS at 80 degrees C. The important role of aromatic residue in structure is exhibited.
Collapse
Affiliation(s)
- Hui-Qin Li
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | | | | | | | | |
Collapse
|
41
|
Alfaro E, Sosa LDV, Sanoguet Z, Pastrana-Ríos B, Schreiter ER. Crystallization and preliminary X-ray characterization of full-length Chlamydomonas reinhardtii centrin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:402-4. [PMID: 18453711 DOI: 10.1107/s1744309108009123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 04/03/2008] [Indexed: 11/10/2022]
Abstract
Chlamydomonas reinhardtii centrin is a member of the EF-hand calcium-binding superfamily. It is found in the basal body complex and is important for flagellar motility. Like other members of the EF-hand family, centrin interacts with and modulates the function of other proteins in a calcium-dependent manner. To understand how C. reinhardtii centrin interacts with its protein targets, it has been crystallized in the presence of the model peptide melittin and X-ray diffraction data have been collected to 2.2 A resolution. The crystals are orthorhombic, with unit-cell parameters a = 52.1, b = 114.4, c = 34.8 A, and are likely to belong to space group P2(1)2(1)2.
Collapse
Affiliation(s)
- Elisa Alfaro
- Chemistry Department, University of Puerto Rico, Mayagüez, Puerto Rico
| | | | | | | | | |
Collapse
|
42
|
Duan L, Zhao YQ, Wang ZJ, Li GT, Liang AH, Yang BS. Lutetium(III)-dependent self-assembly study of ciliate Euplotes octocarinatus centrin. J Inorg Biochem 2008; 102:268-77. [DOI: 10.1016/j.jinorgbio.2007.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
|
43
|
Trojan P, Krauss N, Choe HW, Giessl A, Pulvermüller A, Wolfrum U. Centrins in retinal photoreceptor cells: regulators in the connecting cilium. Prog Retin Eye Res 2008; 27:237-59. [PMID: 18329314 DOI: 10.1016/j.preteyeres.2008.01.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Changes in the intracellular Ca2+ concentration regulate the visual signal transduction cascade directly or more often indirectly through Ca2+-binding proteins. Here we focus on centrins, which are members of a highly conserved subgroup of the EF-hand superfamily of Ca2+-binding proteins in photoreceptor cells of the vertebrate retina. Centrins are commonly associated with centrosome-related structures. In mammalian retinal photoreceptor cells, four centrin isoforms are expressed as prominent components in the connecting cilium linking the light-sensitive outer segment compartment with the metabolically active inner segment compartment. Our data indicate that Ca2+-activated centrin isoforms assemble into protein complexes with the visual heterotrimeric G-protein transducin. This interaction of centrins with transducin is mediated by binding to the betagamma-dimer of the heterotrimeric G-protein. More recent findings show that these interactions of centrins with transducin are reciprocally regulated via site-specific phosphorylations mediated by the protein kinase CK2. The assembly of centrin/G-protein complexes is a novel aspect of translocation regulation of signalling proteins in sensory cells, and represents a potential link between molecular trafficking and signal transduction in general.
Collapse
Affiliation(s)
- Philipp Trojan
- Institut für Zoologie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Zhao Y, Feng J, Liang A, Yang B. Binding of Euplotes octocarinatus centrin with target peptide melittin. CHINESE SCIENCE BULLETIN-CHINESE 2007. [DOI: 10.1007/s11434-007-0476-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Charbonnier JB, Renaud E, Miron S, Le Du MH, Blouquit Y, Duchambon P, Christova P, Shosheva A, Rose T, Angulo JF, Craescu CT. Structural, Thermodynamic, and Cellular Characterization of Human Centrin 2 Interaction with Xeroderma Pigmentosum Group C Protein. J Mol Biol 2007; 373:1032-46. [PMID: 17897675 DOI: 10.1016/j.jmb.2007.08.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/17/2007] [Accepted: 08/20/2007] [Indexed: 11/25/2022]
Abstract
Human centrin 2 (HsCen2), an EF-hand calcium binding protein, plays a regulatory role in the DNA damage recognition during the first steps of the nucleotide excision repair. This biological action is mediated by the binding to a short fragment (N847-R863) from the C-terminal region of xeroderma pigmentosum group C (XPC) protein. This work presents a detailed structural and energetic characterization of the HsCen2/XPC interaction. Using a truncated form of HsCen2 we obtained a high resolution (1.8 A) X-ray structure of the complex with the peptide N847-R863 from XPC. Structural and thermodynamic analysis of the interface revealed the existence of both electrostatic and apolar inter-molecular interactions, but the binding energy is mainly determined by the burial of apolar bulky side-chains into the hydrophobic pocket of the HsCen2 C-terminal domain. Binding studies with various peptide variants showed that XPC residues W848 and L851 constitute the critical anchoring side-chains. This enabled us to define a minimal centrin binding peptide variant of five residues, which accounts for about 75% of the total free energy of interaction between the two proteins. Immunofluorescence imaging in HeLa cells demonstrated that HsCen2 binding to the integral XPC protein may be observed in living cells, and is determined by the same interface residues identified in the X-ray structure of the complex. Overexpression of XPC perturbs the cellular distribution of HsCen2, by inducing a translocation of centrin molecules from the cytoplasm to the nucleus. The present data confirm that the in vitro structural features of the centrin/XPC peptide complex are highly relevant to the cellular context.
Collapse
Affiliation(s)
- Jean-Baptiste Charbonnier
- Laboratoire de Biologie Structurale et Radiobiologie, iBiTec-S, CEA, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang JL, Li YQ, Yang BS. Spectral study on the binding of gadolinium ions with apoovotransferrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007; 67:1101-5. [PMID: 17092766 DOI: 10.1016/j.saa.2006.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 09/29/2006] [Indexed: 05/12/2023]
Abstract
The binding of Gd3+ ion to apoovotransferrin (apoOTf) was monitored by means of UV difference spectra in 0.01M Hepes, pH 7.4 at 25 degrees C. Used 2-p-toluidinylnaphthalene-6-sulfonate (TNS) as fluorescence probe the conformational changes of protein were studied while gadolinium ions bound to apoOTf. The results show that Gd3+ binding produces peaks at 244 and 294 nm that is the characteristic of binding at the apoOTf specific metal-binding sites. At 244 nm the molar absorptivity of Gd-apoOTf complex is (1.99+/-0.17)x10(4)cm(-1)M(-1). The apparent binding constants for the complexes of Gd3+ with apoovotransferrin are logK(1)=7.61+/-0.14 and logK(2)=4.96+/-0.26. A very large conformational change of apoovotransferrin appears when Gd3+ is bound to the N-terminal binding site. When Gd3+ is bound to C-terminal binding site there is less conformational change.
Collapse
Affiliation(s)
- Jin-Ling Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | | | | |
Collapse
|
47
|
Wang ZJ, Ren LX, Zhao YQ, Li GT, Liang AH, Yang BS. Metal ions-induced conformational change of P23 by using TNS as fluorescence probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007; 66:1323-6. [PMID: 16920396 DOI: 10.1016/j.saa.2006.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 06/22/2006] [Indexed: 05/11/2023]
Abstract
In 10 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (Hepes), pH 7.4, 25 degrees C, the conformational change of the truncated form of ciliate Euplotes Octocarinatus centrin (P23) induced by metal ions were investigated using 2-p-toluidinylnaphthalene-6-sulfonate (TNS) as a probe. The results show that upon metal ions binding, P23 undergo a conformational change and the contributions to the conformational change from the two EF-hands are different, and Tb3+ has more larger influence than Ca2+ with the same concentration metal ions, which provide possible the evidence that the different EF-hands play distinct biological functions. Meanwhile, the conditional binding constants of TNS and Ca2-loaded or Tb2-loaded P23 were obtained, K (Ca2-P23+TNS)=(7.49+/-0.88)x10(5) mol-1 L, K (Tb2-P23+TNS)=(8.24+/-0.49)x10(5) mol-1 L.
Collapse
Affiliation(s)
- Zhi-Jun Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | |
Collapse
|
48
|
Tirone F, Cox JA. NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. FEBS Lett 2007; 581:1202-8. [PMID: 17346712 DOI: 10.1016/j.febslet.2007.02.047] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Superoxide generation by NADPH oxidase 5 (NOX5) is regulated by Ca(2+) through intramolecular activation of the C-terminal catalytic domain by the EF-hand-containing N-terminal regulatory domain. The C terminus contains a consensus calmodulin-binding domain (CaMBD), which, however, is not the binding site of the N-terminal regulatory domain. Here we show by pull down, cross-linking, fluorimetry and by enzymatic assays, that calmodulin binds to this CaMBD in a Ca(2+)-dependent manner, changes its conformation and increases the Ca(2+) sensitivity of the N terminus-regulated enzymatic activity. This mechanism represents an additional sophistication in the regulation of superoxide production by NOX5.
Collapse
Affiliation(s)
- Fabiana Tirone
- Department of Biochemistry, University of Geneva, Geneva 4, Switzerland
| | | |
Collapse
|
49
|
Spectral study on the interaction of ciliate Euplotes octocarinatus centrin and metal ions. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2006.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Giessl A, Trojan P, Rausch S, Pulvermüller A, Wolfrum U. Centrins, gatekeepers for the light-dependent translocation of transducin through the photoreceptor cell connecting cilium. Vision Res 2006; 46:4502-9. [PMID: 17027897 DOI: 10.1016/j.visres.2006.07.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 11/24/2022]
Abstract
Centrins are members of a highly conserved subgroup of the EF-hand superfamily of Ca(2+)-binding proteins commonly associated with centrosome-related structures. In the retina, centrins are also prominent components of the photoreceptor cell ciliary apparatus. Centrin isoforms are differentially localized at the basal body and in the lumen of the connecting cilium. All molecular exchanges between the inner and outer segments occur through this narrow connecting cilium. Ca(2+)-activated centrin isoforms bind to the visual heterotrimeric G-protein transducin via an interaction with the betagamma-subunit. Ca(2+)-dependent assemblies of centrin/G-protein complexes may regulate the transducin movement through the connecting cilium. Formation of this complex represents a novel mechanism in regulation of translocation of signaling proteins in sensory cells, as well as a potential link between molecular trafficking and signal transduction in general.
Collapse
Affiliation(s)
- Andreas Giessl
- Johannes Gutenberg-University, Institute of Zoology, Department of Cell and Matrix Biology, Mainz, Germany
| | | | | | | | | |
Collapse
|