1
|
Gilad Y, Firer M, Gellerman G. Recent Innovations in Peptide Based Targeted Drug Delivery to Cancer Cells. Biomedicines 2016; 4:E11. [PMID: 28536378 PMCID: PMC5344250 DOI: 10.3390/biomedicines4020011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022] Open
Abstract
Targeted delivery of chemotherapeutics and diagnostic agents conjugated to carrier ligands has made significant progress in recent years, both in regards to the structural design of the conjugates and their biological effectiveness. The goal of targeting specific cell surface receptors through structural compatibility has encouraged the use of peptides as highly specific carriers as short peptides are usually non-antigenic, are structurally simple and synthetically diverse. Recent years have seen many developments in the field of peptide based drug conjugates (PDCs), particularly for cancer therapy, as their use aims to bypass off-target side-effects, reducing the morbidity common to conventional chemotherapy. However, no PDCs have as yet obtained regulatory approval. In this review, we describe the evolution of the peptide-based strategy for targeted delivery of chemotherapeutics and discuss recent innovations in the arena that should lead in the near future to their clinical application.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel.
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Michael Firer
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
2
|
Curtis KK, Sarantopoulos J, Northfelt DW, Weiss GJ, Barnhart KM, Whisnant JK, Leuschner C, Alila H, Borad MJ, Ramanathan RK. Novel LHRH-receptor-targeted cytolytic peptide, EP-100: first-in-human phase I study in patients with advanced LHRH-receptor-expressing solid tumors. Cancer Chemother Pharmacol 2014; 73:931-41. [PMID: 24610297 PMCID: PMC4000412 DOI: 10.1007/s00280-014-2424-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/23/2014] [Indexed: 12/01/2022]
Abstract
Purpose To conduct a phase I study determining the safety, pharmacokinetics and preliminary efficacy of EP-100, a novel anticancer drug consisting of natural luteinizing-hormone-releasing hormone (LHRH) ligand linked to a cationic membrane-disrupting peptide. Methods Patients with advanced, solid tumors, positive for LHRH receptor by immunohistochemistry (IHC), received EP-100 weekly or twice weekly for 3 of 4 weeks in a 28 day cycle. A modified Fibonacci 3 + 3 dose-escalation schema was used. Initial cohorts received EP-100 once weekly (cohorts 1–7, 0.6–7.8 mg/m2, n = 21). Later cohorts received doses twice weekly (cohorts 7–11, 7.8–40 mg/m2, n = 16). Results LHRH-receptor expression was confirmed by IHC in 52 of 89 consented patients; 37 patients received at least 1 dose. Cohorts receiving doses of 5.2 mg/m2 and above achieved therapeutic levels from in vitro studies Clearance was rapid (mean half-life 7.1 ± 3.8 to 15.9 ± 3.6 min). The maximum-tolerated dose was not reached at the highest dose evaluated (40 mg/m2 twice weekly). Grade 2 increase in alanine aminotransferase/serum aspartate aminotransferase in one patient resolved, did not recur upon re-treatment, and was not observed in other patients. The only drug-related adverse event was transient infusion-related dermatologic reactions (10 patients). No complete or partial tumor responses were observed; seven patients had stable disease of 16 weeks. Conclusions EP-100 was well tolerated in patients with advanced, LHRH-receptor-expressing solid tumors. The recommended phase 2 dose is 40 mg/m2 twice weekly for 3 of 4 weeks per cycle. Electronic supplementary material The online version of this article (doi:10.1007/s00280-014-2424-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kelly K Curtis
- Division of Hematology/Oncology, Mayo Clinic Cancer Center, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ben-Yehudah A, Lorberboum-Galski H. Targeted cancer therapy with gonadotropin-releasing hormone chimeric proteins. Expert Rev Anticancer Ther 2014; 4:151-61. [PMID: 14748665 DOI: 10.1586/14737140.4.1.151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor-associated antigens (TAAs) have been identified mainly to determine cancer prognosis. In the past few years, TAAs have been used in the development of treatment modalities such as tumor vaccination. This review describes an additional application of TAAs: as a target for specific antitumor treatment. Since TAAs are overexpressed on the tumor cell surface, they can be targeted to deliver drugs directly to cancer cells. One such delivery system exploits chimeric proteins. Chimeric proteins are a class of targeted molecules designed to recognize and specifically destroy cells that overexpress specific receptors. These molecules, designed and constructed by gene fusion techniques, comprise both cell-targeting and cell-killing moieties. The authors' laboratory has developed a number of chimeric proteins using gonadotropin-releasing hormone (GnRH) as the targeting moiety. These chimeras recognize a GnRH binding site that is expressed on adenocarcinoma cells. GnRH was fused to a large number of killing moieties, including bacterial and human proapoptotic proteins. All GnRH-based chimeric proteins selectively killed adenocarcinoma cells both in vitro and in vivo. Utilizing chimeric proteins for targeted therapy represents a new and exciting therapeutic modality for the treatment of cancer in humans.
Collapse
Affiliation(s)
- Ahmi Ben-Yehudah
- Department of Cellular Biochemistry and Human Genetics, Hebrew University, Hadassah Medical School, Jerusalem, 91120, Israel.
| | | |
Collapse
|
4
|
Recombinant GnRH-p53 protein sensitizes breast cancer cells to 5-fluorouracil-induced apoptosis in vitro and in vivo. Apoptosis 2013; 18:1214-23. [DOI: 10.1007/s10495-013-0863-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Maness L, Goktepe I, Chen H, Ahmedna M, Sang S. Impact of Phytolacca americana
Extracts on Gene Expression of Colon Cancer Cells. Phytother Res 2013; 28:219-23. [DOI: 10.1002/ptr.4979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 01/07/2023]
Affiliation(s)
- L. Maness
- North Carolina Agricultural and Technical State University; Department of Family and Consumer Sciences, Food and Nutritional Sciences Program; Greensboro NC 27411 USA
| | - I. Goktepe
- North Carolina Agricultural and Technical State University; Department of Family and Consumer Sciences, Food and Nutritional Sciences Program; Greensboro NC 27411 USA
| | - H. Chen
- North Carolina Agricultural and Technical State University; Center of Excellence in Post-Harvest Technologies, North Carolina Research Campus; Kannapolis NC 28081 USA
| | - M. Ahmedna
- North Carolina Agricultural and Technical State University; Center of Excellence in Post-Harvest Technologies, North Carolina Research Campus; Kannapolis NC 28081 USA
| | - S. Sang
- North Carolina Agricultural and Technical State University; Center of Excellence in Post-Harvest Technologies, North Carolina Research Campus; Kannapolis NC 28081 USA
| |
Collapse
|
6
|
Gadadhar S, Karande AA. Abrin immunotoxin: targeted cytotoxicity and intracellular trafficking pathway. PLoS One 2013; 8:e58304. [PMID: 23472175 PMCID: PMC3589266 DOI: 10.1371/journal.pone.0058304] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/01/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Immunotherapy is fast emerging as one of the leading modes of treatment of cancer, in combination with chemotherapy and radiation. Use of immunotoxins, proteins bearing a cell-surface receptor-specific antibody conjugated to a toxin, enhances the efficacy of cancer treatment. The toxin Abrin, isolated from the Abrus precatorius plant, is a type II ribosome inactivating protein, has a catalytic efficiency higher than any other toxin belonging to this class of proteins but has not been exploited much for use in targeted therapy. METHODS Protein synthesis assay using (3)[H] L-leucine incorporation; construction and purification of immunotoxin; study of cell death using flow cytometry; confocal scanning microscopy and sub-cellular fractionation with immunoblot analysis of localization of proteins. RESULTS We used the recombinant A chain of abrin to conjugate to antibodies raised against the human gonadotropin releasing hormone receptor. The conjugate inhibited protein synthesis and also induced cell death specifically in cells expressing the receptor. The conjugate exhibited differences in the kinetics of inhibition of protein synthesis, in comparison to abrin, and this was attributed to differences in internalization and trafficking of the conjugate within the cells. Moreover, observations of sequestration of the A chain into the nucleus of cells treated with abrin but not in cells treated with the conjugate reveal a novel pathway for the movement of the conjugate in the cells. CONCLUSIONS This is one of the first reports on nuclear localization of abrin, a type II RIP. The immunotoxin mAb F1G4-rABRa-A, generated in our laboratory, inhibits protein synthesis specifically on cells expressing the gonadotropin releasing hormone receptor and the pathway of internalization of the protein is distinct from that seen for abrin.
Collapse
Affiliation(s)
- Sudarshan Gadadhar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anjali A. Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
7
|
Liu SV, Liu S, Pinski J. Luteinizing hormone-releasing hormone receptor targeted agents for prostate cancer. Expert Opin Investig Drugs 2011; 20:769-78. [DOI: 10.1517/13543784.2011.574611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
LaFevre-Bernt M, Wu S, Lin X. Recombinant, refolded tetrameric p53 and gonadotropin-releasing hormone-p53 slow proliferation and induce apoptosis in p53-deficient cancer cells. Mol Cancer Ther 2008; 7:1420-9. [DOI: 10.1158/1535-7163.mct-08-0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The p53 tumor suppressor is mutated in over 50% of human cancers. Mutations resulting in amino acid changes within p53 result in a loss of activity and consequent changes in expression of genes that regulate DNA repair and cell cycle progression. Replacement of p53 using protein therapy would restore p53 function in p53-deficient tumor cells, with a consequence of tumor cell death and tumor regression. p53 functions in a tetrameric form in vivo. Here, we refolded a wild-type, full-length p53 from inclusion bodies expressed in Escherichia coli as a stable tetramer. The tetrameric p53 binds to p53-specific DNA and, when transformed into a p53-deficient cancer cell line, induced apoptosis of the transformed cells. Next, using the same expression and refolding technology, we produced a stable tetramer of recombinant gonadotropin-releasing hormone-p53 fusion protein (GnRH-p53), which traverses the plasma membrane, slows proliferation, and induces apoptosis in p53-deficient, GnRH-receptor–expressing cancer cell lines. In addition, we showed a time-dependent binding and internalization of GnRH-p53 to a receptor-expressing cell line. We conclude that the GnRH-p53 fusion strategy may provide a basis for constructing an effective cancer therapeutic for patients with tumors in GnRH-receptor–positive tissue types. [Mol Cancer Ther 2008;7(6):1420–9]
Collapse
Affiliation(s)
| | - Shili Wu
- 1ProteomTech, Inc., Costa Mesa, California and
| | - Xinli Lin
- 1ProteomTech, Inc., Costa Mesa, California and
- 2GeneCopoeia, Inc., Germantown, Maryland
| |
Collapse
|
9
|
Katayama DS, Cornell Manning M, Jarosz P. Solution behavior of a novel biopharmaceutical drug candidate: a gonadotropin-toxin conjugate. Drug Dev Ind Pharm 2007; 32:1175-84. [PMID: 17090440 DOI: 10.1080/03639040600815194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
There is little known about the solution structure and stability of peptide-protein conjugates, which comprise a new class of potential biopharmaceutical agents. This study describes the solution behavior of gonadotropins-releasing hormone (GnRH) chemically conjugated to pokeweed antiviral protein (PAP). The conjugate adopts a well-defined conformation across a pH range of 4 to 8. Even after heating to 80 degrees C, the conjugate retains a significant amount of secondary and tertiary structure. Heating for 1 h at 60 degrees C does lead to chemical damage, as determined by cation exchange chromatography. Using an experimental design approach, the optimal pH and salt concentration for limiting chemical damage was determined.
Collapse
Affiliation(s)
- Derrick S Katayama
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
10
|
Nagy A, Schally AV. Targeting of cytotoxic luteinizing hormone-releasing hormone analogs to breast, ovarian, endometrial, and prostate cancers. Biol Reprod 2005; 73:851-9. [PMID: 16033997 DOI: 10.1095/biolreprod.105.043489] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Targeted chemotherapy is a modern approach aimed at increasing the efficacy of systemic chemotherapy and reducing its side effects. The peptide receptors expressed primarily on cancerous cells can serve as targets for a selective destruction of malignant tumors. Binding sites for LHRH (now known in genome and microarray databases as GNRH1), were found on 52% of human breast cancers, about 80% of human ovarian and endometrial cancers, and 86% of human prostatic carcinoma specimens. Because LHRH receptors are not expressed on most normal tissues, they represent a specific target for cancer chemotherapy with antineoplastic agents linked to an LHRH vector molecule. To test the efficacy of targeted chemotherapy based on LHRH analogs, we recently developed a cytotoxic analog of LHRH, designated AN-152, which consists of [D-Lys6]LHRH covalently linked to one of the most widely used chemotherapeutic agents, doxorubicin (DOX). In addition, we designed and synthesized a highly active derivative of DOX, 2-pyrrolino-DOX (AN-201), which is 500-1000 times more potent than DOX in vitro. AN-201 is active against tumors resistant to DOX, and noncardiotoxic. As in the case of DOX, AN-201 was coupled to carrier peptide [D-Lys6]LHRH to form a superactive targeted cytotoxic LHRH analog, AN-207. Both AN-152 and AN-207 can effectively inhibit the growth of LHRH receptor-positive human breast, ovarian, endometrial, and prostate cancers xenografted into nude mice. DOX-containing cytotoxic LHRH analog AN-152 is scheduled for clinical phase I/IIa trials in patients with advanced ovarian and breast cancers in 2005.
Collapse
Affiliation(s)
- Attila Nagy
- Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
11
|
Mansuy V, Boireau W, Fraichard A, Schlick JL, Jouvenot M, Delage-Mourroux R. GEC1, a protein related to GABARAP, interacts with tubulin and GABA(A) receptor. Biochem Biophys Res Commun 2005; 325:639-48. [PMID: 15530441 DOI: 10.1016/j.bbrc.2004.10.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Indexed: 10/26/2022]
Abstract
We have previously identified in uterine cells a novel estrogen-regulated gene called gec1. GEC1 presents 87% identity with GABARAP which, so far, was the only protein found to associate with tubulin and GABA(A) receptor. We demonstrated then that GEC1 interacts in vitro with tubulin and GABA(A) receptor, and promotes tubulin assembly and microtubule bundling. Since all polyclonal antibodies failed in discrimination of both proteins GEC1 and GABARAP, a GEC1-GFP fusion protein was used to specifically localize GEC1. GEC1-GFP was distributed over the cytoplasm in perinuclear vesicles with a scattered pattern. Overall, our data show that GEC1 could be a new member of the GABARAP family involved in the transport of GABA(A) receptor.
Collapse
Affiliation(s)
- Virginie Mansuy
- Equipe Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, Université de Franche-Comté, U.F.R. Sciences et Techniques, IFR 133, 16 route de Gray, 25030 Besançon Cedex, France
| | | | | | | | | | | |
Collapse
|
12
|
Qi L, Nett TM, Allen MC, Sha X, Harrison GS, Frederick BA, Crawford ED, Glode LM. Binding and cytotoxicity of conjugated and recombinant fusion proteins targeted to the gonadotropin-releasing hormone receptor. Cancer Res 2004; 64:2090-5. [PMID: 15026348 DOI: 10.1158/0008-5472.can-3192-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pokeweed antiviral protein (PAP) is a plant-derived, highly potent ribosome inactivating protein that causes inhibition of protein translation and rapid cell death. We and others have delivered this protein to various cell types, including cancer cells, using hormones to specifically target cells bearing the hormone receptor. Here, we compare binding and cytotoxicity of GnRH-PAP hormonotoxins prepared either by protein conjugation (GnRH-PAP conjugate) or through recombinant DNA technology (GnRH-PAP fusion). Although GnRH-PAP conjugate protein bound specifically to and caused cell death in cells bearing the gonadotropin-releasing hormone (GnRH) receptor, we could not detect binding or cytotoxicity using two different versions of the fusion protein in receptor-positive cells. We conclude that generation of an active GnRH-PAP fusion protein may not be feasible either because both ends of the GnRH molecule are required for receptor binding, but only the NH(2) terminus is free in the fusion protein and/or that more potent analogues of GnRH (inclusion of which is not feasible in the fusion protein) are needed for efficient targeting. In contrast, the GnRH-PAP conjugate shows promise as a novel anticancer agent, capable of targeting cancer cells expressing the GnRH receptor such as prostate, breast, ovarian, endometrial, and pancreatic cells. It may also be useful as a therapeutic agent to eliminate pituitary gonadotrophs, eliminating the need for chronic GnRH analogue administration to treat hormone-sensitive diseases.
Collapse
Affiliation(s)
- Lin Qi
- Department of Medicine, Division of Medical Oncology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li F, Yang XX, Xia HC, Zeng R, Hu WG, Li Z, Zhang ZC. Purification and characterization of Luffin P1, a ribosome-inactivating peptide from the seeds of Luffa cylindrica. Peptides 2003; 24:799-805. [PMID: 12948831 DOI: 10.1016/s0196-9781(03)00173-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A peptide designated Luffin P1 was purified from the seeds of Luffa cylindrica. Its molecular mass was determined to be 5226.1 Da by MALDI-TOF MS analysis. The purified Luffin P1 shows a strong inhibitory activity on protein synthesis in the cell-free rabbit reticulocyte lysate with IC(50) of 0.88 nM. Its reaction mechanism is the same as that of the ribosome-inactivating protein trichosanthin, which is an rRNA N-glycosidase. Besides, the results of gel filtration chromatography suggested the existence of polymers of Luffin P1 and polymerization of Luffin P1 enhanced its rRNA N-glycosidase activity. Luffin P1 was the smallest peptide yet reported that has translational inhibitory activity. The cDNA and deduced amino acid sequence of Luffin P1 has also been determined.
Collapse
Affiliation(s)
- Feng Li
- Key laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Mabry TJ. Selected topics from forty years of natural products research: betalains to flavonoids, antiviral proteins, and neurotoxic nonprotein amino acids. JOURNAL OF NATURAL PRODUCTS 2001; 64:1596-604. [PMID: 11754626 DOI: 10.1021/np010524s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The elucidation by NMR and chemical methods of the unique structure of betanidin, the aglycon of the red-violet beet pigment betanin, forty years ago at the University of Zürich, Switzerland, was the beginning of my plant chemistry research program. Many of the same chemical and spectral techniques developed in Zürich have been used at The University of Texas at Austin for the structure analysis of members of many other classes of natural products including especially flavonoids, terpenoids, and alkaloids. Investigations at UT-Austin have concerned many topics such as biochemical and molecular systematics, biosynthetic pathways, structure-activity relationships, and the medicinal importance of natural products and included studies of antiviral proteins in the genus Phytolacca and neurotoxic nonprotein amino acids from cycads and other sources. Following the betalain story and an account of the early development of my UT-Austin biochemical systematic program, the Phytolacca and neurotoxin investigations are discussed herein.
Collapse
Affiliation(s)
- T J Mabry
- Phytochemical Laboratories, Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
15
|
Hempel R, Wirsching F, Schober A, Schwienhorst A. A new reporter gene system suited for cell-free protein synthesis and high-throughput screening in small reaction volumes. Anal Biochem 2001; 297:177-82. [PMID: 11673885 DOI: 10.1006/abio.2001.5322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The properties of M-hirudin as a new reporter gene system were examined using rabbit reticulocyte lysate for cell-free protein expression. In contrast to the luciferase gene, in vitro translation of M-hirudin is highly robust against changes in concentrations of K+ (and Rb+). In addition, M-hirudin can be detected very sensitively using a reasonably priced fluorimetric thrombin assay. To show that the new reporter gene system is well suited for (u)HTS-applications, cell-free synthesis as well as the fluorimetric assay of M-hirudin were carried out in nanotiter and microtiter plates, respectively.
Collapse
Affiliation(s)
- R Hempel
- Abteilung fuer Molekulare Genetik und Praeparative Molekularbiologie, Institut fuer Mikrobiologie und Genetik, Grisebachstrasse 8, Goettingen, 37077, Germany
| | | | | | | |
Collapse
|
16
|
Tazzari PL, Polito L, Bolognesi A, Pistillo MP, Capanni P, Palmisano GL, Lemoli RM, Curti A, Biancone L, Camussi G, Conte R, Ferrara GB, Stirpe F. Immunotoxins containing recombinant anti-CTLA-4 single-chain fragment variable antibodies and saporin: in vitro results and in vivo effects in an acute rejection model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4222-9. [PMID: 11591743 DOI: 10.4049/jimmunol.167.8.4222] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunotoxins containing recombinant human-derived single-chain fragment variable (scFv) reagents (83 and 40) against CTLA-4 (CD152) linked to saporin, a ribosome-inactivating protein, were prepared and tested on CD3/CD28-activated T lymphocytes, MLRs, CTLA-4-positive cell lines, and hemopoietic precursors. Immunotoxins induced apoptosis in activated T lymphocytes and were able to specifically inhibit MLR between T lymphocytes and dendritic cells. The 83-saporin immunotoxin also inhibited the T cell activation in an MLR between T lymphocytes and an EBV-positive lymphoblastoid B cell line. Toxicity tests on hemopoietic precursors showed little or no effects in inhibiting colonies' growth. As the 83 scFv Ab was reactive also with activated mouse T lymphocytes, 83-saporin was tested in a model of tumor rejection consisting of C57BL/6 mice bearing a murine H.end endothelioma cell line, derived from DBA/2 mice. The lymphoid infiltration due to the presence of the tumor was reduced to a high extent, demonstrating that the immunotoxin was actually available and active in vivo. Thus, taking the results altogether, this study might represent a new breakthrough for immunotherapy, showing the possibility of targeting CTLA-4 to kill activated T cells, using conjugates containing scFv Abs and type 1 ribosome-inactivating protein.
Collapse
Affiliation(s)
- P L Tazzari
- Service of Transfusion Medicine, S. Orsola-Malpighi Hospital, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|