1
|
Lin CH, Tsai CH, Chou CC, Wu WF. A Transient π-π or Cation-π Interaction between Degron and Degrader Dual Residues: A Key Step for the Substrate Recognition and Discrimination in the Processive Degradation of SulA by ClpYQ (HslUV) Protease in Escherichia coli. Int J Mol Sci 2023; 24:17353. [PMID: 38139184 PMCID: PMC10743992 DOI: 10.3390/ijms242417353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The Escherichia coli ATP-dependent ClpYQ protease constitutes ClpY ATPase/unfoldase and ClpQ peptidase. The Tyr91st residue within the central pore-I site of ClpY-hexamer is important for unfolding and translocating substrates into the catalytic site of ClpQ. We have identified the degron site (GFIMRP147th) of SulA, a cell-division inhibitor recognized by ClpYQ and that the Phe143rd residue in degron site is necessary for SulA native folded structure. However, the functional association of this degron site with the ClpYQ degrader is unknown. Here, we investigated the molecular insights into substrate recognition and discrimination by the ClpYQ protease. We found that the point mutants ClpYY91FQ, ClpYY91HQ, and ClpYY91WQ, carrying a ring structure at the 91st residue of ClpY, efficiently degraded their natural substrates, evidenced by the suppressed bacterial methyl-methane-sulfonate (MMS) sensitivity, the reduced β-galactosidase activity of cpsB::lacZ, and the lowest amounts of MBP-SulA in both in vivo and in vitro degradation analyses. Alternatively, mimicking the wild-type SulA, SulAF143H, SulAF143K and SulAF143W, harboring a ring structure or a cation side-group in 143rd residue of SulA, were efficiently degraded by ClpYQ in the bacterial cells, also revealing shorter half-lives at 41 °C and higher binding affinities towards ClpY in pull-down assays. Finally, ClpYY91FQ and ClpYY91HQ, were capable of effectively degrading SulAF143H and SulAF143K, highlighting a correspondingly functional interaction between the SulA 143rd and ClpY 91st residues. According to the interchangeable substituted amino acids, our results uniquely indicate that a transient π-π or cation-π interaction between the SulA 143rd and ClpY 91st residues could be aptly gripped between the degron site of substrates and the pore site of proteases (degraders) for substrate recognition and discrimination of the processive degradation.
Collapse
Affiliation(s)
- Chu-Hsuan Lin
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chun-Chi Chou
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
McGuire BE, Nano FE. Whole-genome sequencing analysis of two heat-evolved Escherichia coli strains. BMC Genomics 2023; 24:154. [PMID: 36973666 PMCID: PMC10044804 DOI: 10.1186/s12864-023-09266-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND High temperatures cause a suite of problems for cells, including protein unfolding and aggregation; increased membrane fluidity; and changes in DNA supercoiling, RNA stability, transcription and translation. Consequently, enhanced thermotolerance can evolve through an unknown number of genetic mechanisms even in the simple model bacterium Escherichia coli. To date, each E. coli study exploring this question resulted in a different set of mutations. To understand the changes that can arise when an organism evolves to grow at higher temperatures, we sequenced and analyzed two previously described E. coli strains, BM28 and BM28 ΔlysU, that have been laboratory adapted to the highest E. coli growth temperature reported to date. RESULTS We found three large deletions in the BM28 and BM28 ΔlysU strains of 123, 15 and 8.5 kb in length and an expansion of IS10 elements. We found that BM28 and BM28 ΔlysU have considerably different genomes, suggesting that the BM28 culture that gave rise to BM28 and BM28 ΔlysU was a mixed population of genetically different cells. Consistent with published findings of high GroESL expression in BM28, we found that BM28 inexplicitly carries the groESL bearing plasmid pOF39 that was maintained simply by high-temperature selection pressure. We identified over 200 smaller insertions, deletions, single nucleotide polymorphisms and other mutations, including changes in master regulators such as the RNA polymerase and the transcriptional termination factor Rho. Importantly, this genome analysis demonstrates that the commonly cited findings that LysU plays a crucial role in thermotolerance and that GroESL hyper-expression is brought about by chromosomal mutations are based on a previous misinterpretation of the genotype of BM28. CONCLUSIONS This whole-genome sequencing study describes genetically distinct mechanisms of thermotolerance evolution from those found in other heat-evolved E. coli strains. Studying adaptive laboratory evolution to heat in simple model organisms is important in the context of climate change. It is important to better understand genetic mechanisms of enhancing thermotolerance in bacteria and other organisms, both in terms of optimizing laboratory evolution methods for various organisms and in terms of potential genetic engineering of organisms most at risk or most important to our societies and ecosystems.
Collapse
Affiliation(s)
- Bailey E McGuire
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, B.C, Canada.
| | - Francis E Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, B.C, Canada
| |
Collapse
|
3
|
Bannikova S, Khlebodarova T, Vasilieva A, Mescheryakova I, Bryanskaya A, Shedko E, Popik V, Goryachkovskaya T, Peltek S. Specific Features of the Proteomic Response of Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation. Int J Mol Sci 2022; 23:ijms232315216. [PMID: 36499542 PMCID: PMC9735757 DOI: 10.3390/ijms232315216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Studying the effects of terahertz (THz) radiation on the proteome of temperature-sensitive organisms is limited by a number of significant technical difficulties, one of which is maintaining an optimal temperature range to avoid thermal shock as much as possible. In the case of extremophilic species with an increased temperature tolerance, it is easier to isolate the effects of THz radiation directly. We studied the proteomic response to terahertz radiation of the thermophilic Geobacillus icigianus, persisting under wide temperature fluctuations with a 60 °C optimum. The experiments were performed with a terahertz free-electron laser (FEL) from the Siberian Center for Synchrotron and Terahertz Radiation, designed and employed by the Institute of Nuclear Physics of the SB of the RAS. A G. icigianus culture in LB medium was THz-irradiated for 15 min with 0.23 W/cm2 and 130 μm, using a specially designed cuvette. The life cycle of this bacterium proceeds under conditions of wide temperature and osmotic fluctuations, which makes its enzyme systems stress-resistant. The expression of several proteins was shown to change immediately after fifteen minutes of irradiation and after ten minutes of incubation at the end of exposure. The metabolic systems of electron transport, regulation of transcription and translation, cell growth and chemotaxis, synthesis of peptidoglycan, riboflavin, NADH, FAD and pyridoxal phosphate cofactors, Krebs cycle, ATP synthesis, chaperone and protease activity, and DNA repair, including methylated DNA, take part in the fast response to THz radiation. When the response developed after incubation, the systems of the cell's anti-stress defense, chemotaxis, and, partially, cell growth were restored, but the respiration and energy metabolism, biosynthesis of riboflavin, cofactors, peptidoglycan, and translation system components remained affected and the amino acid metabolism system was involved.
Collapse
Affiliation(s)
- Svetlana Bannikova
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Correspondence:
| | - Tamara Khlebodarova
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Asya Vasilieva
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Irina Mescheryakova
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alla Bryanskaya
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Elizaveta Shedko
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Vasily Popik
- Budker Institute of Nuclear Physics, Siberian Branch Russian Academy of Sciences (SB RAS), 11 Acad. Lavrentieva Pr., 630090 Novosibirsk, Russia
| | - Tatiana Goryachkovskaya
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Sergey Peltek
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Medina Munoz M, Brenner C, Richmond D, Spencer N, Rio RVM. The holobiont transcriptome of teneral tsetse fly species of varying vector competence. BMC Genomics 2021; 22:400. [PMID: 34058984 PMCID: PMC8166097 DOI: 10.1186/s12864-021-07729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. Results An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, ‘translation, ribosomal structure and biogenesis’ followed by ‘coenzyme transport and metabolism’ were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. Conclusions These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07729-5.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Caitlyn Brenner
- Department of Biology, Washington and Jefferson College, Washington, PA, 15301, USA
| | - Dylan Richmond
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
5
|
Specific regions of the SulA protein recognized and degraded by the ATP-dependent ClpYQ (HslUV) protease in Escherichia coli. Microbiol Res 2018; 220:21-31. [PMID: 30744816 DOI: 10.1016/j.micres.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/27/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease, in which ClpQ is the peptidase subunit and ClpY is the ATPase and unfoldase. ClpY functions to recognize protein substrates, and denature and translocate the unfolded polypeptides into the proteolytic site of ClpQ for degradation. However, it is not clear how the natural substrates are recognized by the ClpYQ protease and the mechanism by which the substrates are selected, unfolded and translocated by ClpY into the interior site of ClpQ hexamers. Both Lon and ClpYQ proteases can degrade SulA, a cell division inhibitor, in bacterial cells. In this study, using yeast two-hybrid and in vivo degradation analyses, we first demonstrated that the C-terminal internal hydrophobic region (139th∼149th aa) of SulA is necessary for binding and degradation by ClpYQ. A conserved region, GFIMRP, between 142th and 147th residues of SulA, were identified among various Gram-negative bacteria. By using MBP-SulA(F143Y) (phenylalanine substituted with tyrosine) as a substrate, our results showed that this conserved residue of SulA is necessary for recognition and degradation by ClpYQ. Supporting these data, MBP-SulA(F143Y), MBP-SulA(F143N) (phenylalanine substituted with asparagine) led to a longer half-life with ClpYQ protease in vivo. In contrast, MBP-SulA(F143D) and MBP-SulA(F143S) both have shorter half-lives. Therefore, in the E. coli ClpYQ protease complex, ClpY recognizes the C-terminal region of SulA, and F143 of SulA plays an important role for the recognition and degradation by ClpYQ protease.
Collapse
|
6
|
Warr AR, Klimova AN, Nwaobasi AN, Sandler SJ. Protease-deficient SOS constitutive cells have RecN-dependent cell division phenotypes. Mol Microbiol 2018; 111:405-422. [PMID: 30422330 DOI: 10.1111/mmi.14162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2018] [Indexed: 02/05/2023]
Abstract
In Escherichia coli, after DNA damage, the SOS response increases the transcription (and protein levels) of approximately 50 genes. As DNA repair ensues, the level of transcription returns to homeostatic levels. ClpXP and other proteases return the high levels of several SOS proteins to homeostasis. When all SOS genes are constitutively expressed and many SOS proteins are stabilized by the removal of ClpXP, microscopic analysis shows that cells filament, produce mini-cells and have branching protrusions along their length. The only SOS gene required (of 19 tested) for the cell length phenotype is recN. RecN is a member of the Structural Maintenance of Chromosome (SMC) class of proteins. It can hold pieces of DNA together and is important for double-strand break repair (DSBR). RecN is degraded by ClpXP. Overexpression of recN+ in the absence of ClpXP or recN4174 (A552S, A553V), a mutant not recognized by ClpXP, produce filamentous cells with nucleoid partitioning defects. It is hypothesized that when produced at high levels during the SOS response, RecN interferes with nucleoid partitioning and Z-Ring function by holding together sections of the nucleoid, or sister nucleoids, providing another way to inhibit cell division.
Collapse
Affiliation(s)
- Alyson R Warr
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Anastasiia N Klimova
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Amy N Nwaobasi
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts Amherst, Amherst, MA, 01003, USA.,University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06032, USA
| | - Steven J Sandler
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
7
|
Campos M, Govers SK, Irnov I, Dobihal GS, Cornet F, Jacobs-Wagner C. Genomewide phenotypic analysis of growth, cell morphogenesis, and cell cycle events in Escherichia coli. Mol Syst Biol 2018; 14:e7573. [PMID: 29941428 PMCID: PMC6018989 DOI: 10.15252/msb.20177573] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cell size, cell growth, and cell cycle events are necessarily intertwined to achieve robust bacterial replication. Yet, a comprehensive and integrated view of these fundamental processes is lacking. Here, we describe an image‐based quantitative screen of the single‐gene knockout collection of Escherichia coli and identify many new genes involved in cell morphogenesis, population growth, nucleoid (bulk chromosome) dynamics, and cell division. Functional analyses, together with high‐dimensional classification, unveil new associations of morphological and cell cycle phenotypes with specific functions and pathways. Additionally, correlation analysis across ~4,000 genetic perturbations shows that growth rate is surprisingly not predictive of cell size. Growth rate was also uncorrelated with the relative timings of nucleoid separation and cell constriction. Rather, our analysis identifies scaling relationships between cell size and nucleoid size and between nucleoid size and the relative timings of nucleoid separation and cell division. These connections suggest that the nucleoid links cell morphogenesis to the cell cycle.
Collapse
Affiliation(s)
- Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.,Laboratoire de Microbiologie et Génétique Moléculaires (LMGM; UMR5100), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, Toulouse, France
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Irnov Irnov
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Genevieve S Dobihal
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM; UMR5100), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, Toulouse, France
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT, USA .,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Fernández-Gómez I, Sablón-Carrazana M, Bencomo-Martínez A, Domínguez G, Lara-Martínez R, Altamirano-Bustamante NF, Jiménez-García LF, Pasten-Hidalgo K, Castillo-Rodríguez RA, Altamirano P, Marrero SR, Revilla-Monsalve C, Valdés-Sosa P, Salamanca-Gómez F, Garrido-Magaña E, Rodríguez-Tanty C, Altamirano-Bustamante MM. Diabetes Drug Discovery: hIAPP 1-37 Polymorphic Amyloid Structures as Novel Therapeutic Targets. Molecules 2018; 23:molecules23030686. [PMID: 29562662 PMCID: PMC6017868 DOI: 10.3390/molecules23030686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Human islet amyloid peptide (hIAPP1–37) aggregation is an early step in Diabetes Mellitus. We aimed to evaluate a family of pharmaco-chaperones to act as modulators that provide dynamic interventions and the multi-target capacity (native state, cytotoxic oligomers, protofilaments and fibrils of hIAPP1–37) required to meet the treatment challenges of diabetes. We used a cross-functional approach that combines in silico and in vitro biochemical and biophysical methods to study the hIAPP1–37 aggregation-oligomerization process as to reveal novel potential anti-diabetic drugs. The family of pharmaco-chaperones are modulators of the oligomerization and fibre formation of hIAPP1–37. When they interact with the amino acid in the amyloid-like steric zipper zone, they inhibit and/or delay the aggregation-oligomerization pathway by binding and stabilizing several amyloid structures of hIAPP1–37. Moreover, they can protect cerebellar granule cells (CGC) from the cytotoxicity produced by the hIAPP1–37 oligomers. The modulation of proteostasis by the family of pharmaco-chaperones A–F is a promising potential approach to limit the onset and progression of diabetes and its comorbidities.
Collapse
Affiliation(s)
- Isaac Fernández-Gómez
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | | | | | - Reyna Lara-Martínez
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Ciudad de México 04510, Mexico.
| | | | | | - Karina Pasten-Hidalgo
- Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
- Cátedras Conacyt, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Rosa Angélica Castillo-Rodríguez
- Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
- Cátedras Conacyt, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Perla Altamirano
- Servicio de Medicina Nuclear, Hospital de Especialidades, CMN, La Raza, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | - Peter Valdés-Sosa
- Departamento de Neuroquímica, Centro de Neurociencias de Cuba, Habana 11600, Cuba.
| | - Fabio Salamanca-Gómez
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | - Eulalia Garrido-Magaña
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | - Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| |
Collapse
|
9
|
The Architecture of the Anbu Complex Reflects an Evolutionary Intermediate at the Origin of the Proteasome System. Structure 2017; 25:834-845.e5. [PMID: 28479063 PMCID: PMC5666114 DOI: 10.1016/j.str.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/23/2016] [Accepted: 04/14/2017] [Indexed: 11/22/2022]
Abstract
Proteasomes are self-compartmentalizing proteases that function at the core of the cellular protein degradation machinery in eukaryotes, archaea, and some bacteria. Although their evolutionary history is under debate, it is thought to be linked to that of the bacterial protease HslV and the hypothetical bacterial protease Anbu (ancestral beta subunit). Here, together with an extensive bioinformatic analysis, we present the first biophysical characterization of Anbu. Anbu forms a dodecameric complex with a unique architecture that was only accessible through the combination of X-ray crystallography and small-angle X-ray scattering. While forming continuous helices in crystals and electron microscopy preparations, refinement of sections from the crystal structure against the scattering data revealed a helical open-ring structure in solution, contrasting the ring-shaped structures of proteasome and HslV. Based on this primordial architecture and exhaustive sequence comparisons, we propose that Anbu represents an ancestral precursor at the origin of self-compartmentalization. The crystal structure of the bacterial proteasome homolog Anbu has been solved The dodecameric architecture reveals unique features compared with classical proteasomes Bioinformatic analysis places Anbu at the root of the proteasome family
Collapse
|
10
|
Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq. PLoS Negl Trop Dis 2017; 11:e0005357. [PMID: 28358880 PMCID: PMC5373514 DOI: 10.1371/journal.pntd.0005357] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Background Filarial nematodes currently infect up to 54 million people worldwide, with millions more at risk for infection, representing the leading cause of disability in the developing world. Brugia malayi is one of the causative agents of lymphatic filariasis and remains the only human filarial parasite that can be maintained in small laboratory animals. Many filarial nematode species, including B. malayi, carry an obligate endosymbiont, the alpha-proteobacteria Wolbachia, which can be eliminated through antibiotic treatment. Elimination of the endosymbiont interferes with development, reproduction, and survival of the worms within the mamalian host, a clear indicator that the Wolbachia are crucial for survival of the parasite. Little is understood about the mechanism underlying this symbiosis. Methodology/ Principle findings To better understand the molecular interplay between these two organisms we profiled the transcriptomes of B. malayi and Wolbachia by dual RNA-seq across the life cycle of the parasite. This helped identify functional pathways involved in this essential symbiotic relationship provided by the co-expression of nematode and bacterial genes. We have identified significant stage-specific and gender-specific differential expression in Wolbachia during the nematode’s development. For example, during female worm development we find that Wolbachia upregulate genes involved in ATP production and purine biosynthesis, as well as genes involved in the oxidative stress response. Conclusions/ Significance This global transcriptional analysis has highlighted specific pathways to which both Wolbachia and B. malayi contribute concurrently over the life cycle of the parasite, paving the way for the development of novel intervention strategies. Filarial nematodes currently infect millions of people worldwide and represent a leading cause of disability. Currently available medications are insufficient in reaching elimination of these parasites. Many filarial nematodes, including Brugia malayi, have an Achilles heel of sorts—that is their obligate symbiotic relationship with the bacteria Wolbachia. While it is known that the nematode and the bacteria are co-dependent, the molecular basis of this relationship remains poorly understood. Using deep sequencing, we profiled the transcriptomes of B. malayi and Wolbachia across the life cycle of the parasite to determine the functional pathways necessary for parasite survival provided by the co-expression of nematode and bacterial genes. Defining the mechanisms of endosymbiosis between these two organisms will allow for the exploitation of this relationship for the development of new intervention strategies.
Collapse
|
11
|
Lin S, Liang R, Zhang T, Yuan Y, Shen S, Ye H. Microarray analysis of the transcriptome of theEscherichia coli(E. coli) regulated by cinnamaldehyde (CMA). FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1300875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Songyi Lin
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, People’s Republic of China
| | - Rong Liang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Tiehua Zhang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Yuan Yuan
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Suxia Shen
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Haiqing Ye
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
12
|
Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem 2016; 124:1121-1141. [DOI: 10.1016/j.ejmech.2016.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
|
13
|
Sablón-Carrazana M, Fernández I, Bencomo A, Lara-Martínez R, Rivera-Marrero S, Domínguez G, Pérez-Perera R, Jiménez-García LF, Altamirano-Bustamante NF, Diaz-Delgado M, Vedrenne F, Rivillas-Acevedo L, Pasten-Hidalgo K, Segura-Valdez MDL, Islas-Andrade S, Garrido-Magaña E, Perera-Pintado A, Prats-Capote A, Rodríguez-Tanty C, Altamirano-Bustamante MM. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures. PLoS One 2015; 10:e0135292. [PMID: 26327208 PMCID: PMC4556714 DOI: 10.1371/journal.pone.0135292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF) in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA) is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA) is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP):NCHCHF, and in the amyloid pharmacophore fragments (Aβ17-42 and Aβ16-21):NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the chaperones are able to protect and recondition the cerebellar granule cells (CGC) from the cytotoxicity produced by the hIAPP20-29 fragment or by a low potassium medium, regardless of their capacity for accelerating or inhibiting in vitro formation of fibers. In vivo animal experiments are required to study the impact of chemical chaperones in cognitive and metabolic syndromes.
Collapse
Affiliation(s)
- Marquiza Sablón-Carrazana
- Dpto. Neurodiagnóstico, Centro de Neurociencias de Cuba, Cubanacán, Playa, La Habana, Cuba
- Unidad de Investigación Médica en Enfermedades Metabólicas, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México D.F., México
| | - Isaac Fernández
- Unidad de Investigación Médica en Enfermedades Metabólicas, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México D.F., México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., México
| | - Alberto Bencomo
- Dpto. Neurodiagnóstico, Centro de Neurociencias de Cuba, Cubanacán, Playa, La Habana, Cuba
- Unidad de Investigación Médica en Enfermedades Metabólicas, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México D.F., México
| | - Reyna Lara-Martínez
- Laboratorio de Nanobiología Celular, Departamento de Biología Celular, Facultad de Ciencias, UNAM, México D.F., México
| | | | | | - Rafaela Pérez-Perera
- Dpto. Neurodiagnóstico, Centro de Neurociencias de Cuba, Cubanacán, Playa, La Habana, Cuba
| | - Luis Felipe Jiménez-García
- Laboratorio de Nanobiología Celular, Departamento de Biología Celular, Facultad de Ciencias, UNAM, México D.F., México
| | | | - Massiel Diaz-Delgado
- Dpto. Neurodiagnóstico, Centro de Neurociencias de Cuba, Cubanacán, Playa, La Habana, Cuba
| | - Fernand Vedrenne
- Unidad de Investigación Médica en Enfermedades Metabólicas, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México D.F., México
| | - Lina Rivillas-Acevedo
- Unidad de Investigación Médica en Enfermedades Metabólicas, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México D.F., México
| | - Karina Pasten-Hidalgo
- Servicio de Endocrinología, Instituto Nacional de Pediatría, SS, México D.F., México
- Cátedra Conacyt, México D.F., México
| | | | - Sergio Islas-Andrade
- Unidad de Investigación Médica en Enfermedades Metabólicas, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México D.F., México
| | | | | | | | - Chryslaine Rodríguez-Tanty
- Dpto. Neurodiagnóstico, Centro de Neurociencias de Cuba, Cubanacán, Playa, La Habana, Cuba
- * E-mail: (CR-T); (MMA-B)
| | - Myriam M. Altamirano-Bustamante
- Unidad de Investigación Médica en Enfermedades Metabólicas, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México D.F., México
- * E-mail: (CR-T); (MMA-B)
| |
Collapse
|
14
|
EF-P dependent pauses integrate proximal and distal signals during translation. PLoS Genet 2014; 10:e1004553. [PMID: 25144653 PMCID: PMC4140641 DOI: 10.1371/journal.pgen.1004553] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022] Open
Abstract
Elongation factor P (EF-P) is required for the efficient synthesis of proteins with stretches of consecutive prolines and other motifs that would otherwise lead to ribosome pausing. However, previous reports also demonstrated that levels of most diprolyl-containing proteins are not altered by the deletion of efp. To define the particular sequences that trigger ribosome stalling at diprolyl (PPX) motifs, we used ribosome profiling to monitor global ribosome occupancy in Escherichia coli strains lacking EF-P. Only 2.8% of PPX motifs caused significant ribosomal pausing in the Δefp strain, with up to a 45-fold increase in ribosome density observed at the pausing site. The unexpectedly low fraction of PPX motifs that produce a pause in translation led us to investigate the possible role of sequences upstream of PPX. Our data indicate that EF-P dependent pauses are strongly affected by sequences upstream of the PPX pattern. We found that residues as far as 3 codons upstream of the ribosomal peptidyl-tRNA site had a dramatic effect on whether or not a particular PPX motif triggered a ribosomal pause, while internal Shine Dalgarno sequences upstream of the motif had no effect on EF-P dependent translation efficiency. Increased ribosome occupancy at particular stall sites did not reliably correlate with a decrease in total protein levels, suggesting that in many cases other factors compensate for the potentially deleterious effects of stalling on protein synthesis. These findings indicate that the ability of a given PPX motif to initiate an EF-P-alleviated stall is strongly influenced by its local context, and that other indirect post-transcriptional effects determine the influence of such stalls on protein levels within the cell. Elongation factor P (EF-P) is a well-conserved bacterial protein. Although it can enhance protein synthesis in vitro, it is generally regarded as an ancillary factor required for robust translation of transcripts with stretches of consecutive prolines. In this work we performed ribosome profiling to better understand the role of EF-P during translation. Our data confirmed that translational effects due to lack of EF-P are mainly confined to PPX–encoding genes. Wide variations in EF-P dependent translation of these PPXs led us to investigate the effect of sequences upstream of diproline-containing motifs. We found that amino acids encoded upstream of PPX play a key role in EF-P-dependent translation. Finally, comparison of ribosome profiling data to existing proteomic data indicates that although many PPX-containing patterns have increased ribosome occupancies, this does not necessarily lead to altered protein levels. Taken together these data show a direct role for EF-P during synthesis of PPX motifs, and indirect effects on other post-transcriptional regulators of gene expression.
Collapse
|
15
|
Sung KH, Song HK. Insights into the molecular evolution of HslU ATPase through biochemical and mutational analyses. PLoS One 2014; 9:e103027. [PMID: 25050622 PMCID: PMC4106860 DOI: 10.1371/journal.pone.0103027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022] Open
Abstract
The ATP-dependent HslVU complexes are found in all three biological kingdoms. A single HslV protease exists in each species of prokaryotes, archaea, and eukaryotes, but two HslUs (HslU1 and HslU2) are present in the mitochondria of eukaryotes. Previously, a tyrosine residue at the C-terminal tail of HslU2 has been identified as a key determinant of HslV activation in Trypanosoma brucei and a phenylalanine at the equivalent position to E. coli HslU is found in T. brucei HslU1. Unexpectedly, we found that an F441Y mutation in HslU enhanced the peptidase and caseinolytic activity of HslV in E. coli but it showed partially reduced ATPase and SulA degradation activity. Previously, only the C-terminal tail of HslU has been the focus of HslV activation studies. However, the Pro315 residue interacting with Phe441 in free HslU has also been found to be critical for HslV activation. Hence, our current biochemical analyses explore the importance of the loop region just before Pro315 for HslVU complex functionality. The proline and phenylalanine pair in prokaryotic HslU was replaced with the threonine and tyrosine pair from the functional eukaryotic HslU2. Sequence comparisons between multiple HslUs from three different biological kingdoms in combination with biochemical analysis of E. coli mutants have uncovered important new insights into the molecular evolutionary pathway of HslU.
Collapse
Affiliation(s)
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, Korea
- * E-mail:
| |
Collapse
|
16
|
Iram A, Naeem A. Protein Folding, Misfolding, Aggregation and Their Implications in Human Diseases: Discovering Therapeutic Ways to Amyloid-Associated Diseases. Cell Biochem Biophys 2014; 70:51-61. [DOI: 10.1007/s12013-014-9904-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Jain S, Rathore S, Asad M, Hossain ME, Sinha D, Datta G, Mohmmed A. The prokaryotic ClpQ protease plays a key role in growth and development of mitochondria in Plasmodium falciparum. Cell Microbiol 2013; 15:1660-73. [PMID: 23521916 DOI: 10.1111/cmi.12142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/18/2013] [Accepted: 03/14/2013] [Indexed: 01/17/2023]
Abstract
The ATP-dependent ClpQY system is a prokaryotic proteasome-like multi-subunit machinery localized in the mitochondrion of malaria parasite. The ClpQY machinery consists of ClpQ threonine protease and ClpY ATPase. In the present study, we have assessed cellular effects of transient interference of PfClpQ protease activity in Plasmodium falciparum using a trans-dominant negative approach combined with FKBP degradation domain system. A proteolytically inactive mutant PfClpQ protein [PfClpQ(mut)] fused with FKBP degradation domain was expressed in parasites, which gets stabilized by Shield1 drug treatment. We show that the inactive PfClpQ(mut) interacts with wild-type PfClpQ and associates within multi-subunit complex in the parasite. Stabilization of the PfClpQ(mut) and its association in the protease machinery caused dominant negative effect in the transgenic parasites, which disrupted the growth cycle of asexual blood stage parasites. The mitochondria in these parasites showed abnormal morphology, these mitochondria were not able to grow and divide in the parasite. We further show that the dominant negative effect of PfClpQ(mut) disrupted transcription of mitochondrial genome encoded genes, which in turn blocked normal development and functioning of the mitochondria.
Collapse
Affiliation(s)
- Shaifali Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | | | | | | | | | | | | |
Collapse
|
18
|
Leishmania donovani HslV does not interact stably with HslU proteins. Int J Parasitol 2012; 42:329-39. [PMID: 22370310 DOI: 10.1016/j.ijpara.2012.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 11/21/2022]
Abstract
Genes for HslVU-type peptidases are found in bacteria and in a few select Eukaryota, among those such important pathogens as Plasmodium spp. and Leishmania spp. In this study, we performed replacements of all three HslV/HslU gene homologues and found one of those, HslV, to be essential for Leishmania donovani viability. The Leishmania HslV gene can also partially relieve the thermosensitive phenotype of a combined HslVU/Lon/ClpXP knockout mutant of Escherichia coli, indicating a conserved function. However, we found that the role and function of the two Leishmania HslU genes has diverged since neither of those interacts stably with HslV. The latter forms a dodecameric complex by itself and shows a punctate distribution. We conclude that whilst the basic function of HslV may be conserved in Leishmania, its organisation and interaction with its canonical complex partner HslU is not. Nevertheless, given the absence of HslV from the proteome of mammals and its essential role in Leishmania viability, HslV is a promising target for intervention.
Collapse
|
19
|
Barboza NR, Cardoso J, de Paula Lima CV, Soares MJ, Gradia DF, Hangai NS, Bahia MT, de Lana M, Krieger MA, Guerra de Sá R. Expression profile and subcellular localization of HslV, the proteasome related protease from Trypanosoma cruzi. Exp Parasitol 2011; 130:171-7. [PMID: 22085770 DOI: 10.1016/j.exppara.2011.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 10/11/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
Abstract
Trypanosoma cruzi is a rare example of an eukaryote that has genes for two threonine proteases: HslVU complex and 20S proteasome. HslVU is an ATP-dependent protease consisting of two multimeric components: the HslU ATPase and the HslV peptidase. In this study, we expressed and obtained specific antibodies to HslU and HslV recombinant proteins and demonstrated the interaction between HslU/HslV by coimmunoprecipitation. To evaluate the intracellular distribution of HslV in T. cruzi we used an immunofluorescence assay and ultrastructural localization by transmission electron microscopy. Both techniques demonstrated that HslV was localized in the kinetoplast of epimastigotes. We also analyzed the HslV/20S proteasome co-expression in Y, Berenice 62 (Be-62) and Berenice 78 (Be-78) T. cruzi strains. Our results showed that HslV and 20S proteasome are differently expressed in these strains. To investigate whether a proteasome inhibitor could modulate HslV and proteasome expressions, epimastigotes from T. cruzi were grown in the presence of PSI, a classical proteasome inhibitor. This result showed that while the level of expression of HslV/20S proteasome is not affected in Be-78 strain, in Y and Be-62 strains the presence of PSI induced a significantly increase in Hslv/20S proteasome expression. Together, these results suggest the coexistence of the protease HslVU and 20S proteasome in T. cruzi, reinforcing the hypothesis that non-lysosomal degradation pathways have an important role in T. cruzi biology.
Collapse
Affiliation(s)
- Natália Rocha Barboza
- Departamento de Ciências Biológicas & NUPEB, Instituto de Ciências Exatas e Biológica, Universidade Federal de Ouro Preto, Morro do Cruzeiro, 35400-000 Ouro Preto, MG, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lien HY, Yu CH, Liou CM, Wu WF. Regulation of clpQ⁺Y⁺ (hslV⁺U⁺) gene expression in Escherichia coli. Open Microbiol J 2009; 3:29-39. [PMID: 19440251 PMCID: PMC2681174 DOI: 10.2174/1874285800903010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 02/17/2009] [Accepted: 02/24/2009] [Indexed: 11/24/2022] Open
Abstract
The Escherichia coli ClpYQ (HslUV) complex is an ATP-dependent protease, and the clpQ+Y+ (hslV+U+) operon encodes two heat shock proteins, ClpQ and ClpY, respectively. The transcriptional (op) or translational (pr) clpQ+::lacZ fusion gene was constructed, with the clpQ+Y+ promoter fused to a lacZ reporter gene. The clpQ+::lacZ (op or pr) fusion gene was each crossed into lambda phage. The λclpQ+::lacZ+ (op), a transcriptional fusion gene, was used to form lysogens in the wild-type, rpoH or/and rpoS mutants. Upon shifting the temperature up from 30 °C to 42 °C, the wild-type λclpQ+::lacZ+ (op) demonstrates an increased β-galactosidase (βGal) activity. However, the βGal activity of clpQ+::lacZ+ (op) was decreased in the rpoH and rpoH rpoS mutants but not in the rpoS mutant. The levels of clpQ+::lacZ+ mRNA transcripts correlated well to their βGal activity. Similarly, the expression of the clpQ+::lacZ+ gene fusion was nearly identical to the clpQ+Y+ transcript under the in vivo condition. The clpQm1::lacZ+, containing a point mutation in the -10 promoter region for RpoH binding, showed decreased βGal activity, independent of activation by RpoH. We conclude that RpoH itself regulates clpQ+Y+ gene expression. In addition, the clpQ+Y+ message carries a conserved 71 bp at the 5’ untranslated region (5’UTR) that is predicted to form the stem-loop structure by analysis of its RNA secondary structure. The clpQm2Δ40::lacZ+, with a 40 bp deletion in the 5’UTR, showed a decreased βGal activity. In addition, from our results, it is suggested that this stem-loop structure is necessary for the stability of the clpQ+Y+ message.
Collapse
Affiliation(s)
- Hsiang-Yun Lien
- Department of Agricultural Chemistry, National Taiwan University, Taipei (106), Taiwan, R.O.C
| | | | | | | |
Collapse
|
21
|
Proteomic analysis of stationary phase in the marine bacterium "Candidatus Pelagibacter ubique". Appl Environ Microbiol 2008; 74:4091-100. [PMID: 18469119 DOI: 10.1128/aem.00599-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Pelagibacter ubique," an abundant marine alphaproteobacterium, subsists in nature at low ambient nutrient concentrations and may often be exposed to nutrient limitation, but its genome reveals no evidence of global regulatory mechanisms for adaptation to stationary phase. High-resolution capillary liquid chromatography coupled online to an LTQ mass spectrometer was used to build an accurate mass and time (AMT) tag library that enabled quantitative examination of proteomic differences between exponential- and stationary-phase "Ca. Pelagibacter ubique" cells cultivated in a seawater medium. The AMT tag library represented 65% of the predicted protein-encoding genes. "Ca. Pelagibacter ubique" appears to respond adaptively to stationary phase by increasing the abundance of a suite of proteins that contribute to homeostasis rather than undergoing a major remodeling of its proteome. Stationary-phase abundances increased significantly for OsmC and thioredoxin reductase, which may mitigate oxidative damage in "Ca. Pelagibacter," as well as for molecular chaperones, enzymes involved in methionine and cysteine biosynthesis, proteins involved in rho-dependent transcription termination, and the signal transduction enzyme CheY-FisH. We speculate that this limited response may enable "Ca. Pelagibacter ubique" to cope with ambient conditions that deprive it of nutrients for short periods and, furthermore, that the ability to resume growth overrides the need for a more comprehensive global stationary-phase response to create a capacity for long-term survival.
Collapse
|
22
|
Krishnamoorthy N, Gajendrarao P, Eom SH, Kwon YJ, Cheong GW, Lee KW. Molecular modeling study of CodX reveals importance of N-terminal and C-terminal domain in the CodWX complex structure of Bacillus subtilis. J Mol Graph Model 2008; 27:1-12. [PMID: 18400533 DOI: 10.1016/j.jmgm.2008.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/17/2008] [Accepted: 01/27/2008] [Indexed: 11/27/2022]
Abstract
In Bacillus subtilis, CodW peptidase and CodX ATPase function together as a distinctive ATP-dependent protease called CodWX, which participates in protein degradation and regulates cell division. The molecular structure of CodX and the assembly structure of CodW-CodX have not yet been resolved. Here we present the first three-dimensional structure of CodX N-terminal (N) and C-terminal (C) domain including possible structure of intermediate (I) domain based on the crystal structure of homologous Escherichia coli HslU ATPase. Moreover, the biologically relevant CodWX (W(6)W(6)X(6)) octadecamer complex structure was constructed using the recently identified CodW-HslU hybrid crystal structure. Molecular dynamics (MD) simulation shows a reasonably stable structure of modeled CodWX and explicit behavior of key segments in CodX N and C domain: nucleotide binding residues, GYVG pore motif and CodW-CodX interface. Predicted structure of the possible I domain is flexible in nature with highly coiled hydrophobic region (M153-M206) that could favor substrate binding and entry. Electrostatic surface potential observation unveiled charge complementarity based CodW-CodX interaction pattern could be a possible native interaction pattern in the interface of CodWX. CodX GYVG pore motif structural features, flexible nature of glycine (G92 and G95) residues and aromatic ring conformation preserved Y93 indicated that it may follow the similar mode during the proteolysis mechanism as in the HslU closed state. This molecular modeling study uncovers the significance of CodX N and C domain in CodWX complex and provides possible explanations which would be helpful to understand the CodWX-dependent proteolysis mechanism of B. subtilis.
Collapse
Affiliation(s)
- Navaneethakrishnan Krishnamoorthy
- Department of Biochemistry, Division of Applied Life Sciences, BK21 Program, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Shin NR, Lee DY, Yoo HS. Identification of quorum sensing-related regulons in Vibrio vulnificus by two-dimensional gel electrophoresis and differentially displayed reverse transcriptase PCR. ACTA ACUST UNITED AC 2007; 50:94-103. [PMID: 17506728 DOI: 10.1111/j.1574-695x.2007.00236.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio vulnificus is thought to employ a quorum-sensing system to control the expression of a global gene. In this study, proteomes and transcriptomes of a lacZ null mutant, VvSR Delta Z, and a luxS-smcR double mutant, VvSR Delta ZSR, were compared with the parent strain, VvAR, by means of two-dimensional gel electrophoresis (2D-PAGE) and differentially displayed reverse transcriptase PCR (DDRT-PCR). 2D-PAGE analysis showed that 36 protein spots were differentially expressed, 14 of which have been identified by peptide-mass fingerprinting. The expression of eight cellular proteins was repressed by luxS and smcR mutation: Zn-dependent protease, 6-phosophofructokinase, periplasmic ABC-type Fe3(+) transport system, deoxyribose-phosphate aldolase, phosphomannomutase, orotidine-5'-phosphate decarboxylase, uridylate kinase, and an unidentified protein. These proteins are involved in virulence, adaptation to environmental stress, biosynthesis of LPS, and cell multiplication. Phage shock protein A, a chemotaxis signal transduction protein, and an uncharacterized low-complexity protein were activated in the cellular components of the luxS-smcR mutant. However, only three proteins, of unknown function, were identified in the extracellular components of the mutants. Analysis of transcriptomes with DDRT-PCR showed that two genes, phosphoribosylformylglycinamidine synthase and ATP-dependent protease HslVU protease were regulated at the transcriptional level by luxS and smcR gene mutation. The results from this study show conclusively that luxS/smcR quorum sensing endows a global change in gene expression to V. vulnificus.
Collapse
Affiliation(s)
- Na-Ri Shin
- Department of Infectious Diseases, BK21 for Veterinary Science and KRF Zoonotic Priority Research Institute, College of Veterinary Medicine, Seoul National University, Korea
| | | | | |
Collapse
|
24
|
Park EY, Lee BG, Hong SB, Kim HW, Jeon H, Song HK. Structural basis of SspB-tail recognition by the zinc binding domain of ClpX. J Mol Biol 2007; 367:514-26. [PMID: 17258768 DOI: 10.1016/j.jmb.2007.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/02/2007] [Indexed: 11/30/2022]
Abstract
The degradation of ssrA(AANDENYALAA)-tagged proteins in the bacterial cytosol is carried out by the ClpXP protease and is markedly stimulated by the SspB adaptor protein. It has previously been reported that the amino-terminal zinc-binding domain of ClpX (ZBD) is involved in complex formation with the SspB-tail (XB: ClpX-binding motif). In an effort to better understand the recognition of SspB by ClpX and the mechanism of delivery of ssrA-tagged substrates to ClpXP, we have determined the structures of ZBD alone at 1.5, 2.0, and 2.5 A resolution in each different crystal form and also in complex with XB peptide at 1.6 A resolution. The XB peptide forms an antiparallel beta-sheet with two beta-strands of ZBD, and the structure shows a 1:1 stoichiometric complex between ZBD and XB, suggesting that there are two independent SspB-tail-binding sites in ZBD. The high-resolution ZBD:XB complex structure, in combination with biochemical analyses, can account for key determinants in the recognition of the SspB-tail by ClpX and sheds light on the mechanism of delivery of target proteins to the prokaryotic degradation machine.
Collapse
Affiliation(s)
- Eun Young Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
A large number of neurodegenerative diseases in humans result from protein misfolding and aggregation. Protein misfolding is believed to be the primary cause of Alzheimer's disease, Parkinson's disease, Huntington's disease, Creutzfeldt-Jakob disease, cystic fibrosis, Gaucher's disease and many other degenerative and neurodegenerative disorders. Cellular molecular chaperones, which are ubiquitous, stress-induced proteins, and newly found chemical and pharmacological chaperones have been found to be effective in preventing misfolding of different disease-causing proteins, essentially reducing the severity of several neurodegenerative disorders and many other protein-misfolding diseases. In this review, we discuss the probable mechanisms of several protein-misfolding diseases in humans, as well as therapeutic approaches for countering them. The role of molecular, chemical and pharmacological chaperones in suppressing the effect of protein misfolding-induced consequences in humans is explained in detail. Functional aspects of the different types of chaperones suggest their uses as potential therapeutic agents against different types of degenerative diseases, including neurodegenerative disorders.
Collapse
Affiliation(s)
- Tapan K Chaudhuri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | | |
Collapse
|
26
|
Baars L, Ytterberg AJ, Drew D, Wagner S, Thilo C, van Wijk KJ, de Gier JW. Defining the role of the Escherichia coli chaperone SecB using comparative proteomics. J Biol Chem 2005; 281:10024-34. [PMID: 16352602 DOI: 10.1074/jbc.m509929200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To improve understanding and identify novel substrates of the cytoplasmic chaperone SecB in Escherichia coli, we analyzed a secB null mutant using comparative proteomics. The secB null mutation did not affect cell growth but caused significant differences at the proteome level. In the absence of SecB, dynamic protein aggregates containing predominantly secretory proteins accumulated in the cytoplasm. Unprocessed secretory proteins were detected in radiolabeled whole cell lysates. Furthermore, the assembly of a large fraction of the outer membrane proteome was slowed down, whereas its steady state composition was hardly affected. In response to aggregation and delayed sorting of secretory proteins, cytoplasmic chaperones DnaK, GroEL/ES, ClpB, IbpA/B, and HslU were up-regulated severalfold, most likely to stabilize secretory proteins during their delayed translocation and/or rescue aggregated secretory proteins. The SecB/A dependence of 12 secretory proteins affected by the secB null mutation (DegP, FhuA, FkpA, OmpT, OmpX, OppA, TolB, TolC, YbgF, YcgK, YgiW, and YncE) was confirmed by "classical" pulse-labeling experiments. Our study more than triples the number of known SecB-dependent secretory proteins and shows that the primary role of SecB is to facilitate the targeting of secretory proteins to the Sec-translocase.
Collapse
Affiliation(s)
- Louise Baars
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Park E, Rho YM, Koh OJ, Ahn SW, Seong IS, Song JJ, Bang O, Seol JH, Wang J, Eom SH, Chung CH. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J Biol Chem 2005; 280:22892-8. [PMID: 15849200 DOI: 10.1074/jbc.m500035200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HslVU is an ATP-dependent protease consisting of HslU ATPase and HslV peptidase. In an HslVU complex, the central pores of HslU hexamer and HslV dodecamer are aligned and the proteolytic active sites are sequestered in the inner chamber of HslV. Thus, the degradation of natively folded proteins requires unfolding and translocation processes for their access into the proteolytic chamber of HslV. A highly conserved GYVG(93) sequence constitutes the central pore of HslU ATPase. To determine the role of the pore motif on protein unfolding and translocation, we generated various mutations in the motif and examined their effects on the ability of HslU in supporting the proteolytic activity of HslV against three different substrates: SulA as a natively folded protein, casein as an unfolded polypeptide, and a small peptide. Flexibility provided by Gly residues and aromatic ring structures of the 91st amino acid were essential for degradation of SulA. The same structural features of the GYVG motif were highly preferred, although not essential, for degradation of casein. In contrast, none of the features were required for peptide hydrolysis. Mutations in the GYVG motif of HslU also showed marked influence on its ATPase activity, affinity to ADP, and interaction with HslV. These results suggest that the GYVG motif of HslU plays important roles in unfolding of natively folded proteins as well as in translocation of unfolded proteins for degradation by HslV. These results also implicate a role of the pore motif in ATP cleavage and in the assembly of HslVU complex.
Collapse
Affiliation(s)
- Eunyong Park
- NRL of Protein Biochemistry, School of Biological Sciences, Seoul National University, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Frees D, Thomsen LE, Ingmer H. Staphylococcus aureus ClpYQ plays a minor role in stress survival. Arch Microbiol 2005; 183:286-91. [PMID: 15843987 DOI: 10.1007/s00203-005-0773-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/02/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
Although bacteria lack the proteasome-ubiquitin proteolytic pathway, the homologue of the beta-type proteasome subunit, ClpQ, is highly conserved among bacterial species. ClpQ associates with its ATPase partner, ClpY, to form a two-component protease, which also structurally resembles the 26S proteasome. Here we have disrupted clpQ and clpY of the versatile pathogen Staphylococcus aureus in order to examine the significance of the ClpYQ protease for growth under stress conditions. We found that the mutant, in contrast to the wild type, was unable to form colonies at very high temperatures. To our knowledge, this is the first-described phenotype of ClpYQ in Gram-positive bacteria. However, in the presence of puromycin and under all other stress conditions, tested growth of the clpYQ mutant cells was similar to growth of the wild type. Additionally, the absence of ClpYQ did not affect virulence as measured by a murine skin abscess model. Transcriptional analysis revealed that clpQ and clpY are expressed as part of a four-cistronic operon encompassing xerC and codY, and that expression is modestly induced by heat. In conclusion, our data indicates that ClpYQ plays only a secondary role in the degradation of non-native proteins in S. aureus.
Collapse
Affiliation(s)
- Dorte Frees
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1870, Frederiksberg C, Denmark
| | | | | |
Collapse
|
29
|
Azim MK, Goehring W, Song HK, Ramachandran R, Bochtler M, Goettig P. Characterization of the HslU chaperone affinity for HslV protease. Protein Sci 2005; 14:1357-62. [PMID: 15802652 PMCID: PMC2253264 DOI: 10.1110/ps.04970405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The HslVU complex is a bacterial two-component ATP-dependent protease, consisting of HslU chaperone and HslV peptidase. Investigation of protein-protein interactions using SPR in Escherichia coli HslVU and the protein substrates demonstrates that HslU and HslV have moderate affinity (Kd = 1 microM) for each other. However, the affinity of HslU for HslV fivefold increased (Kd approximately 0.2 microM) after binding with the MBP approximately SulA protein indicating the formation of a "ternary complex" of HslV-HslU-MBP approximately SulA. The molecular interaction studies also revealed that HslU strongly binds to MBP approximately SulA with 10(-9) M affinity but does not associate with nonstructured casein. Conversely, HslV does not interact with the MBP-SulA whereas it strongly binds with casein (Kd = 0.2 microM) requiring an intact active site of HslV. These findings provide evidence for "substrate-induced" stable HslVU complex formation. Presumably, the binding of HslU to MBP approximately SulA stimulates a conformational change in HslU to a high-affinity form for HslV.
Collapse
Affiliation(s)
- M Kamran Azim
- Max-Planck-Institut für Biochemie, Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Kuo MS, Chen KP, Wu WF. Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli. MICROBIOLOGY-SGM 2004; 150:437-446. [PMID: 14766922 DOI: 10.1099/mic.0.26446-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli ClpYQ protease and Lon protease possess a redundant function for degradation of SulA, a cell division inhibitor. An experimental cue implied that the capsule synthesis activator RcsA, a known substrate of Lon, is probably a specific substrate for the ClpYQ protease. This paper shows that overexpression of ClpQ and ClpY suppresses the mucoid phenotype of a lon mutant. Since the cpsB (wcaB) gene, involved in capsule synthesis, is activated by RcsA, the reporter construct cpsB-lacZ was used to assay for beta-galactosidase activity and thus follow RcsA stability. The expression of cpsB-lacZ was increased in double mutants of lon in combination with clpQ or/and clpY mutation(s) compared with the wild-type or lon single mutants. Overproduction of ClpYQ or ClpQ decreased cpsB-lacZ expression. Additionally, a P(BAD)-rcsA fusion construct showed quantitatively that an inducible RcsA activates cpsB-lacZ expression. The effect of RcsA on cpsB-lacZ expression was shown to be influenced by the ClpYQ activities. Moreover, a rcsA(Red)-lacZ translational fusion construct showed higher activity of RcsA(Red)-LacZ in a clpQ clpY strain than in the wild-type. By contrast, overproduction of cellular ClpYQ resulted in decreased beta-galactosidase levels of RcsA(Red)-LacZ. Taken together, the data indicate that ClpYQ acts as a secondary protease in degrading the Lon substrate RcsA.
Collapse
Affiliation(s)
- Mei-Shiue Kuo
- Department of Agricultural Chemistry, Bldg 2, R311, National Taiwan University, Taipei (106), Taiwan, ROC
| | - Kuei-Peng Chen
- Department of Agricultural Chemistry, Bldg 2, R311, National Taiwan University, Taipei (106), Taiwan, ROC
| | - Whi Fin Wu
- Department of Agricultural Chemistry, Bldg 2, R311, National Taiwan University, Taipei (106), Taiwan, ROC
| |
Collapse
|
31
|
Levchenko I, Grant RA, Wah DA, Sauer RT, Baker TA. Structure of a Delivery Protein for an AAA+ Protease in Complex with a Peptide Degradation Tag. Mol Cell 2003; 12:365-72. [PMID: 14536076 DOI: 10.1016/j.molcel.2003.08.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Substrate selection by AAA+ ATPases that function to unfold proteins or alter protein conformation is often regulated by delivery or adaptor proteins. SspB is a protein dimer that binds to the ssrA degradation tag and delivers proteins bearing this tag to ClpXP, an AAA+ protease, for degradation. Here, we describe the structure of the peptide binding domain of H. influenzae SspB in complex with an ssrA peptide at 1.6 A resolution. The ssrA peptides are bound in well-defined clefts located at the extreme ends of the SspB homodimer. SspB contacts residues within the N-terminal and central regions of the 11 residue ssrA tag but leaves the C-terminal residues exposed and positioned to dock with ClpX. This structure, taken together with biochemical analysis of SspB, suggests mechanisms by which proteins like SspB escort substrates to AAA+ ATPases and enhance the specificity and affinity of target recognition.
Collapse
Affiliation(s)
- Igor Levchenko
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
32
|
Kang MS, Kim SR, Kwack P, Lim BK, Ahn SW, Rho YM, Seong IS, Park SC, Eom SH, Cheong GW, Chung CH. Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site. EMBO J 2003; 22:2893-902. [PMID: 12805205 PMCID: PMC162141 DOI: 10.1093/emboj/cdg289] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CodWX in Bacillus subtilis is an ATP-dependent, N-terminal serine protease, consisting of CodW peptidase and CodX ATPase. Here we show that CodWX is an alkaline protease and has a distinct molecular architecture. ATP hydrolysis is required for the formation of the CodWX complex and thus for its proteolytic function. Remarkably, CodX has a 'spool-like' structure that is formed by interaction of the intermediate domains of two hexameric or heptameric rings. In the CodWX complex, CodW consisting of two stacked hexameric rings (WW) binds to either or both ends of a CodX double ring (XX), forming asymmetric (WWXX) or symmetric cylindrical particles (WWXXWW). CodWX can also form an elongated particle, in which an additional CodX double ring is bound to the symmetric particle (WWXXWWXX). In addition, CodWX is capable of degrading EzrA, an inhibitor of FtsZ ring formation, implicating it in the regulation of cell division. Thus, CodWX appears to constitute a new type of protease that is distinct from other ATP-dependent proteases in its structure and proteolytic mechanism.
Collapse
Affiliation(s)
- Min Suk Kang
- NRL of Protein Biochemistry, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Joshi SA, Baker TA, Sauer RT. C-terminal domain mutations in ClpX uncouple substrate binding from an engagement step required for unfolding. Mol Microbiol 2003; 48:67-76. [PMID: 12657045 DOI: 10.1046/j.1365-2958.2003.03424.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ClpX mediates ATP-dependent denaturation of specific target proteins and disassembly of protein complexes. Like other AAA + family members, ClpX contains an alphabeta ATPase domain and an alpha-helical C-terminal domain. ClpX proteins with mutations in the C-terminal domain were constructed and screened for disassembly activity in vivo. Seven mutant enzymes with defective phenotypes were purified and characterized. Three of these proteins (L381K, D382K and Y385A) had low activity in disassembly or unfolding assays in vitro. In contrast to wild-type ClpX, substrate binding to these mutants inhibited ATP hydrolysis instead of increasing it. These mutants appear to be defective in a reaction step that engages bound substrate proteins and is required both for enhancement of ATP hydrolysis and for unfolding/disassembly. Some of these side chains form part of the interface between the C-terminal domain of one ClpX subunit and the ATPase domain of an adjacent subunit in the hexamer and appear to be required for communication between adjacent nucleotide binding sites.
Collapse
Affiliation(s)
- Shilpa A Joshi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
34
|
Couvreur B, Wattiez R, Bollen A, Falmagne P, Le Ray D, Dujardin JC. Eubacterial HslV and HslU subunits homologs in primordial eukaryotes. Mol Biol Evol 2002; 19:2110-7. [PMID: 12446803 DOI: 10.1093/oxfordjournals.molbev.a004036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ATP-dependent protease complexes are present in all three kingdoms of life, where they rid the cell of misfolded or damaged proteins and control the level of certain regulatory proteins. They include the proteasome in Eukaryotes, Archea, and Actinomycetales and the HslVU (ClpQY) complex in other eubacteria. We showed that genes homologous to eubacterial HslV (ClpQ) and HslU (ClpY) are present in the genome of trypanosomatid protozoa and are expressed. The features of the cDNAs indicated that bona fide trypanosomatid messengers had been cloned and ruled out bacterial contamination as the source of the material. The N-terminal microsequence of HslV from Leishmania infantum (Protozoa: Kinetoplastida) permitted the identification of the propeptide cleavage site and indicated that an active protease is present. High similarities (> or =57.5%) with the prototypical HslV and HslU from Escherichia coli and conservation of residues essential for biochemical activity suggested that a functional HslVU complex is present in trypanosomatid protozoa. The structure of the N-termini of HslV and HslU further suggested mitochondrial localization. Phylogenetic analysis indicated that HslV and HslU from trypanosomatids clustered with eubacterial homologs but did not point to any particular bacterial lineage. Because typical eukaryotic 20S proteasomes are present in trypanosomatids, we concluded that the eubacterial HslVU and the eukaryotic multicatalytic protease are simultaneously present in these organisms. To our knowledge this is the first report of a eubacterial HslVU complex in eukaryotes and, consequently, of the simultaneous occurrence of both a proteasome and HslVU in living cells.
Collapse
Affiliation(s)
- Bernard Couvreur
- Laboratory for Protozoology, Prince Leopold Institute for Tropical Medicine, Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
35
|
Seong IS, Kang MS, Choi MK, Lee JW, Koh OJ, Wang J, Eom SH, Chung CH. The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J Biol Chem 2002; 277:25976-82. [PMID: 12011053 DOI: 10.1074/jbc.m202793200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial HslVU ATP-dependent protease is a homolog of the eukaryotic 26 S proteasome. HslU ATPase forms a hexameric ring, and HslV peptidase is a dodecamer consisting of two stacked hexameric rings. In HslVU complex, the HslU and HslV central pores are aligned, and the proteolytic active sites are sequestered in an internal chamber of HslV, with access to this chamber restricted to small axial pores. Here we show that the C-terminal tails of HslU play a critical role in the interaction with and activation of HslV peptidase. A synthetic tail peptide of 10 amino acids could replace HslU in supporting the HslV-mediated hydrolysis of unfolded polypeptide substrates such as alpha-casein, as well as of small peptides, suggesting that the HslU C terminus is involved in the opening of the HslV pore for substrate entry. Moreover, deletion of 7 amino acids from the C terminus prevented the ability of HslU to form an HslVU complex with HslV. In addition, deletion of the C-terminal 10 residues prevented the formation of an HslU hexamer, indicating that the C terminus is required for HslU oligomerization. These results suggest that the HslU C-terminal tails act as a molecular switch for the assembly of HslVU complex and the activation of HslV peptidase.
Collapse
Affiliation(s)
- Ihn Sik Seong
- National Research Laboratory of Protein Biochemistry, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Khan MA, Isaacson RE. Identification of Escherichia coli genes that are specifically expressed in a murine model of septicemic infection. Infect Immun 2002; 70:3404-12. [PMID: 12065479 PMCID: PMC128117 DOI: 10.1128/iai.70.7.3404-3412.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification and characterization of bacterial genes that are induced during the disease process are important in understanding the molecular mechanism of disease and can be useful in designing antimicrobial drugs to control the disease. The identification of in vivo induced (ivi) genes of an Escherichia coli septicemia strain by using antibiotic-based in vivo expression technology is described. Bacterial clones resistant to chloramphenicol in vivo were recovered from the livers of infected mice. Most of the ivi clones were sensitive to chloramphenicol when grown in vitro. Using reverse transcription-PCR, it was demonstrated that selected ivi clones expressed cat in the livers of infected mice but not during in vitro growth. A total of 750 colonies were recovered after three successive rounds of in vivo selection, and 168 isolated ivi clones were sequenced. The sequence analysis revealed that 37 clones encoded hypothetical proteins found in E. coli K-12, whereas 10 clones contained genes that had no significant homology to DNA sequences in GenBank. Two clones were found to contain transposon-related functions. Other clones contained genes required for amino acid metabolism, anaerobic respiration, DNA repair, the heat shock response, and the cellular repressor of the SOS response. In addition, one clone contained the aerobactin biosynthesis gene iucA. Mutations were introduced in to seven of the identified ivi genes. An in vivo mouse challenge-competition assay was used to determine if the mutants were attenuated. The results suggested that these ivi genes were important for survival in vivo, and three of the seven mutant ivi clones were required for successful infection of mice.
Collapse
Affiliation(s)
- Muhammad A Khan
- Department of Veterinary Pathobiology, University of Illinois, Urbana, Illinois 61802, USA.
| | | |
Collapse
|
37
|
Ramachandran R, Hartmann C, Song HK, Huber R, Bochtler M. Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc Natl Acad Sci U S A 2002; 99:7396-401. [PMID: 12032294 PMCID: PMC124242 DOI: 10.1073/pnas.102188799] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2002] [Indexed: 11/18/2022] Open
Abstract
HslVU is a bacterial homolog of the proteasome, where HslV is the protease that is activated by HslU, an ATPase and chaperone. Structures of singly and doubly capped HslVU particles have been reported, and different binding modes have been observed. Even among HslVU structures with I-domains distal to HslV, no consensus mode of activation has emerged. A feature in the Haemophilus influenzae HslVU structure, insertion of the C termini of HslU into pockets in HslV, was not seen in all other structures of the enzyme. Here we report site-directed mutagenesis, peptide activation, and fluorescence experiments that strongly support the functional relevance of the C terminus insertion mechanism: we find that mutations in HslV that disrupt the interaction with the C termini of HslU invariably lead to inactive enzyme. Conversely, synthetic peptides derived from the C terminus of HslU bind to HslV with 10(-5) M affinity and can functionally replace full HslU particles for both peptide and casein degradation but fail to support degradation of a folded substrate. Thus, the data can be taken as evidence for separate substrate unfoldase and protease stimulation activities in HslU. Enhanced HslV proteolysis could be due to the opening of a gated channel or allosteric activation of the active sites. To distinguish between these possibilities, we have mutated a series of residues that line the entrance channel into the HslV particle. Our mutational and fluorescence experiments demonstrate that allosteric activation of the catalytic sites is required in HslV, but they do not exclude the possibility of channel opening taking place as well. The present data support the conclusion that the H. influenzae structure with I-domains distal to HslV captures the active species and point to significant differences in the activation mechanism of HslV, ClpP, and the proteasome.
Collapse
Affiliation(s)
- Ravishankar Ramachandran
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
38
|
Takahashi N, Tsutsumi S, Tsuchiya T, Stillman B, Mizushima T. Functions of sensor 1 and sensor 2 regions of Saccharomyces cerevisiae Cdc6p in vivo and in vitro. J Biol Chem 2002; 277:16033-40. [PMID: 11827963 DOI: 10.1074/jbc.m108615200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc6p is a key regulator of the cell cycle in eukaryotes and is a member of the AAA(+) (ATPases associated with a variety of cellular activities) family of proteins. In this family of proteins, the sensor 1 and sensor 2 regions are important for their function and ATPase activity. Here, site-directed mutagenesis has been used to examine the role of these regions of Saccharomyces cerevisiae Cdc6p in controlling the cell cycle progression and initiation of DNA replication. Two important amino acid residues (Asn(263) in sensor 1 and Arg(332) in sensor 2) were identified as key residues for Cdc6p function in vivo. Cells expressing mutant Cdc6p (N263A or R332E) grew slowly and accumulated in the S phase. In cells expressing mutant Cdc6p, loading of the minichromosome maintenance (MCM) complex of proteins was decreased, suggesting that the slow progression of S phase in these cells was due to inefficient MCM loading on chromatin. Purified wild type Cdc6p but not mutant Cdc6p (N263A and R332E) caused the structural modification of origin recognition complex proteins. These results are consistent with the idea that Cdc6p uses its ATPase activity to change the conformation of origin recognition complex, and then together they recruit the MCM complex.
Collapse
Affiliation(s)
- Naoko Takahashi
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
39
|
Abstract
Cytoplasmic proteolysis is an indispensable process for proper function of a cell. Degradation of many intracellular proteins is initiated by ATP-dependent proteinases, which are involved in the regulation of the level of proteins with short half-lives. In addition, they remove many damaged and abnormal proteins and thus play also an important role during stress. ATP-dependent proteinases are large multi-subunit assemblies composed of proteolytic core domains and ATPase-containing regulatory domains on a single polypeptide chain or on distinct subunits, which can act as molecular chaperones. This review briefly summarizes the data about four main groups of these proteinases in bacteria (i.e. Lon, Clp family, HslUV and FtsH) and characterizes their structure, mechanism of action and properties.
Collapse
Affiliation(s)
- O Hlavácek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | |
Collapse
|
40
|
Ben-Zvi AP, Goloubinoff P. Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J Struct Biol 2001; 135:84-93. [PMID: 11580258 DOI: 10.1006/jsbi.2001.4352] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular chaperones are essential for the correct folding of proteins in the cell under physiological and stress conditions. Two activities have been traditionally attributed to molecular chaperones: (1) preventing aggregation of unfolded polypeptides and (2) assisting in the correct refolding of chaperone-bound denatured polypeptides. We discuss here a novel function of molecular chaperones: catalytic solubilization and refolding of stable protein aggregates. In Escherichia coli, disaggregation is carried out by a network of ATPase chaperones consisting of a DnaK core, assisted by the cochaperones DnaJ, GrpE, ClpB, and GroEL-GroES. We suggest a sequential mechanism in which (a) ClpB exposes new DnaK-binding sites on the surface of the stable protein aggregates; (b) DnaK binds the aggregate surfaces and, by doing so, melts the incorrect hydrophobic associations between aggregated polypeptides; (c) ATP hydrolysis and DnaK release allow local intramolecular refolding of native domains, leading to a gradual weakening of improper intermolecular links; (d) DnaK and GroEL complete refolding of solubilized polypeptide chains into native proteins. Thus, active disaggregation by the chaperone network can serve as a central cellular tool for the recovery of native proteins from stress-induced aggregates and actively remove disease-causing toxic aggregates, such as polyglutamine-rich proteins, amyloid plaques, and prions.
Collapse
Affiliation(s)
- A P Ben-Zvi
- Department of Plant Sciences, A Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | |
Collapse
|
41
|
Abstract
The AAA+ superfamily of ATPases, which contain a homologous ATPase module, are found in all kingdoms of living organisms where they participate in diverse cellular processes including membrane fusion, proteolysis and DNA replication. Recent structural studies have revealed that they usually form ring-shaped oligomers, which are crucial for their ATPase activities and mechanisms of action. These ring-shaped oligomeric complexes are versatile in their mode of action, which collectively seem to involve some form of disruption of molecular or macromolecular structure; unfolding of proteins, disassembly of protein complexes, unwinding of DNA, or alteration of the state of DNA-protein complexes. Thus, the AAA+ proteins represent a novel type of molecular chaperone. Comparative analyses have also revealed significant similarities and differences in structure and molecular mechanism between AAA+ ATPases and other ring-shaped ATPases.
Collapse
Affiliation(s)
- T Ogura
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, Japan.
| | | |
Collapse
|
42
|
Kang MS, Lim BK, Seong IS, Seol JH, Tanahashi N, Tanaka K, Chung CH. The ATP-dependent CodWX (HslVU) protease in Bacillus subtilis is an N-terminal serine protease. EMBO J 2001; 20:734-42. [PMID: 11179218 PMCID: PMC145431 DOI: 10.1093/emboj/20.4.734] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2000] [Revised: 10/30/2000] [Accepted: 01/03/2001] [Indexed: 11/13/2022] Open
Abstract
HslVU is a two-component ATP-dependent protease, consisting of HslV peptidase and HslU ATPase. CodW and CodX, encoded by the cod operon in Bacillus subtilis, display 52% identity in their amino acid sequences to HslV and HslU in Escherichia coli, respectively. Here we show that CodW and CodX can function together as a new type of two-component ATP-dependent protease. Remarkably, CodW uses its N-terminal serine hydroxyl group as the catalytic nucleophile, unlike HslV and certain beta-type subunits of the proteasomes, which have N-terminal threonine functioning as an active site residue. The ATP-dependent proteolytic activity of CodWX is strongly inhibited by serine protease inhibitors, unlike that of HslVU. Replacement of the N-terminal serine of CodW by alanine or even threonine completely abolishes the enzyme activity. These results indicate that CodWX in B.subtilis represents the first N-terminal serine protease among all known proteolytic enzymes.
Collapse
Affiliation(s)
- Min Suk Kang
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Byung Kook Lim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Ihn Sik Seong
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Jae Hong Seol
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Nobuyuki Tanahashi
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Keiji Tanaka
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| | - Chin Ha Chung
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Tokyo Metropolitan Institute of Medical Science, CREST, Japan Science and Technology Corporation, Tokyo 113, Japan Present address: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Corresponding author e-mail:
| |
Collapse
|
43
|
Wang J, Song JJ, Franklin MC, Kamtekar S, Im YJ, Rho SH, Seong IS, Lee CS, Chung CH, Eom SH. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 2001; 9:177-84. [PMID: 11250202 DOI: 10.1016/s0969-2126(01)00570-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The bacterial heat shock locus HslU ATPase and HslV peptidase together form an ATP-dependent HslVU protease. Bacterial HslVU is a homolog of the eukaryotic 26S proteasome. Crystallographic studies of HslVU should provide an understanding of ATP-dependent protein unfolding, translocation, and proteolysis by this and other ATP-dependent proteases. RESULTS We present a 3.0 A resolution crystal structure of HslVU with an HslU hexamer bound at one end of an HslV dodecamer. The structure shows that the central pores of the ATPase and peptidase are next to each other and aligned. The central pore of HslU consists of a GYVG motif, which is conserved among protease-associated ATPases. The binding of one HslU hexamer to one end of an HslV dodecamer in the 3.0 A resolution structure opens both HslV central pores and induces asymmetric changes in HslV. CONCLUSIONS Analysis of nucleotide binding induced conformational changes in the current and previous HslU structures suggests a protein unfolding-coupled translocation mechanism. In this mechanism, unfolded polypeptides are threaded through the aligned pores of the ATPase and peptidase and translocated into the peptidase central chamber.
Collapse
Affiliation(s)
- J Wang
- Department of Molecular Biophysics, Biochemistry, 266 Whitney Avenue, Yale University, 06520, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Song HK, Hartmann C, Ramachandran R, Bochtler M, Behrendt R, Moroder L, Huber R. Mutational studies on HslU and its docking mode with HslV. Proc Natl Acad Sci U S A 2000; 97:14103-8. [PMID: 11114186 PMCID: PMC18878 DOI: 10.1073/pnas.250491797] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HslVU is an ATP-dependent prokaryotic protease complex. Despite detailed crystal and molecular structure determinations of free HslV and HslU, the mechanism of ATP-dependent peptide and protein hydrolysis remained unclear, mainly because the productive complex of HslV and HslU could not be unambiguously identified from the crystal data. In the crystalline complex, the I domains of HslU interact with HslV. Observations based on electron microscopy data were interpreted in the light of the crystal structure to indicate an alternative mode of association with the intermediate domains away from HslV. By generation and analysis of two dozen HslU mutants, we find that the amidolytic and caseinolytic activities of HslVU are quite robust to mutations on both alternative docking surfaces on HslU. In contrast, HslVU activity against the maltose-binding protein-SulA fusion protein depends on the presence of the I domain and is also sensitive to mutations in the N-terminal and C-terminal domains of HslU. Mutational studies around the hexameric pore of HslU seem to show that it is involved in the recognition/translocation of maltose-binding protein-SulA but not of chromogenic small substrates and casein. ATP-binding site mutations, among other things, confirm the essential role of the "sensor arginine" (R393) and the "arginine finger" (R325) in the ATPase action of HslU and demonstrate an important role for E321. Additionally, we report a better refined structure of the HslVU complex crystallized along with resorufin-labeled casein.
Collapse
Affiliation(s)
- H K Song
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|