1
|
Guarano A, Capozzi A, Cristodoro M, Di Simone N, Lello S. Alpha Lipoic Acid Efficacy in PCOS Treatment: What Is the Truth? Nutrients 2023; 15:3209. [PMID: 37513627 PMCID: PMC10386153 DOI: 10.3390/nu15143209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is among the most common female endocrinopathies, affecting about 4-25% of women of reproductive age. Women affected by PCOS have an increased risk of developing metabolic syndrome, type 2 diabetes mellitus, cardiovascular diseases, and endometrial cancer. Given the pivotal role of insulin resistance (IR) in the pathogenesis of PCOS, in the last years, many insulin-sensitizing factors have been proposed for PCOS treatment. The first insulin sensitizer recommended by evidence-based guidelines for the assessment and treatment of PCOS was metformin, but the burden of side effects is responsible for treatment discontinuation in many patients. Inositols have insulin-mimetic properties and contribute to decreasing postprandial blood glucose, acting by different pathways. ALA is a natural amphipathic compound with a very strong anti-inflammatory and antioxidant effect and a very noteworthy role in the improvement of insulin metabolic pathway. Given the multiple effects of ALA, a therapeutic strategy based on the synergy between inositols and ALA has been recently proposed by many groups with the aim of improving insulin resistance, reducing androgen levels, and ameliorating reproductive outcomes in PCOS patients. The purpose of this study is to review the existing literature and to evaluate the existing data showing the efficacy and the limitation of a treatment strategy based on this promising molecule. ALA is a valid therapeutic strategy applicable in the treatment of PCOS patients: Its multiple actions, including antinflammatory, antioxidant, and insulin-sensitizing, may be of utmost importance in the treatment of a very complex syndrome. Specifically, the combination of MYO plus ALA creates a synergistic effect that improves insulin resistance in PCOS patients, especially in obese/overweight patients with T2DM familiarity. Moreover, ALA treatment also exerts beneficial effects on endocrine patterns, especially if combined with MYO, improving menstrual regularity and ovulation rhythm. The purpose of our study is to review the existing literature and to evaluate the data showing the efficacy and the limitations of a treatment strategy based on this promising molecule.
Collapse
Affiliation(s)
- Alice Guarano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Humanitas San Pio X, Via Francesco Nava 31, 20159 Milan, Italy
| | - Anna Capozzi
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Martina Cristodoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Stefano Lello
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
2
|
Genazzani AD, Genazzani AR. Polycystic Ovary Syndrome as Metabolic Disease: New Insights on Insulin Resistance. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:71-77. [PMID: 37313240 PMCID: PMC10258623 DOI: 10.17925/ee.2023.19.1.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 06/15/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a very frequent disease that affects reproductive ability and menstrual regularity. Other than the criteria established at the Rotterdam consensus, in these last few years a new issue, insulin resistance, has been found frequently, and at a very high grade, in patients with PCOS. Insulin resistance occurs for several factors, such as overweight and obesity, but it is now clear that it occurs in patients with PCOS with normal weight, thus supporting the hypothesis that insulin resistance is independent of body weight. Evidence shows that a complex pathophysiological situation occurs that impairs post-receptor insulin signalling, especially in patients with PCOS and familial diabetes. In addition, patients with PCOS have a high incidence of non-alcoholic fatty liver disease related to the hyperinsulinaemia. This narrative review focuses on the recent new insights about insulin resistance in patients with PCOS, to better understand the metabolic impairment accounting for most of the clinical signs/symptoms of PCOS.
Collapse
Affiliation(s)
- Alessandro D Genazzani
- Gynaecological Endocrinology Center, Department of Obstetrics and Gynaecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea R Genazzani
- Department of Obstetrics and Gynaecology, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Wongkittichote P, Chhay C, Zerafati-Jahromi G, Weisenberg JL, Mian A, Jensen LT, Grange DK. Novel LIAS variants in a patient with epilepsy and profound developmental disabilities. Mol Genet Metab 2023; 138:107373. [PMID: 36680912 DOI: 10.1016/j.ymgme.2023.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Multiple mitochondrial enzymes employ lipoic acid as a coenzyme. Pathogenic variants in LIAS, encoding lipoic acid synthase (LIAS), are associated with autosomal recessive LIAS-related disorder (OMIM# 614462). This disorder is characterized by infantile-onset hypotonia, profound psychomotor delay, epileptic encephalopathy, nonketotic hyperglycinemia, and lactic acidosis. We present the case of a 20-year-old female who experienced developmental deficits at the age of 6 months and began to have seizures at 3 years of age. Exome sequencing revealed compound heterozygous novel variants in LIAS, designated c.277delC (p.Leu93Ter) and c.542A > T (p.Asp181Val). The p.Leu93Ter variant is predicted to cause loss of function due to the severe truncation of the encoded protein. To examine the p.Asp181Val variant, functional analysis was performed using Baker's yeast (Saccharomyces cerevisiae) lacking LIP5, the homologue of human LIAS. Wild-type LIAS promoted oxidative growth of the lip5∆ yeast strain. In contrast, lip5∆ yeast expressing p.Asp181Val exhibited poor growth, similar to known pathogenic variants, p.Asp215Glu and p.Met310Thr. Our work has expanded the phenotypic and genotypic spectrum of LIAS-related disorder and established the use of the yeast model as a system for functional study of novel missense variants in LIAS.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chanseyha Chhay
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Gazelle Zerafati-Jahromi
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Judith L Weisenberg
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali Mian
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Laran T Jensen
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Capece U, Moffa S, Improta I, Di Giuseppe G, Nista EC, Cefalo CMA, Cinti F, Pontecorvi A, Gasbarrini A, Giaccari A, Mezza T. Alpha-Lipoic Acid and Glucose Metabolism: A Comprehensive Update on Biochemical and Therapeutic Features. Nutrients 2022; 15:nu15010018. [PMID: 36615676 PMCID: PMC9824456 DOI: 10.3390/nu15010018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Alpha-lipoic acid (ALA) is a natural compound with antioxidant and pro-oxidant properties which has effects on the regulation of insulin sensitivity and insulin secretion. ALA is widely prescribed in patients with diabetic polyneuropathy due to its positive effects on nerve conduction and alleviation of symptoms. It is, moreover, also prescribed in other insulin resistance conditions such as metabolic syndrome (SM), polycystic ovary syndrome (PCOS) and obesity. However, several cases of Insulin Autoimmune Syndrome (IAS) have been reported in subjects taking ALA. The aim of the present review is to describe the main chemical and biological functions of ALA in glucose metabolism, focusing on its antioxidant activity, its role in modulating insulin sensitivity and secretion and in symptomatic peripheral diabetic polyneuropathy. We also provide a potential explanation for increased risk for the development of IAS.
Collapse
Affiliation(s)
- Umberto Capece
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Simona Moffa
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ilaria Improta
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Enrico Celestino Nista
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Chiara M. A. Cefalo
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Cinti
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Giaccari
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| | - Teresa Mezza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
5
|
Espíndola KMM, Varela ELP, de Albuquerque RDFV, Figueiredo RA, dos Santos SM, Malcher NS, da S. Seabra PS, Fonseca ADN, de Azevedo Sousa KM, de Oliveira SBB, Carneiro ADS, Coleman MD, Monteiro MC. Alpha-Lipoic Acid and Its Enantiomers Prevent Methemoglobin Formation and DNA Damage Induced by Dapsone Hydroxylamine: Molecular Mechanism and Antioxidant Action. Int J Mol Sci 2022; 24:ijms24010057. [PMID: 36613503 PMCID: PMC9820452 DOI: 10.3390/ijms24010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 12/24/2022] Open
Abstract
Dapsone (DDS) therapy can frequently lead to hematological side effects, such as methemoglobinemia and DNA damage. In this study, we aim to evaluate the protective effect of racemic alpha lipoic acid (ALA) and its enantiomers on methemoglobin induction. The pre- and post-treatment of erythrocytes with ALA, ALA isomers, or MB (methylene blue), and treatment with DDS-NOH (apsone hydroxylamine) was performed to assess the protective and inhibiting effect on methemoglobin (MetHb) formation. Methemoglobin percentage and DNA damage caused by dapsone and its metabolites were also determined by the comet assay. We also evaluated oxidative parameters such as SOD, GSH, TEAC (Trolox equivalent antioxidant capacity) and MDA (malondialdehyde). In pretreatment, ALA showed the best protector effect in 2.5 µg/mL of DDS-NOH. ALA (1000 µM) was able to inhibit the induced MetHb formation even at the highest concentrations of DDS-NOH. All ALA tested concentrations (100 and 1000 µM) were able to inhibit ROS and CAT activity, and induced increases in GSH production. ALA also showed an effect on DNA damage induced by DDS-NOH (2.5 µg/mL). Both isomers were able to inhibit MetHb formation and the S-ALA was able to elevate GSH levels by stimulating the production of this antioxidant. In post-treatment with the R-ALA, this enantiomer inhibited MetHb formation and increased GSH levels. The pretreatment with R-ALA or S-ALA prevented the increase in SOD and decrease in TEAC, while R-ALA decreased the levels of MDA; and this pretreatment with R-ALA or S-ALA showed the effect of ALA enantiomers on DNA damage. These data show that ALA can be used in future therapies in patients who use dapsone chronically, including leprosy patients.
Collapse
Affiliation(s)
- Kaio Murilo Monteiro Espíndola
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Everton Luiz Pompeu Varela
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | | | - Rosiane Araújo Figueiredo
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Sávio Monteiro dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Nívea Silva Malcher
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Pamela Suelen da S. Seabra
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Andréia do Nascimento Fonseca
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Karla Marcely de Azevedo Sousa
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Susan Beatriz Batista de Oliveira
- Central Laboratory of the State of Pará-CLSP, Belém 66823-010, PA, Brazil
- Postgraduate Program in Neuroscience and Cell Biology, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Agnaldo da Silva Carneiro
- Postgraduate Program in Medicinal Chemistry and Molecular Modeling, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Michael D. Coleman
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Marta Chagas Monteiro
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
- Correspondence:
| |
Collapse
|
6
|
Johannes L, Fu CY, Schwarz G. Molybdenum Cofactor Deficiency in Humans. Molecules 2022; 27:6896. [PMID: 36296488 PMCID: PMC9607355 DOI: 10.3390/molecules27206896] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Molybdenum cofactor (Moco) deficiency (MoCD) is characterized by neonatal-onset myoclonic epileptic encephalopathy and dystonia with cerebral MRI changes similar to hypoxic-ischemic lesions. The molecular cause of the disease is the loss of sulfite oxidase (SOX) activity, one of four Moco-dependent enzymes in men. Accumulating toxic sulfite causes a secondary increase of metabolites such as S-sulfocysteine and thiosulfate as well as a decrease in cysteine and its oxidized form, cystine. Moco is synthesized by a three-step biosynthetic pathway that involves the gene products of MOCS1, MOCS2, MOCS3, and GPHN. Depending on which synthetic step is impaired, MoCD is classified as type A, B, or C. This distinction is relevant for patient management because the metabolic block in MoCD type A can be circumvented by administering cyclic pyranopterin monophosphate (cPMP). Substitution therapy with cPMP is highly effective in reducing sulfite toxicity and restoring biochemical homeostasis, while the clinical outcome critically depends on the degree of brain injury prior to the start of treatment. In the absence of a specific treatment for MoCD type B/C and SOX deficiency, we summarize recent progress in our understanding of the underlying metabolic changes in cysteine homeostasis and propose novel therapeutic interventions to circumvent those pathological changes.
Collapse
Affiliation(s)
| | | | - Günter Schwarz
- Institute of Biochemistry, Department of Chemistry & Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
7
|
Genazzani AD, Battipaglia C, Petrillo T, Piacquadio N, Ambrosetti F, Arnesano M, Semprini E, Sponzilli A, Tomatis V, Simoncini T. Familial diabetes predisposes PCOS patients to insulin resistance (IR), reproductive impairment and hepatic dysfunction: effects of d-chiro inositol (DCI) and alpha lipoic acid (ALA) administration on hepatic insulin extraction (HIE) index. Gynecol Endocrinol 2022; 38:681-688. [PMID: 35748584 DOI: 10.1080/09513590.2022.2089107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
ObjectivePCOS is a syndrome is characterized by 2 out of 3 of the criteria established during the Rotterdam Consensus Conference. Recently the issue of insulin resistance (IR) has caught attention.SubjectsA group of overweight/obese PCOS patients (n = 30) have been evaluated before and after 3 months of daily integrative administration of d-chiro inositol (DCI) (500 mg) and alpha lipoic acid (ALA) (300 mg).MethodsHormonal and metabolic profiles, oral glucose tolerance test (OGTT) for glucose, insulin and C-peptide response were performed in baseline conditions and after DCI plus ALA treatment. Hepatic Insulin Extraction (HIE) index was computed along the OGTT to evaluate the liver ability in degrading insulin.ResultsThe treatment decreased LH, Androstenedione (A), insulin plasma levels, BMI, HOMA index, AST and ALT. Considering patients for the presence (n = 17) or absence of familial diabetes (n = 13), the greatest improvements occurred in the former patients. Insulin response to OGTT was greatly reduced after the treatment interval in PCOS with familial diabetes. HIE computation disclosed that in presence of familial diabetes liver degradation of insulin is reduced thus leaving a higher amount of circulating insulin. DCI plus ALA administration decreased AST and ALT and restored hepatic insulin clearance since HIE profile was improved.ConclusionOur study demonstrates that in overweight/obese PCOS the predisposition to familial diabetes triggers IR not only through the endogenous impaired DCI and ALA synthesis but also through a reduced hepatic clearance of insulin. DCI plus ALA administration positively improved hormonal, metabolic profiles as well as liver function.
Collapse
Affiliation(s)
- Alessandro D Genazzani
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Christian Battipaglia
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Tabatha Petrillo
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Piacquadio
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Fedora Ambrosetti
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Melania Arnesano
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Semprini
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Sponzilli
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Tomatis
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Simoncini
- Department of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Lai S, Chen Y, Yang F, Xiao W, Liu Y, Wang C. Quantitative Site-Specific Chemoproteomic Profiling of Protein Lipoylation. J Am Chem Soc 2022; 144:10320-10329. [PMID: 35648456 DOI: 10.1021/jacs.2c01528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein lipoylation is an evolutionarily conserved post-translational modification from prokaryotes to eukaryotes. Lipoylation is implicated with several human diseases, including metabolic disorders, cancer, and Alzheimer's disease. While individual lipoylated proteins have been biochemically studied, a strategy for globally quantifying lipoylation with site-specific resolution in proteomes is still lacking. Herein, we developed a butyraldehyde-alkynyl probe to specifically label and enrich lipoylations in complexed biological samples. Combined with a chemoproteomic pipeline using customized tandem enzyme digestions and a biotin enrichment tag with enhanced ionization, we successfully quantified all known lipoylation sites in both Escherichia coli (E. coli) and human proteomes. The strategy enabled us to dissect the dependence of three evolutionarily related lipoylation sites in dihydrolipoamide acetyltransferase (ODP2) in E. coli and evaluated the functional connection between the de novo lipoylation synthetic pathway and the salvage pathway. Our chemoproteomic platform provides a useful tool to monitor the state of lipoylation in proteome samples, which will help decipher molecular mechanisms of lipoylation-related diseases.
Collapse
Affiliation(s)
- Shuchang Lai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weidi Xiao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Theodosis-Nobelos P, Papagiouvannis G, Tziona P, Rekka EA. Lipoic acid. Kinetics and pluripotent biological properties and derivatives. Mol Biol Rep 2021; 48:6539-6550. [PMID: 34420148 DOI: 10.1007/s11033-021-06643-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Lipoic acid (LA) is globally known and its supplements are widely used. Despite its importance for the organism it is not considered a vitamin any more. The multiple metabolic forms and the differences in kinetics (absorption, distribution and excretion), as well as the actions of its enantiomers are analysed in the present article together with its biosynthetic path. The proteins involved in the transfer, biotransformation and activity of LA are mentioned. Furthermore, the safety and the toxicological profile of the compound are commented, together with its stability issues. Mechanisms of lipoic acid intervention in the human body are analysed considering the antioxidant and non-antioxidant characteristics of the compound. The chelating properties, the regenerative ability of other antioxidants, the co-enzyme activity and the signal transduction by the implication in various pathways will be discussed in order to be elucidated the pleiotropic effects of LA. Finally, lipoic acid integrating analogues are mentioned under the scope of the multiple pharmacological actions they acquire towards degenerative conditions.
Collapse
Affiliation(s)
| | - Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, 1036, Nicosia, Cyprus
| | - Paraskevi Tziona
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleni A Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
10
|
Ji Y, Wang S, Cheng Y, Fang L, Zhao J, Gao L, Xu C. Identification and characterization of novel compound variants in SLC25A26 associated with combined oxidative phosphorylation deficiency 28. Gene 2021; 804:145891. [PMID: 34375635 DOI: 10.1016/j.gene.2021.145891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Combined oxidative phosphorylation deficiency 28 (COXPD28) is associated with mitochondrial dysfunction caused by mutations in SLC25A26, the gene which encodes the mitochondrial S-adenosylmethionine carrier (SAMC) that responsible for the transport of S-adenosylmethionine (SAM) into the mitochondria. OBJECTIVE To identify and characterize pathogenic variants of SLC25A26 in a Chinese pedigree, provide a basis for clinical diagnosis and genetic counseling. METHODS We conducted a systematic analysis of the clinical characteristics of a female with COXPD28. Whole-exome and mitochondrial genome sequencing was applied for the genetic analysis, together with bioinformatic analysis of predicted consequences of the identified variant. A homotrimer model was built to visualize the affected region and predict possible outcomes of this mutation. Then a literature review was performed by online searching all cases reported with COXPD28. RESULTS The novel compound heterozygous SLC25A26 variants (c.34G > C, p.A12P; c.197C > A; p.A66E) were identified in a Chinese patient with COXPD28. These two variants are located in the transmembrane region 1 and transmembrane region 2, respectively. As a member of the mitochondrial carrier family, the transmembrane region of SAMC is highly conserved. The variants were predicted to be pathogenic by in silico analysis and lead to a change in the protein structure of SAMC. And the change of the SAMC structure may lead to insufficient methylation and cause disease by affecting the SAM transport. CONCLUSIONS The variants in this region probably resulted in a variable loss of mitochondrial SAMC transport function and cause the COXPD28. This study that further refine genotype-phenotype associations can provide disease prognosis with a basis and families with reproductive planning options.
Collapse
Affiliation(s)
- Yiming Ji
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Shuping Wang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Endocrinology and Metabolism, Dongying People's Hospital, Dongying, Shandong 257000, China
| | - Yiping Cheng
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Li Fang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China; Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China.
| |
Collapse
|
11
|
Interaction between Metarhizium anisopliae and Its Host, the Subterranean Termite Coptotermes curvignathus during the Infection Process. BIOLOGY 2021; 10:biology10040263. [PMID: 33806225 PMCID: PMC8065498 DOI: 10.3390/biology10040263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
Metarhizium anisopliae (Metchnikoff) Sorokin, a pathogenic fungus to insects, infects the subterranean termite, Coptotermes curvignathus Holmgren, a devastating pest of plantation trees in the tropics. Electron microscopy and proteomics were used to investigate the infection and developmental process of M. anisopliae in C. curvignathus. Fungal infection was initiated by germ tube penetration through the host's cuticle as observed at 6 h post-inoculation (PI), after which it elongated into the host's integumental tissue. The colonization process continued as seen from dissemination of blastospores in the hemocoel at 96 h PI. At this time point, the emergent mycelia had mummified the host and forty-eight hours later, new conidia were dispersed on the termites' body surface. Meanwhile, hyphal bodies were observed in abundance in the intercellular space in the host's body. The proteomes of the pathogen and host were isolated separately using inoculated termite samples withdrawn at each PI-time point and analyzed in two-dimensional electrophoresis (2-DE) gels. Proteins expressed in termites showed evidence of being related to cell regulation and the immune response, while those expressed in M. anisopliae, to transportation and fungal virulence. This study provides new information on the interaction between termites and its entomopathogen, with potential utilization for developing future biopesticide to control the termite population.
Collapse
|
12
|
Mayr SJ, Mendel RR, Schwarz G. Molybdenum cofactor biology, evolution and deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118883. [PMID: 33017596 DOI: 10.1016/j.bbamcr.2020.118883] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
The molybdenum cofactor (Moco) represents an ancient metal‑sulfur cofactor, which participates as catalyst in carbon, nitrogen and sulfur cycles, both on individual and global scale. Given the diversity of biological processes dependent on Moco and their evolutionary age, Moco is traced back to the last universal common ancestor (LUCA), while Moco biosynthetic genes underwent significant changes through evolution and acquired additional functions. In this review, focused on eukaryotic Moco biology, we elucidate the benefits of gene fusions on Moco biosynthesis and beyond. While originally the gene fusions were driven by biosynthetic advantages such as coordinated expression of functionally related proteins and product/substrate channeling, they also served as origin for the development of novel functions. Today, Moco biosynthetic genes are involved in a multitude of cellular processes and loss of the according gene products result in severe disorders, both related to Moco biosynthesis and secondary enzyme functions.
Collapse
Affiliation(s)
- Simon J Mayr
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany
| | - Ralf-R Mendel
- Institute of Plant Biology, Braunschweig University of Technology, Humboldtstr. 1, 38106 Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany.
| |
Collapse
|
13
|
Fruzzetti F, Fidecicchi T, Palla G, Gambacciani M. Long-term treatment with α-lipoic acid and myo-inositol positively affects clinical and metabolic features of polycystic ovary syndrome. Gynecol Endocrinol 2020; 36:152-155. [PMID: 31317814 DOI: 10.1080/09513590.2019.1640673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of this retrospective study was to evaluate the effects of a long-term treatment with α-lipoic acid (ALA) combined with myo-inositol (MI) on clinical and metabolic features of women with polycystic ovary syndrome (PCOS). Fifty-seven women with PCOS and a history of oligoamenorrhea were treated with MI and ALA (800 mg + 2000 mg per day). Forty-four of them had complete clinical charts and were considered eligible for the study. Information about cycle length and body mass index (BMI) was checked after 6, 12, and 24 months. After 12 months ovarian volume, total testosterone plasma levels and changes in hirsutism were also evaluated. The metabolic parameters were evaluated in 16 women after 6 and 18 months of the treatment. Cycle length was significantly reduced at 6 (p < .001), 12, and 24 months of treatment (p < .01). BMI showed a reduction only at 6 months (p < .05), thereafter returning similar to the basal values. No changes of testosterone and ovarian volume were observed. HOMA-IR and fasting insulin were unchanged, but the insulin response to a 3 h OGTT was improved after 6 (p < .01) and 18 months (p < .05) of treatment. No individual suffered from any adverse event. In conclusion, the combination of ALA and MI showed to be useful as long-term therapy in PCOS women, providing a normalization of the menstrual cycle and an amelioration of insulin levels with a high tolerability.
Collapse
Affiliation(s)
- Franca Fruzzetti
- Department of Obstetrics and Gynecology, Pisa University Hospital, Pisa, Italy
| | - Tiziana Fidecicchi
- Department of Obstetrics and Gynecology, Pisa University Hospital, Pisa, Italy
| | - Giulia Palla
- Department of Obstetrics and Gynecology, Pisa University Hospital, Pisa, Italy
| | - Marco Gambacciani
- Department of Obstetrics and Gynecology, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
14
|
Genazzani AD, Prati A, Marchini F, Petrillo T, Napolitano A, Simoncini T. Differential insulin response to oral glucose tolerance test (OGTT) in overweight/obese polycystic ovary syndrome patients undergoing to myo-inositol (MYO), alpha lipoic acid (ALA), or combination of both. Gynecol Endocrinol 2019; 35:1088-1093. [PMID: 31304823 DOI: 10.1080/09513590.2019.1640200] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Polycystic ovary syndrome is characterized by several endocrine impairments, insulin resistance and hyperinsulinemia. We aimed to evaluate the effects of myo-inositol (MYO), alpha-lipoic acid (ALA) and a combination of both. Setting: retrospective study. Ninety overweight/obese patients were considered. Presence or absence of first grade diabetic relatives was checked. Patients were administered MYO (1 g/die per os), ALA (400 mg/die per os), MYO (1 gr/die) + ALA (400 mg/die) per os. Only 76 out of 90 patients completed the 12 weeks of treatment. Patients were evaluated before and after the treatment interval for LH, FSH, E2 (estradiol), A (androstenedione), T (testosterone) plasma levels, oral glucose tolerance test (OGTT). All treatments demonstrated specific positive effects: MYO modulated more hormonal profiles and OGTT in polycystic ovary syndrome (PCOS) with no familial diabetes, ALA improved insulin response to OGTT and metabolic parameters in all patients with no effects on reproductive hormones, MYO + ALA improved hormonal and metabolic aspects and insulin response to OGTT in all patients. Presence of familial diabetes is a relevant clinical aspect. MYO is less effective when familial diabetes is present, ALA improved only metabolic aspects while MYO + ALA was effective on all PCOS patients independently from familial diabetes.
Collapse
Affiliation(s)
- Alessandro D Genazzani
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Prati
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Marchini
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Tabatha Petrillo
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonella Napolitano
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Simoncini
- Department of Gynecology and Obstetrics, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Masud AJ, Kastaniotis AJ, Rahman MT, Autio KJ, Hiltunen JK. Mitochondrial acyl carrier protein (ACP) at the interface of metabolic state sensing and mitochondrial function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118540. [PMID: 31473256 DOI: 10.1016/j.bbamcr.2019.118540] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
Acyl carrier protein (ACP) is a principal partner in the cytosolic and mitochondrial fatty acid synthesis (FAS) pathways. The active form holo-ACP serves as FAS platform, using its 4'-phosphopantetheine group to present covalently attached FAS intermediates to the enzymes responsible for the acyl chain elongation process. Mitochondrial unacylated holo-ACP is a component of mammalian mitoribosomes, and acylated ACP species participate as interaction partners in several ACP-LYRM (leucine-tyrosine-arginine motif)-protein heterodimers that act either as assembly factors or subunits of the electron transport chain and Fe-S cluster assembly complexes. Moreover, octanoyl-ACP provides the C8 backbone for endogenous lipoic acid synthesis. Accumulating evidence suggests that mtFAS-generated acyl-ACPs act as signaling molecules in an intramitochondrial metabolic state sensing circuit, coordinating mitochondrial acetyl-CoA levels with mitochondrial respiration, Fe-S cluster biogenesis and protein lipoylation.
Collapse
Affiliation(s)
- Ali J Masud
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - M Tanvir Rahman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
16
|
Castro MC, Villagarcía HG, Massa ML, Francini F. Alpha-lipoic acid and its protective role in fructose induced endocrine-metabolic disturbances. Food Funct 2019; 10:16-25. [PMID: 30575838 DOI: 10.1039/c8fo01856a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent decades a worldwide increase has been reported in the consumption of unhealthy high calorie diets associated with marked changes in meal nutrient composition, such as a higher intake of refined carbohydrates, which leads to the speculatation that changes in food habits have contributed to the current epidemic of obesity and type 2 diabetes. Among these refined carbohydrates, fructose has been deeply investigated and murine models of high fructose diet have emerged as useful tools to study dietary-induced insulin resistance, impaired glucose tolerance, dyslipidemia and alterations in glucose metabolism. Since oxidative stress has been demonstrated to play a key pathogenic role in the alterations described above, several lines of research have focused on the possible preventive effects of antioxidant/redox state regulation therapy, among which alpha-lipoic acid has been extensively investigated. The following references discussed support the fact that co-administration of alpha-lipoic acid normalized the changes generated by fructose rich diets, thereby making this compound a good therapeutic tool, also administered as a food supplement, to prevent endocrine-metabolic disturbances triggered by high fructose associated with obesity and type 2 diabetes at an early stage of development (prediabetes).
Collapse
Affiliation(s)
- María Cecilia Castro
- CENEXA (Centro de Endocrinología Experimental y Aplicada, UNLP-CONICET La Plata-FCM) (Centro asociado CICPBA), 1900 La Plata, Argentina.
| | | | | | | |
Collapse
|
17
|
Haghighatdoost F, Hariri M. Does alpha-lipoic acid affect lipid profile? A meta-analysis and systematic review on randomized controlled trials. Eur J Pharmacol 2019; 847:1-10. [DOI: 10.1016/j.ejphar.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/22/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022]
|
18
|
Amenta F, Buccioni M, Ben DD, Lambertucci C, Navia AM, Ngouadjeu Ngnintedem MA, Ricciutelli M, Spinaci A, Volpini R, Marucci G. Ex-vivo absorption study of lysine R-lipoate salt, a new pharmaceutical form of R-ALA. Eur J Pharm Sci 2018; 118:200-207. [DOI: 10.1016/j.ejps.2018.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/25/2022]
|
19
|
Genazzani AD, Shefer K, Della Casa D, Prati A, Napolitano A, Manzo A, Despini G, Simoncini T. Modulatory effects of alpha-lipoic acid (ALA) administration on insulin sensitivity in obese PCOS patients. J Endocrinol Invest 2018; 41:583-590. [PMID: 29090431 DOI: 10.1007/s40618-017-0782-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/22/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate the efficacy of alpha-lipoic acid (ALA) administration on hormonal and metabolic parameters of obese PCOS patients. METHODS A group of 32 obese PCOS patients were selected after informed consent. 20 patients referred to have first grade relatives with diabetes type I or II. Hormonal and metabolic parameters as well as OGTT were evaluated before and after 12 weeks of ALA integrative administration (400 mg per os every day). RESULTS ALA administration significantly decreased insulin, glucose, BMI and HOMA index. Hyperinsulinemia and insulin response to OGTT decreased both as maximal response (Δmax) and as AUC. PCOS with diabetes relatives showed the decrease also of triglyceride and GOT. Interestingly in all PCOS no changes occurred on all hormonal parameters involved in reproduction such as LH, FSH, and androstenedione. CONCLUSIONS ALA integrative administration at a low dosage as 400 mg daily improved the metabolic impairment of all PCOS patients especially in those PCOS with familiar diabetes who have a higher grade of risk of NAFLD and predisposition to diabetes.
Collapse
Affiliation(s)
- A D Genazzani
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100, Modena, Italy.
| | - K Shefer
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100, Modena, Italy
| | - D Della Casa
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100, Modena, Italy
| | - A Prati
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100, Modena, Italy
| | - A Napolitano
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100, Modena, Italy
| | - A Manzo
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100, Modena, Italy
| | - G Despini
- Department of Obstetrics and Gynecology, Gynecological Endocrinology Center, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100, Modena, Italy
| | - T Simoncini
- Department of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Sabui S, Kapadia R, Ghosal A, Schneider M, Lambrecht NWG, Said HM. Biotin and pantothenic acid oversupplementation to conditional SLC5A6 KO mice prevents the development of intestinal mucosal abnormalities and growth defects. Am J Physiol Cell Physiol 2018; 315:C73-C79. [PMID: 29669219 DOI: 10.1152/ajpcell.00319.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intestinal absorption of the water-soluble vitamins biotin and pantothenic acid is carrier mediated and involves the sodium-dependent multivitamin transporter (SMVT; product of the SLC5A6 gene). We recently observed that intestinal-specific (conditional) knockout of the mouse Slc5a6 gene (SMVT-cKO) is associated with growth retardation, the development of spontaneous and severe inflammation, abnormal histology in the large intestine, altered gut permeability, and early death. Our aim in this study was to examine the possibility that biotin and pantothenic acid oversupplementation (BPS) of the SMVT-cKO mice could reverse the above-described abnormalities. BPS was provided in the drinking water to mice before conception, to dams during pregnancy and lactation, and to the SMVT-cKO mice throughout their life. Our findings showed that such a regimen prevents early death, as well as normalizes the growth rate, intestinal integrity, pathology, and inflammation in SMVT-cKO mice. These findings provide clear evidence for a role for biotin and/or pantothenic acid in the maintenance of normal intestinal integrity and health.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California
| | - Rubina Kapadia
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California
| | - Abhisek Ghosal
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California
| | - Michael Schneider
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California
| | - Nils W G Lambrecht
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California
| | - Hamid M Said
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California
| |
Collapse
|
21
|
Rajabi N, Galleano I, Madsen AS, Olsen CA. Targeting Sirtuins: Substrate Specificity and Inhibitor Design. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 154:25-69. [PMID: 29413177 DOI: 10.1016/bs.pmbts.2017.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysine residues across the proteome are modified by posttranslational modifications (PTMs) that significantly enhance the structural and functional diversity of proteins. For lysine, the most abundant PTM is ɛ-N-acetyllysine (Kac), which plays numerous roles in regulation of important cellular functions, such as gene expression (epigenetic effects) and metabolism. A family of enzymes, namely histone deacetylases (HDACs), removes these PTMs. A subset of these enzymes, the sirtuins (SIRTs), represent class III HDAC and, unlike the rest of the family, these hydrolases are NAD+-dependent. Although initially described as deacetylases, alternative deacylase functions for sirtuins have been reported, which expands the potential cellular roles of this class of enzymes. Currently, sirtuins are investigated as therapeutic targets for the treatment of diseases that span from cancers to neurodegenerative disorders. In the present book chapter, we review and discuss the current literature on novel ɛ-N-acyllysine PTMs, targeted by sirtuins, as well as mechanism-based sirtuin inhibitors inspired by their substrates.
Collapse
Affiliation(s)
- Nima Rajabi
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Iacopo Galleano
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Molz P, Schröder N. Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and Neurodegeneration. Front Pharmacol 2017; 8:849. [PMID: 29311912 PMCID: PMC5732919 DOI: 10.3389/fphar.2017.00849] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
The aging process comprises a series of organic alterations, affecting multiple systems, including the nervous system. Aging has been considered the main risk factor for the advance of neurodegenerative diseases, many of which are accompanied by cognitive impairment. Aged individuals show cognitive decline, which has been associated with oxidative stress, as well as mitochondrial, and consequently energetic failure. Lipoic acid (LA), a natural compound present in food and used as a dietary supplement, has been considered a promising agent for the treatment and/or prevention of neurodegenerative disorders. In spite of a number of preclinical studies showing beneficial effects of LA in memory functioning, and pointing to its neuroprotective potential effect, to date only a few studies have examined its effects in humans. Investigations performed in animal models of memory loss associated to aging and neurodegenerative disorders have shown that LA improves memory in a variety of behavioral paradigms. Moreover, cell and molecular mechanisms underlying LA effects have also been investigated. Accordingly, LA displays antioxidant, antiapoptotic, and anti-inflammatory properties in both in vivo and in vitro studies. In addition, it has been shown that LA reverses age-associated loss of neurotransmitters and their receptors, which can underlie its effects on cognitive functions. The present review article aimed at summarizing and discussing the main studies investigating the effects of LA on cognition as well as its cell and molecular effects, in order to improve the understanding of the therapeutic potential of LA on memory loss during aging and in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with LA.
Collapse
Affiliation(s)
- Patrícia Molz
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| | - Nadja Schröder
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| |
Collapse
|
23
|
Fiedler SE, Yadav V, Kerns AR, Tsang C, Markwardt S, Kim E, Spain R, Bourdette D, Salinthone S. Lipoic Acid Stimulates cAMP Production in Healthy Control and Secondary Progressive MS Subjects. Mol Neurobiol 2017; 55:6037-6049. [PMID: 29143287 DOI: 10.1007/s12035-017-0813-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/27/2017] [Indexed: 02/05/2023]
Abstract
Lipoic acid (LA) exhibits antioxidant and anti-inflammatory properties; supplementation reduces disease severity and T lymphocyte migration into the central nervous system in a murine model of multiple sclerosis (MS), and administration in secondary progressive MS (SPMS) subjects reduces brain atrophy compared to placebo. The mechanism of action (MOA) of LA's efficacy in suppression of MS pathology is incompletely understood. LA stimulates production of the immunomodulator cyclic AMP (cAMP) in vitro. To determine whether cAMP could be involved in the MOA of LA in vivo, we performed a clinical trial to examine whether LA stimulates cAMP production in healthy control and MS subjects, and whether there are differences in the bioavailability of LA between groups. We administered 1200 mg of oral LA to healthy control, relapsing remitting MS (RRMS) and SPMS subjects, and measured plasma LA and cAMP levels in peripheral blood mononuclear cells (PBMCs). There were no significant differences between the groups in pharmacokinetic (PK) parameters. Healthy and SPMS subjects had increased cAMP at 2 and 4 h post-LA treatment compared to baseline, while RRMS subjects showed decreases in cAMP. Additionally, plasma concentrations of prostaglandin E2 (PGE2, a known cAMP stimulator) were significantly lower in female RRMS subjects compared to female HC and SPMS subjects 4 h after LA ingestion. These data indicate that cAMP could be part of the MOA of LA in SPMS, and that there is a divergent response to LA in RRMS subjects that may have implications in the efficacy of immunomodulatory drugs. This clinical trial, "Defining the Anti-inflammatory Role of Lipoic Acid in Multiple Sclerosis," NCT00997438, is registered at https://clinicaltrials.gov/ct2/show/record/NCT00997438 .
Collapse
Affiliation(s)
- Sarah E Fiedler
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA
| | - Vijayshree Yadav
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Amelia R Kerns
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA
| | - Catherine Tsang
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA
| | - Sheila Markwardt
- OCTRI Biostatistics and Design Program, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Edward Kim
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Rebecca Spain
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Dennis Bourdette
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Sonemany Salinthone
- VA Portland Health Care System, Research and Development Service, Mail Code R&D8, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA. .,Department of Neurology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
24
|
Sahin Z, Ozkaya A, Yilmaz O, Yuce A, Gunes M. Investigation of the role of α-lipoic acid on fatty acids profile, some minerals (zinc, copper, iron) and antioxidant activity against aluminum-induced oxidative stress in the liver of male rats. J Basic Clin Physiol Pharmacol 2017; 28:355-361. [PMID: 28306527 DOI: 10.1515/jbcpp-2015-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND We have investigated the effects of α-lipoic acid (LA), a powerful antioxidant, on the fatty acid (FA) profiles, aluminum accumulation, antioxidant activity and some minerals such as zinc, copper and iron against aluminum chloride (AlCl3)-induced oxidative stress in rat liver. METHODS Twenty-eight male Wistar rats were divided into four groups as control, LA, AlCl3 and LA+AlCl3. For 30 days, LA was intraperitoneally administrated (50 mg/kg) and AlCl3 was given via orogastric gavage (1600 ppm) every other day. RESULTS AlCl3-treated animals exhibited higher hepatic malondialdehyde concentration and lower glutathione peroxidase and catalase activity, whereas these alterations were restored by the LA supplementation. Total saturated FA of the AlCl3-treated group was higher than the LA supplementation groups. Moreover, total unsaturated FA level of the LA+AlCl3 group was higher than the AlCl3-treated group. Hepatic zinc level of the AlCl3-treated group was lower than the control group, whereas it was higher in the LA and the LA+AlCl3 groups. Hepatic copper levels did not significantly change in the experimental groups. Iron level was lower in the LA and LA+AlCl3 groups compared with the AlCl3-treated group. Moreover, the liver Al concentration was found to be lower in the LA and LA+AlCl3 groups compared to the AlCl3 group. CONCLUSIONS These results indicate that AlCl3 treatment can induce oxidative stress in the liver. LA supplementation has a beneficial effect on the AlCl3-induced alterations such as high lipid peroxidation, Al accumulation, FA profile ratios and mineral concentrations.
Collapse
|
25
|
Garner WH, Garner MH. Protein Disulfide Levels and Lens Elasticity Modulation: Applications for Presbyopia. Invest Ophthalmol Vis Sci 2017; 57:2851-63. [PMID: 27233034 PMCID: PMC5995025 DOI: 10.1167/iovs.15-18413] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The purpose of the experiments described here was to determine the effects of lipoic acid (LA)-dependent disulfide reduction on mouse lens elasticity, to synthesize the choline ester of LA (LACE), and to characterize the effects of topical ocular doses of LACE on mouse lens elasticity. METHODS Eight-month-old mouse lenses (C57BL/6J) were incubated for 12 hours in medium supplemented with selected levels (0-500 μM) of LA. Lens elasticity was measured using the coverslip method. After the elasticity measurements, P-SH and PSSP levels were determined in homogenates by differential alkylation before and after alkylation. Choline ester of LA was synthesized and characterized by mass spectrometry and HPLC. Eight-month-old C57BL/6J mice were treated with 2.5 μL of a formulation of 5% LACE three times per day at 8-hour intervals in the right eye (OD) for 5 weeks. After the final treatment, lenses were removed and placed in a cuvette containing buffer. Elasticity was determined with a computer-controlled instrument that provided Z-stage upward movements in 1-μm increments with concomitant force measurements with a Harvard Apparatus F10 isometric force transducer. The elasticity of lenses from 8-week-old C57BL/6J mice was determined for comparison. RESULTS Lipoic acid treatment led to a concentration-dependent decrease in lens protein disulfides concurrent with an increase in lens elasticity. The structure and purity of newly synthesized LACE was confirmed. Aqueous humor concentrations of LA were higher in eyes of mice following topical ocular treatment with LACE than in mice following topical ocular treatment with LA. The lenses of the treated eyes of the old mice were more elastic than the lenses of untreated eyes (i.e., the relative force required for similar Z displacements was higher in the lenses of untreated eyes). In most instances, the lenses of the treated eyes were even more elastic than the lenses of the 8-week-old mice. CONCLUSIONS As the elasticity of the human lens decreases with age, humans lose the ability to accommodate. The results, briefly described in this abstract, suggest a topical ocular treatment to increase lens elasticity through reduction of disulfides to restore accommodative amplitude.
Collapse
Affiliation(s)
- William H Garner
- Encore Vision, Fort Worth, Texas, United States 2Bioptics Research Partnership Consulting, Eastport, Maine, United States
| | - Margaret H Garner
- Encore Vision, Fort Worth, Texas, United States 2Bioptics Research Partnership Consulting, Eastport, Maine, United States
| |
Collapse
|
26
|
Krishnamoorthy E, Hassan S, Hanna LE, Padmalayam I, Rajaram R, Viswanathan V. Homology modeling of Homo sapiens lipoic acid synthase: Substrate docking and insights on its binding mode. J Theor Biol 2017; 420:259-266. [DOI: 10.1016/j.jtbi.2016.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/22/2016] [Accepted: 09/05/2016] [Indexed: 10/20/2022]
|
27
|
Ferens FG, Spicer V, Krokhin OV, Motnenko A, Summers WA, Court DA. A deletion variant partially complements a porin-less strain of Neurospora crassa. Biochem Cell Biol 2017; 95:318-327. [DOI: 10.1139/bcb-2016-0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial porin, the voltage-dependent anion channel, plays an important role in metabolism and other cellular functions within eukaryotic cells. To further the understanding of porin structure and function, Neurospora crassa wild-type porin was replaced with a deletion variant lacking residues 238–242 (238porin). 238porin was assembled in the mitochondrial outer membrane, but the steady state levels were only about 3% of those of the wild-type protein. The strain harbouring 238porin displayed cytochrome deficiencies and expressed alternative oxidase. Nonetheless, it exhibited an almost normal linear growth rate. Analysis of mitochondrial proteomes from a wild-type strain FGSC9718, a strain lacking porin (ΔPor-1), and one expressing only 238porin, revealed that the major differences between the variant strains were in the levels of subunits of the NADH:ubiquinone oxidoreductase (complex I) of the electron transport chain, which were reduced only in the ΔPor-1 strain. These, and other proteins related to electron flow and mitochondrial biogenesis, are differentially affected by relative porin levels.
Collapse
Affiliation(s)
- Fraser G. Ferens
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Victor Spicer
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Oleg V. Krokhin
- Department of Internal Medicine & Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - William A.T. Summers
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Deborah A. Court
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
28
|
Tort F, Ferrer-Cortes X, Ribes A. Differential diagnosis of lipoic acid synthesis defects. J Inherit Metab Dis 2016; 39:781-793. [PMID: 27586888 DOI: 10.1007/s10545-016-9975-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 01/16/2023]
Abstract
Lipoic acid (LA) is an essential cofactor required for the activity of five multienzymatic complexes that play a central role in the mitochondrial energy metabolism: four 2-oxoacid dehydrogenase complexes [pyruvate dehydrogenase (PDH), branched-chain ketoacid dehydrogenase (BCKDH), 2-ketoglutarate dehydrogenase (2-KGDH), and 2-oxoadipate dehydrogenase (2-OADH)] and the glycine cleavage system (GCS). LA is synthesized in a complex multistep process that requires appropriate function of the mitochondrial fatty acid synthesis (mtFASII) and the biogenesis of iron-sulphur (Fe-S) clusters. Defects in the biosynthesis of LA have been reported to be associated with multiple and severe defects of the mitochondrial energy metabolism. In recent years, disease-causing mutations in genes encoding for proteins involved in LA metabolism have been reported: NFU1, BOLA3, IBA57, LIAS, GLRX5, LIPT1, ISCA2, and LIPT2. These studies represented important progress in understanding the pathophysiology and molecular bases underlying these disorders. Here we review current knowledge regarding involvement of LA synthesis defects in human diseases with special emphasis on the diagnostic strategies for these disorders. The clinical and biochemical characteristics of patients with LA synthesis defects are discussed and a workup for the differential diagnosis proposed.
Collapse
Affiliation(s)
- Frederic Tort
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Edifici Helios III, planta baixa, C/Mejía Lequerica s/n, 08028, Barcelona, Spain.
| | - Xènia Ferrer-Cortes
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Edifici Helios III, planta baixa, C/Mejía Lequerica s/n, 08028, Barcelona, Spain
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Edifici Helios III, planta baixa, C/Mejía Lequerica s/n, 08028, Barcelona, Spain
| |
Collapse
|
29
|
Mikami Y, Kakizawa S, Yamazawa T. Essential Roles of Natural Products and Gaseous Mediators on Neuronal Cell Death or Survival. Int J Mol Sci 2016; 17:E1652. [PMID: 27690018 PMCID: PMC5085685 DOI: 10.3390/ijms17101652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Although precise cellular and molecular mechanisms underlying neurodegeneration still remain enigmatic, key factors associated with degenerative disorders, such as glutamate toxicity and oxidative stress, have been recently identified. Accordingly, there has been growing interest in examining the effects of exogenous and endogenous molecules on neuroprotection and neurodegeneration. In this paper, we review recent studies on neuroprotective and/or neurodegenerative effects of natural products, such as caffeic acid and chlorogenic acid, and gaseous mediators, including hydrogen sulfide and nitric oxide. Furthermore, possible molecular mechanisms of these molecules in relation to glutamate signals are discussed. Insight into the pathophysiological role of these molecules will make progress in our understanding of molecular mechanisms underlying neurodegenerative diseases, and is expected to lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Yoshinori Mikami
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
| | - Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
30
|
Kastaniotis AJ, Autio KJ, Kerätär JM, Monteuuis G, Mäkelä AM, Nair RR, Pietikäinen LP, Shvetsova A, Chen Z, Hiltunen JK. Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:39-48. [PMID: 27553474 DOI: 10.1016/j.bbalip.2016.08.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/20/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the "classic" cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Alexander J Kastaniotis
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Juha M Kerätär
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anne M Mäkelä
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Remya R Nair
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Laura P Pietikäinen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials and Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland; State Key Laboratory of Supramolecular Structure and Materials and Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
31
|
Uchida R, Okamoto H, Ikuta N, Terao K, Hirota T. Enantioselective Pharmacokinetics of α-Lipoic Acid in Rats. Int J Mol Sci 2015; 16:22781-94. [PMID: 26402669 PMCID: PMC4613335 DOI: 10.3390/ijms160922781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 01/14/2023] Open
Abstract
α-Lipoic acid (LA) is widely used for nutritional supplements as a racemic mixture, even though the R enantiomer is biologically active. After oral administration of the racemic mixture (R-α-lipoic acid (RLA) and S-α-lipoic acid (SLA) mixed at the ratio of 50:50) to rats, RLA showed higher plasma concentration than SLA, and its area under the plasma concentration-time curve from time zero to the last (AUC) was significantly about 1.26 times higher than that of SLA. However, after intravenous administration of the racemic mixture, the pharmacokinetic profiles, initial concentration (C0), AUC, and half-life (T1/2) of the enantiomers were not significantly different. After oral and intraduodenal administration of the racemic mixture to pyrolus-ligated rats, the AUCs of RLA were significantly about 1.24 and 1.32 times higher than that of SLA, respectively. In addition, after intraportal administration the AUC of RLA was significantly 1.16 times higher than that of SLA. In conclusion, the enantioselective pharmacokinetics of LA in rats arose from the fraction absorbed multiplied by gastrointestinal availability (FaFg) and hepatic availability (Fh), and not from the total clearance.
Collapse
Affiliation(s)
- Ryota Uchida
- Department of Biopharmaceutics, Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| | - Hinako Okamoto
- CycloChem Bio Co., Ltd., KIBC654R 5-5-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
- Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Naoko Ikuta
- Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Keiji Terao
- CycloChem Bio Co., Ltd., KIBC654R 5-5-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
- Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Takashi Hirota
- Department of Biopharmaceutics, Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| |
Collapse
|
32
|
Effect of γ-Cyclodextrin Inclusion Complex on the Absorption of R-α-Lipoic Acid in Rats. Int J Mol Sci 2015; 16:10105-20. [PMID: 25946345 PMCID: PMC4463635 DOI: 10.3390/ijms160510105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/27/2015] [Accepted: 04/27/2015] [Indexed: 01/22/2023] Open
Abstract
R-α-lipoic acid (RLA) is an endogenous organic acid, and works as a cofactor for mitochondrial enzymes and as a kind of antioxidant. Inclusion complexes of RLA with α-, β- or γ-cyclodextrins (CD) were prepared and orally administered as a suspension to rats. Among them, RLA/γ-CD showed the highest plasma exposure, and its area under the plasma concentration-time curve (AUC) of RLA was 2.2 times higher than that after oral administration of non-inclusion RLA. On the other hand, the AUC after oral administration of non-inclusion RLA and RLA/γ-CD to pylorus-ligated rats did not differ. However, the AUC after intraduodenal administration of RLA/γ-CD was 5.1 times higher than that of non-inclusion RLA, and was almost comparable to the AUC after intraduodenal administration of RLA-Na solution. Furthermore, the AUC after intraduodenal administration of RLA/γ-CD was not affected by biliary ligation or co-administration of an amylase inhibitor. These findings demonstrated that RLA was absorbed from the small intestine effectively when orally administered as a γ-CD inclusion complex, which could be easily dissolved in the lumen of the intestine. In conclusion, γ-CD inclusion complex is an appropriate formulation for supplying RLA as a drug or nutritional supplement with respect to absorption.
Collapse
|
33
|
Maio N, Rouault TA. Iron-sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1493-512. [PMID: 25245479 DOI: 10.1016/j.bbamcr.2014.09.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/07/2014] [Indexed: 01/19/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ancient, ubiquitous cofactors composed of iron and inorganic sulfur. The combination of the chemical reactivity of iron and sulfur, together with many variations of cluster composition, oxidation states and protein environments, enables Fe-S clusters to participate in numerous biological processes. Fe-S clusters are essential to redox catalysis in nitrogen fixation, mitochondrial respiration and photosynthesis, to regulatory sensing in key metabolic pathways (i.e. cellular iron homeostasis and oxidative stress response), and to the replication and maintenance of the nuclear genome. Fe-S cluster biogenesis is a multistep process that involves a complex sequence of catalyzed protein-protein interactions and coupled conformational changes between the components of several dedicated multimeric complexes. Intensive studies of the assembly process have clarified key points in the biogenesis of Fe-S proteins. However several critical questions still remain, such as: what is the role of frataxin? Why do some defects of Fe-S cluster biogenesis cause mitochondrial iron overload? How are specific Fe-S recipient proteins recognized in the process of Fe-S transfer? This review focuses on the basic steps of Fe-S cluster biogenesis, drawing attention to recent advances achieved on the identification of molecular features that guide selection of specific subsets of nascent Fe-S recipients by the cochaperone HSC20. Additionally, it outlines the distinctive phenotypes of human diseases due to mutations in the components of the basic pathway. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892 Bethesda, MD, USA
| | - Tracey A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, 20892 Bethesda, MD, USA.
| |
Collapse
|
34
|
Seaman DR, Palombo AD. An Overview of the Identification and Management of the Metabolic Syndrome in Chiropractic Practice. J Chiropr Med 2014; 13:210-9. [DOI: 10.1016/j.jcm.2014.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 10/24/2022] Open
|
35
|
Ewald R, Hoffmann C, Florian A, Neuhaus E, Fernie AR, Bauwe H. Lipoate-Protein Ligase and Octanoyltransferase Are Essential for Protein Lipoylation in Mitochondria of Arabidopsis. PLANT PHYSIOLOGY 2014; 165:978-990. [PMID: 24872381 PMCID: PMC4081350 DOI: 10.1104/pp.114.238311] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
Prosthetic lipoyl groups are required for the function of several essential multienzyme complexes, such as pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (KGDH), and the glycine cleavage system (glycine decarboxylase [GDC]). How these proteins are lipoylated has been extensively studied in prokaryotes and yeast (Saccharomyces cerevisiae), but little is known for plants. We earlier reported that mitochondrial fatty acid synthesis by ketoacyl-acyl carrier protein synthase is not vital for protein lipoylation in Arabidopsis (Arabidopsis thaliana) and does not play a significant role in roots. Here, we identify Arabidopsis lipoate-protein ligase (AtLPLA) as an essential mitochondrial enzyme that uses octanoyl-nucleoside monophosphate and possibly other donor substrates for the octanoylation of mitochondrial PDH-E2 and GDC H-protein; it shows no reactivity with bacterial and possibly plant KGDH-E2. The octanoate-activating enzyme is unknown, but we assume that it uses octanoyl moieties provided by mitochondrial β-oxidation. AtLPLA is essential for the octanoylation of PDH-E2, whereas GDC H-protein can optionally also be octanoylated by octanoyltransferase (LIP2) using octanoyl chains provided by mitochondrial ketoacyl-acyl carrier protein synthase to meet the high lipoate requirement of leaf mesophyll mitochondria. Similar to protein lipoylation in yeast, LIP2 likely also transfers octanoyl groups attached to the H-protein to KGDH-E2 but not to PDH-E2, which is exclusively octanoylated by LPLA. We suggest that LPLA and LIP2 together provide a basal protein lipoylation network to plants that is similar to that in other eukaryotes.
Collapse
Affiliation(s)
- Ralph Ewald
- Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany (R.E., H.B.);Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany (C.H., E.N.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (A.F., A.R.F.)
| | - Christiane Hoffmann
- Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany (R.E., H.B.);Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany (C.H., E.N.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (A.F., A.R.F.)
| | - Alexandra Florian
- Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany (R.E., H.B.);Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany (C.H., E.N.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (A.F., A.R.F.)
| | - Ekkehard Neuhaus
- Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany (R.E., H.B.);Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany (C.H., E.N.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (A.F., A.R.F.)
| | - Alisdair R Fernie
- Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany (R.E., H.B.);Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany (C.H., E.N.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (A.F., A.R.F.)
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, D-18059 Rostock, Germany (R.E., H.B.);Department of Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany (C.H., E.N.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (A.F., A.R.F.)
| |
Collapse
|
36
|
Mayr JA, Feichtinger RG, Tort F, Ribes A, Sperl W. Lipoic acid biosynthesis defects. J Inherit Metab Dis 2014; 37:553-63. [PMID: 24777537 DOI: 10.1007/s10545-014-9705-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 01/10/2023]
Abstract
Lipoate is a covalently bound cofactor essential for five redox reactions in humans: in four 2-oxoacid dehydrogenases and the glycine cleavage system (GCS). Two enzymes are from the energy metabolism, α-ketoglutarate dehydrogenase and pyruvate dehydrogenase; and three are from the amino acid metabolism, branched-chain ketoacid dehydrogenase, 2-oxoadipate dehydrogenase, and the GCS. All these enzymes consist of multiple subunits and share a similar architecture. Lipoate synthesis in mitochondria involves mitochondrial fatty acid synthesis up to octanoyl-acyl-carrier protein; and three lipoate-specific steps, including octanoic acid transfer to glycine cleavage H protein by lipoyl(octanoyl) transferase 2 (putative) (LIPT2), lipoate synthesis by lipoic acid synthetase (LIAS), and lipoate transfer by lipoyltransferase 1 (LIPT1), which is necessary to lipoylate the E2 subunits of the 2-oxoacid dehydrogenases. The reduced form dihydrolipoate is reactivated by dihydrolipoyl dehydrogenase (DLD). Mutations in LIAS have been identified that result in a variant form of nonketotic hyperglycinemia with early-onset convulsions combined with a defect in mitochondrial energy metabolism with encephalopathy and cardiomyopathy. LIPT1 deficiency spares the GCS, and resulted in a combined 2-oxoacid dehydrogenase deficiency and early death in one patient and in a less severely affected individual with a Leigh-like phenotype. As LIAS is an iron-sulphur-cluster-dependent enzyme, a number of recently identified defects in mitochondrial iron-sulphur cluster synthesis, including NFU1, BOLA3, IBA57, GLRX5 presented with deficiency of LIAS and a LIAS-like phenotype. As in DLD deficiency, a broader clinical spectrum can be anticipated for lipoate synthesis defects depending on which of the affected enzymes is most rate limiting.
Collapse
Affiliation(s)
- Johannes A Mayr
- Department of Paediatrics, Paracelsus Medical University Salzburg, Salzburg, 5020, Austria,
| | | | | | | | | |
Collapse
|
37
|
Ghanemi A. Targeting G protein coupled receptor-related pathways as emerging molecular therapies. Saudi Pharm J 2013; 23:115-29. [PMID: 25972730 PMCID: PMC4420995 DOI: 10.1016/j.jsps.2013.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
38
|
FOGARTY MARKC, DEVITO GIUSEPPE, HUGHES CIARAM, BURKE GEORGE, BROWN JOHNC, MCENENY JANE, BROWN DAVID, MCCLEAN CONOR, DAVISON GARETHW. Effects of α-lipoic Acid on mtDNA Damage after Isolated Muscle Contractions. Med Sci Sports Exerc 2013; 45:1469-77. [DOI: 10.1249/mss.0b013e31828bf31e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Fernández-Galilea M, Prieto-Hontoria PL, Martínez JA, Moreno-Aliaga MJ. Antiobesity effects of α-lipoic acid supplementation. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Storm J, Müller S. Lipoic acid metabolism of Plasmodium--a suitable drug target. Curr Pharm Des 2012; 18:3480-9. [PMID: 22607141 PMCID: PMC3426790 DOI: 10.2174/138161212801327266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/12/2012] [Indexed: 11/22/2022]
Abstract
α-Lipoic acid (6,8-thioctic acid; LA) is a vital co-factor of α-ketoacid dehydrogenase complexes and the glycine cleavage system. In recent years it was shown that biosynthesis and salvage of LA in Plasmodium are necessary for the parasites to complete their complex life cycle. LA salvage requires two lipoic acid protein ligases (LplA1 and LplA2). LplA1 is confined to the mitochondrion while LplA2 is located in both the mitochondrion and the apicoplast. LplA1 exclusively uses salvaged LA and lipoylates α-ketoglutarate dehydrogenase, branched chain α-ketoacid dehydrogenase and the H-protein of the glycine cleavage system. LplA2 cannot compensate for the loss of LplA1 function during blood stage development suggesting a specific function for LplA2 that has yet to be elucidated. LA salvage is essential for the intra-erythrocytic and liver stage development of Plasmodium and thus offers great potential for future drug or vaccine development. LA biosynthesis, comprising octanoyl-acyl carrier protein (ACP) : protein N-octanoyltransferase (LipB) and lipoate synthase (LipA), is exclusively found in the apicoplast of Plasmodium where it generates LA de novo from octanoyl-ACP, provided by the type II fatty acid biosynthesis (FAS II) pathway also present in the organelle. LA is the co-factor of the acetyltransferase subunit of the apicoplast located pyruvate dehydrogenase (PDH), which generates acetyl-CoA, feeding into FAS II. LA biosynthesis is not vital for intra-erythrocytic development of Plasmodium, but the deletion of several genes encoding components of FAS II or PDH was detrimental for liver stage development of the parasites indirectly suggesting that the same applies to LA biosynthesis. These data provide strong evidence that LA salvage and biosynthesis are vital for different stages of Plasmodium development and offer potential for drug and vaccine design against malaria.
Collapse
Affiliation(s)
- Janet Storm
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | |
Collapse
|
41
|
Lee WR, Kim A, Kim KS, Park YY, Park JH, Kim KH, Kim SJ, Park KK. Alpha-lipoic acid attenuates atherosclerotic lesions and inhibits proliferation of vascular smooth muscle cells through targeting of the Ras/MEK/ERK signaling pathway. Mol Biol Rep 2012; 39:6857-6866. [PMID: 22302393 DOI: 10.1007/s11033-012-1511-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/24/2012] [Indexed: 12/12/2022]
Abstract
An infectious burden has been suggested to be associated with atherosclerosis in humans, based on the shared and underlying inflammatory responses during infection and atherosclerosis. However, the efficacy of anti-atherogenic drugs is yet to be tested against atherosclerosis in a scenario involving an infectious burden. We have examined alpha-lipoic acid (ALA) for anti-atherogenic effects in a hypercholesterolemic diet-induced atherosclerotic mouse model with inflammatory stimulation. C57BL/6 mice were fed with a hypercholesterolemic diet for 12 weeks to induce atherosclerosis. Lipopolysaccharide was intraperitoneally injected for the 1st week of study to simulate underlying infectious burden during development of atherosclerosis. ALA treatment alleviated atherosclerotic pathologies and reduced serum cholesterol and inflammatory cytokines. Consistently, atherosclerotic markers were improved by ALA treatment. In addition, ALA attenuated the proliferation and migration of vascular smooth muscle cells upon platelet-derived growth factor stimulation through the targeting of the Ras-MEK1/2-ERK1/2 pathway. This study demonstrates the efficacy of ALA on atherosclerosis with immunological complication, by showing that ALA modulates multiple pathogenic aspects of atherosclerosis induced by a hypercholesterolemic diet with inflammatory stimulation consisting of hypercholesterolemia, inflammation and VSMC activation.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Cytokines/blood
- Diet, Atherogenic
- Female
- Lipids/blood
- MAP Kinase Signaling System/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Rats
- Rats, Sprague-Dawley
- Thioctic Acid/pharmacology
- Thioctic Acid/therapeutic use
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Woo-Ram Lee
- Department of Pathology, College of Medicine, Catholic University of Daegu, Nam-Gu, Daegu, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen P, Ma QG, Ji C, Zhang JY, Zhao LH, Zhang Y, Jie YZ. Dietary lipoic acid influences antioxidant capability and oxidative status of broilers. Int J Mol Sci 2011; 12:8476-88. [PMID: 22272085 PMCID: PMC3257082 DOI: 10.3390/ijms12128476] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/05/2011] [Accepted: 11/14/2011] [Indexed: 11/16/2022] Open
Abstract
The effects of lipoic acid (LA) on the antioxidant status of broilers were investigated. Birds (1 day old) were randomly assigned to four groups and fed corn-soybean diets supplemented with 0, 100, 200, 300 mg/kg LA, respectively. The feeding program included a starter diet from 1 to 21 days of age and a grower diet from 22 to 42 days of age. Serum, liver and muscle samples were collected at 42 days of age. For antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in serum, liver and breast muscle significantly increased in chickens fed with LA. The concentration of malondiadehyde (MDA), an indicator of lipid peroxidation, was significantly lower in serum, liver and leg muscle in birds that received LA than in the control group. Treatments with LA significantly increased glutathione (GSH) content in liver and increased α-tocopherol content in leg muscle as compared to the control. These results indicate that dietary supplementation with 300 mg/kg LA may enhance antioxidant capability and depress oxidative stress in broilers.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; E-Mails: (P.C.); (J.-Y.Z.); (L.-H.Z.); (Y.Z.); (Y.-Z.J.)
| | - Qiu-Gang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; E-Mails: (P.C.); (J.-Y.Z.); (L.-H.Z.); (Y.Z.); (Y.-Z.J.)
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; E-Mails: (P.C.); (J.-Y.Z.); (L.-H.Z.); (Y.Z.); (Y.-Z.J.)
| | - Jian-Yun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; E-Mails: (P.C.); (J.-Y.Z.); (L.-H.Z.); (Y.Z.); (Y.-Z.J.)
| | - Li-Hong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; E-Mails: (P.C.); (J.-Y.Z.); (L.-H.Z.); (Y.Z.); (Y.-Z.J.)
| | - Yong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; E-Mails: (P.C.); (J.-Y.Z.); (L.-H.Z.); (Y.Z.); (Y.-Z.J.)
| | - Yong-Ze Jie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; E-Mails: (P.C.); (J.-Y.Z.); (L.-H.Z.); (Y.Z.); (Y.-Z.J.)
| |
Collapse
|
43
|
Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 2011; 439:479-85. [DOI: 10.1042/bj20110841] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
H2S (hydrogen sulfide) has recently been recognized as a signalling molecule as well as a cytoprotectant. We recently demonstrated that 3MST (3-mercaptopyruvate sulfurtransferase) produces H2S from 3MP (3-mercaptopyruvate). Although a reducing substance is required for an intermediate persulfide at the active site of 3MST to release H2S, the substance has not been identified. In the present study we show that Trx (thioredoxin) and DHLA (dihydrolipoic acid) associate with 3MST to release H2S. Other reducing substances, such as NADPH, NADH, GSH, cysteine and CoA, did not have any effect on the reaction. We also show that 3MST produces H2S from thiosulfate. The present study provides a new insight into a mechanism for the production of H2S by 3MST.
Collapse
|
44
|
McLain AL, Szweda PA, Szweda LI. α-Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res 2010; 45:29-36. [PMID: 21110783 DOI: 10.3109/10715762.2010.534163] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
α-Ketoglutarate dehydrogenase (KGDH), a key regulatory enzyme within the Krebs cycle, is sensitive to mitochondrial redox status. Treatment of mitochondria with H₂O₂ results in reversible inhibition of KGDH due to glutathionylation of the cofactor, lipoic acid. Upon consumption of H₂O₂, glutathione is removed by glutaredoxin restoring KGDH activity. Glutathionylation appears to be enzymatically catalysed or require a unique microenvironment. This may represent an antioxidant response, diminishing the flow of electrons to the respiratory chain and protecting sulphydryl residues from oxidative damage. KGDH is, however, also susceptible to oxidative damage. 4-Hydroxy-2-nonenal (HNE), a lipid peroxidation product, reacts with lipoic acid resulting in enzyme inactivation. Evidence indicates that HNE modified lipoic acid is cleaved from KGDH, potentially the first step of a repair process. KGDH is therefore a likely redox sensor, reversibly altering metabolism to reduce oxidative damage and, under severe oxidative stress, acting as a sentinel of mitochondrial viability.
Collapse
Affiliation(s)
- Aaron L McLain
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
45
|
Salinthone S, Schillace RV, Tsang C, Regan JW, Bourdette DN, Carr DW. Lipoic acid stimulates cAMP production via G protein-coupled receptor-dependent and -independent mechanisms. J Nutr Biochem 2010; 22:681-90. [PMID: 21036588 DOI: 10.1016/j.jnutbio.2010.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/14/2010] [Accepted: 05/28/2010] [Indexed: 01/03/2023]
Abstract
Lipoic acid (LA) is a naturally occurring fatty acid that exhibits anti-oxidant and anti-inflammatory properties and is being pursued as a therapeutic for many diseases including multiple sclerosis, diabetic polyneuropathy and Alzheimer's disease. We previously reported on the novel finding that racemic LA (50:50 mixture of R-LA and S-LA) stimulates cAMP production, activates prostanoid EP2 and EP4 receptors and adenylyl cyclases (AC), and suppresses activation and cytotoxicity in NK cells. In this study, we present evidence that furthers our understanding of the mechanisms of action of LA. Using various LA derivatives, such as dihydrolipoic acid (DHLA), S,S-dimethyl lipoic acid (DMLA) and lipoamide (LPM), we discovered that only LA is capable of stimulating cAMP production in NK cells. Furthermore, there is no difference in cAMP production after stimulation with either R-LA, S-LA or racemic LA. Competition and synergistic studies indicate that LA may also activate AC independent of the EP2 and EP4 receptors. Pretreatment of PBMCs with KH7 (a specific peptide inhibitor of soluble AC) and the calcium inhibitor (Bapta) prior to LA treatment resulted in reduced cAMP levels, suggesting that soluble AC and calcium signaling mediate LA stimulation of cAMP production. In addition, pharmacological inhibitor studies demonstrate that LA also activates other G protein-coupled receptors, including histamine and adenosine but not the β-adrenergic receptors. These novel findings provide information to better understand the mechanisms of action of LA, which can help facilitate the use of LA as a therapeutic for various diseases.
Collapse
Affiliation(s)
- Sonemany Salinthone
- Portland Veterans Affairs Medical Center, Portland, OR 97239, USA; Department of Neurology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] is an enzyme cofactor required for intermediate metabolism in free-living cells. Lipoic acid was discovered nearly 60 years ago and was shown to be covalently attached to proteins in several multicomponent dehydrogenases. Cells can acquire lipoate (the deprotonated charge form of lipoic acid that dominates at physiological pH) through either scavenging or de novo synthesis. Microbial pathogens implement these basic lipoylation strategies with a surprising variety of adaptations which can affect pathogenesis and virulence. Similarly, lipoylated proteins are responsible for effects beyond their classical roles in catalysis. These include roles in oxidative defense, bacterial sporulation, and gene expression. This review surveys the role of lipoate metabolism in bacterial, fungal, and protozoan pathogens and how these organisms have employed this metabolism to adapt to niche environments.
Collapse
|
47
|
Zhou X, Anderson KV. Development of head organizer of the mouse embryo depends on a high level of mitochondrial metabolism. Dev Biol 2010; 344:185-95. [PMID: 20450902 DOI: 10.1016/j.ydbio.2010.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 01/26/2023]
Abstract
Mouse genetic studies have defined a set of signaling molecules and transcription factors that are necessary to induce the forebrain. Here we describe an ENU-induced mouse mutation, nearly headless (nehe), that was identified based on the specific absence of most of the forebrain at midgestation. Positional cloning and genetic analysis show that, unlike other mouse mutants that disrupt specification of the forebrain, the nehe mutation disrupts mitochondrial metabolism. nehe is a hypomorphic allele of Lipoic acid Synthetase (Lias), the enzyme that catalyzes the synthesis of lipoic acid, an essential cofactor for several mitochondrial multienzyme complexes required for oxidative metabolism. The defect in forebrain development in nehe mutants is apparent as soon as the forebrain is specified, without a concomitant increase in apoptosis. Two tissues required for forebrain specification, the anterior visceral endoderm and the anterior definitive endoderm, develop normally in nehe mutants. However, a third head organizer tissue, the prechordal plate, fails to express markers of cell type determination and shows abnormal morphology in the mutants. We find that the level of phosphorylated (active) AMPK, a cellular energy sensor that affects cell polarity, is up-regulated in nehe mutants at the time when the prechordal plate is normally specified. The results suggest that the nehe phenotype arises because high levels of energy production are required for the specialized morphogenetic movements that generate the prechordal plate, which is required for normal development of the mammalian forebrain. We suggest that a requirement for high levels of ATP for early forebrain patterning may contribute to certain human microcephaly syndromes.
Collapse
Affiliation(s)
- Xin Zhou
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
48
|
Hiltunen JK, Autio KJ, Schonauer MS, Kursu VAS, Dieckmann CL, Kastaniotis AJ. Mitochondrial fatty acid synthesis and respiration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1195-202. [PMID: 20226757 DOI: 10.1016/j.bbabio.2010.03.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/24/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
Recent studies have revealed that mitochondria are able to synthesize fatty acids in a malonyl-CoA/acyl carrier protein (ACP)-dependent manner. This pathway resembles bacterial fatty acid synthesis (FAS) type II, which uses discrete, nuclearly encoded proteins. Experimental evidence, obtained mainly through using yeast as a model system, indicates that this pathway is essential for mitochondrial respiratory function. Curiously, the deficiency in mitochondrial FAS cannot be complemented by inclusion of fatty acids in the culture medium or by products of the cytosolic FAS complex. Defects in mitochondrial FAS in yeast result in the inability to grow on nonfermentable carbon sources, the loss of mitochondrial cytochromes a/a3 and b, mitochondrial RNA processing defects, and loss of cellular lipoic acid. Eukaryotic FAS II generates octanoyl-ACP, a substrate for mitochondrial lipoic acid synthase. Endogenous lipoic acid synthesis challenges the hypothesis that lipoic acid can be provided as an exogenously supplied vitamin. Purified eukaryotic FAS II enzymes are catalytically active in vitro using substrates with an acyl chain length of up to 16 carbon atoms. However, with the exception of 3-hydroxymyristoyl-ACP, a component of respiratory complex I in higher eukaryotes, the fate of long-chain fatty acids synthesized by the mitochondrial FAS pathway remains an enigma. The linkage of FAS II genes to published animal models for human disease supports the hypothesis that mitochondrial FAS dysfunction leads to the development of disorders in mammals.
Collapse
Affiliation(s)
- J Kalervo Hiltunen
- Department of Biochemistry and Biocenter Oulu, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
49
|
Hiltunen JK, Chen Z, Haapalainen AM, Wierenga RK, Kastaniotis AJ. Mitochondrial fatty acid synthesis – An adopted set of enzymes making a pathway of major importance for the cellular metabolism. Prog Lipid Res 2010; 49:27-45. [DOI: 10.1016/j.plipres.2009.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Rosca MG, Lemieux H, Hoppel CL. Mitochondria in the elderly: Is acetylcarnitine a rejuvenator? Adv Drug Deliv Rev 2009; 61:1332-1342. [PMID: 19720100 DOI: 10.1016/j.addr.2009.06.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 06/01/2009] [Indexed: 12/21/2022]
Abstract
Endogenous acetylcarnitine is an indicator of acetyl-CoA synthesized by multiple metabolic pathways involving carbohydrates, amino acids, fatty acids, sterols, and ketone bodies, and utilized mainly by the tricarboxylic acid cycle. Acetylcarnitine supplementation has beneficial effects in elderly animals and humans, including restoration of mitochondrial content and function. These effects appear to be dose-dependent and occur even after short-term therapy. In order to set the stage for understanding the mechanism of action of acetylcarnitine, we review the metabolism and role of this compound. We suggest that acetylation of mitochondrial proteins leads to a specific increase in mitochondrial gene expression and mitochondrial protein synthesis. In the aged rat heart, this effect is translated to increased cytochrome b content, restoration of complex III activity, and oxidative phosphorylation, resulting in amelioration of the age-related mitochondrial defect.
Collapse
Affiliation(s)
- Mariana G Rosca
- Center for Mitochondrial Diseases and Departments of Medicine and Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Hélène Lemieux
- Center for Mitochondrial Diseases and Departments of Medicine and Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Charles L Hoppel
- Center for Mitochondrial Diseases and Departments of Medicine and Pharmacology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|