1
|
Kaneda M, Watanabe S, Akagi S, Inaba Y, Geshi M, Nagai T. Proper reprogramming of imprinted and non-imprinted genes in cloned cattle gametogenesis. Anim Sci J 2017; 88:1678-1685. [PMID: 28574624 DOI: 10.1111/asj.12846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
Abstract
Epigenetic abnormalities in cloned animals are caused by incomplete reprogramming of the donor nucleus during the nuclear transfer step (first reprogramming). However, during the second reprogramming step that occurs only in the germline cells, epigenetic errors not corrected during the first step are repaired. Consequently, epigenetic abnormalities in the somatic cells of cloned animals should be erased in their spermatozoa or oocytes. This is supported by the fact that offspring from cloned animals do not exhibit defects at birth or during postnatal development. To test this hypothesis in cloned cattle, we compared the DNA methylation level of two imprinted genes (H19 and PEG3) and three non-imprinted genes (XIST, OCT4 and NANOG) and two repetitive elements (Satellite I and Satellite II) in blood and sperm DNAs from cloned and non-cloned bulls. We found no differences between cloned and non-cloned bulls. We also analyzed the DNA methylation levels of four repetitive elements (Satellite I, Satellite II, Alpha-satellite and Art2) in oocytes recovered from cloned and non-cloned cows. Again, no significant differences were observed between clones and non-clones. These results suggested that imprinted and non-imprinted genes and repetitive elements were properly reprogramed during gametogenesis in cloned cattle; therefore, they contributed to the soundness of cloned cattle offspring.
Collapse
Affiliation(s)
- Masahiro Kaneda
- Division of Animal Life Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Shinya Watanabe
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Satoshi Akagi
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Yasushi Inaba
- National Livestock Breeding Center Tottori Station, Tottori, Japan
| | - Masaya Geshi
- Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | | |
Collapse
|
2
|
Çelik S, Li Y, O’Neill C. The effect of DNA damage on the pattern of immune-detectable DNA methylation in mouse embryonic fibroblasts. Exp Cell Res 2015; 339:20-34. [DOI: 10.1016/j.yexcr.2015.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/31/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022]
|
3
|
Lister R, Mukamel EA. Turning over DNA methylation in the mind. Front Neurosci 2015; 9:252. [PMID: 26283895 PMCID: PMC4519686 DOI: 10.3389/fnins.2015.00252] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/06/2015] [Indexed: 01/22/2023] Open
Abstract
Cytosine DNA methylation is a stable epigenetic modification with established roles in regulating transcription, imprinting, female X-chromosome inactivation, and silencing of transposons. Dynamic gain or loss of DNA methylation reshapes the genomic landscape of cells during early differentiation, and in post-mitotic mammalian brain cells these changes continue to accumulate throughout the phases of cortical maturation in childhood and adolescence. There is also evidence for dynamic changes in the methylation status of specific genomic loci during the encoding of new memories, and these epigenome dynamics could play a causal role in memory formation. However, the mechanisms that may dynamically regulate DNA methylation in neurons during memory formation and expression, and the function of such epigenomic changes in this context, are unclear. Here we discuss the possible roles of DNA methylation in encoding and retrieval of memory.
Collapse
Affiliation(s)
- Ryan Lister
- ARC Center of Excellence in Plant Energy Biology, The University of Western Australia Perth, WA, Australia ; The Harry Perkins Institute of Medical Research Perth, WA, Australia
| | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego La Jolla, CA, USA
| |
Collapse
|
4
|
Ausió J, Paz AMD, Esteller M. MeCP2: the long trip from a chromatin protein to neurological disorders. Trends Mol Med 2014; 20:487-98. [DOI: 10.1016/j.molmed.2014.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
|
5
|
The exit of mouse embryonic fibroblasts from the cell-cycle changes the nature of solvent exposure of the 5'-methylcytosine epitope within chromatin. PLoS One 2014; 9:e92523. [PMID: 24705067 PMCID: PMC3976252 DOI: 10.1371/journal.pone.0092523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
The methylation of CpG dinucleotides is a pervasive epigenetic signature with critical roles governing genomic stability and lineage-specific patterns of gene expression. Reprogramming the patterns of CpG methylation accompanies key developmental transitions and the onset of some pathologies, such as cancer. In this study we show that levels of immuno-detectable 5meC decreased as mouse embryonic fibroblasts withdraw from the cell-cycle (became mitotically quiescent), but increased as they aged in culture. Two pools of 5meC epitope were found to exist, one solvent exposed after acid-induced denaturation of chromatin and another that required the additional step of tryptic digestion for detection. Proliferative cells displayed a relatively greater accumulation of detectable 5meC within the trypsin-sensitive pool than did quiescent cells. A substantial proportion of the 5meC was associated with a large number of heterochromatic foci scattered throughout nuclei, yet much of this was masked in a trypsin-sensitive manner, particularly in young proliferative cells. This study showed that the growth status of cells changed the level of solvent exposure of 5meC in fibroblasts and the long-accepted conventional methods of immunolocalization underestimate the level of 5meC in cells. This resulted in an artefactual assessment of the levels and patterns of nuclear localization of the antigen. The use of an additional tryptic digestion step improved antigen retrieval and revealed a more dynamic response of 5meC levels and distribution patterns to changes in the cell's growth state. This discovery will provide a basis for investigating the role of changes in chromatin structure that underlie this dynamism.
Collapse
|
6
|
Hirao Y, Naruse K, Kaneda M, Somfai T, Iga K, Shimizu M, Akagi S, Cao F, Kono T, Nagai T, Takenouchi N. Production of fertile offspring from oocytes grown in vitro by nuclear transfer in cattle. Biol Reprod 2013; 89:57. [PMID: 23884646 DOI: 10.1095/biolreprod.113.109439] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Because of recent advancements in reproductive technology, oocytes have attained an increasingly enriched value as a unique cell population in the production of offspring. The growing oocytes in the ovary are an immediate potential source that serve this need; however, complete oocyte growth before use is crucial. Our research objective was to create in vitro-grown (IVG) oocytes that would have the ability to perform specialized activities, including nuclear reprogramming, as an alternative to in vivo-grown oocytes. Bovine oocyte-granulosa cell complexes with a mean oocyte diameter of approximately 100 μm were cultured on Millicell membrane inserts, with culture medium supplemented with 4% polyvinylpyrrolidone (molecular weight, 360,000), 20 ng/ml androstenedione, 2 mM hypoxanthine, and 5 ng/ml bone morphogenetic protein 7. Oocyte viability after the 14-day culture period was 95%, and there was a 71% increase in oocyte volume. Upon induction of oocyte maturation, 61% of the IVG oocytes extruded a polar body. Eighty-four percent of the reconstructed IVG oocytes that used cumulus cells as donor cells underwent cleavage, and half of them became blastocysts. DNA methylation analyses of the satellite I and II regions of the blastocysts revealed a similar highly methylated status in the cloned embryos derived from in vivo-grown and IVG oocytes. Finally, one of the nine embryos reconstructed from the IVG oocytes developed into a living calf following embryo transfer. Fertility of the offspring was confirmed. In conclusion, the potential of a proportion of the IVG oocytes was comparable to that of in vivo-grown oocytes.
Collapse
Affiliation(s)
- Yuji Hirao
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Koh DXP, Sng JCG. Highlights from the latest articles on DNA methylation. Epigenomics 2012; 4:601-3. [PMID: 23244306 DOI: 10.2217/epi.12.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dawn X P Koh
- Neuroepigenetics Laboratory, Growth, Development & Metabolism Programme, Singapore Institute for Clinical Sciences, Agency for Science & Technology (A*STAR), 30 Medical Drive 117609, Singapore
| | | |
Collapse
|
8
|
Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nat Neurosci 2012; 15:1111-3. [PMID: 22751036 DOI: 10.1038/nn.3151] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/04/2012] [Indexed: 12/14/2022]
Abstract
Cognitive abilities decline in normal aging, yet the underlying molecular mechanisms are poorly understood. We found that aging was associated with a decrease in the expression of the DNA methyltransferase Dnmt3a2 in the hippocampus and that rescuing Dnmt3a2 levels restored cognitive functions. Moreover, we found that Dnmt3a2 is an activity-regulated immediate early gene that is partly dependent on nuclear calcium signaling and that hippocampal Dnmt3a2 levels determine cognitive abilities in both young adult and aged mice.
Collapse
|
9
|
|
10
|
Magnani L, Lee K, Fodor WL, Machaty Z, Cabot RA. Developmental capacity of porcine nuclear transfer embryos correlate with levels of chromatin-remodeling transcripts in donor cells. Mol Reprod Dev 2008; 75:766-76. [PMID: 18246531 DOI: 10.1002/mrd.20818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Somatic cell nuclear transfer (SCNT) still retains important limitations. Impaired epigenetic reprogramming is considered responsible for altered gene expression and developmental failure in SCNT-derived embryos. After nuclear transfer the donor cell nucleus undergoes extensive changes in gene expression that involve epigenetic modifications and chromatin remodeling. We hypothesized that SNF2-type ATP-dependent chromatin factors contribute to epigenetic reprogramming and the relative amount of these factors in the donor cell affects developmental potential of the reconstructed embryos. In order to test this hypothesis, we assessed the relative amount of SNF2-type ATPases (Brahma, Brg1, SNF2H, SNF2L, CHD3, and CHD5) in three different donor cells as well as in porcine metaphase II oocytes. We performed SCNT with fetal fibroblast cells, olfactory bulb (OB) progenitor cells, and porcine skin originating sphere stem cells (PSOS). We found that OB-NT embryos and PSOS-NT embryos resulted in a higher morulae/blastocysts ratio as compared to fibroblast-NT embryos (23.53%, 16.98%, and 11.63%, respectively; P < 0.05). Fibroblast cells contained a significantly higher amount of SNF2L and CHD3 transcripts while Brg1 and SNF2H were the most expressed transcripts in all the cell lines analyzed. Metaphase II oocyte expression profile appeared to be unique compared to the cell lines analyzed. This work supports our hypothesis that an array of chromatin-remodeling proteins on donor cells may influence the chromatin structure, effect epigenetic reprogramming, and developmental potential.
Collapse
Affiliation(s)
- Luca Magnani
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
11
|
Food Safety, Animal Health and Welfare and Environmental Impact of Animals derived from Cloning by Somatic Cell Nucleus Transfer (SCNT) and their Offspring and Products Obtained from those Animals. EFSA J 2008; 6:767. [PMID: 37213844 PMCID: PMC10193655 DOI: 10.2903/j.efsa.2008.767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Schmitt E, Paquet C, Beauchemin M, Bertrand R. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B 2007; 8:377-97. [PMID: 17565509 PMCID: PMC1879163 DOI: 10.1631/jzus.2007.b0377] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senescence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving "sensor" proteins that sense the damage, and transmit signals to "transducer" proteins, which, in turn, convey the signals to numerous "effector" proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.
Collapse
Affiliation(s)
- Estelle Schmitt
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Claudie Paquet
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Myriam Beauchemin
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Richard Bertrand
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
- Medicine Department, University of Montreal, Montreal (Que) H3C 3J7, Canada
- †E-mail:
| |
Collapse
|
13
|
Wrenzycki C, Niemann H. Epigenetic reprogramming in early embryonic development: effects of in-vitro production and somatic nuclear transfer. Reprod Biomed Online 2004; 7:649-56. [PMID: 14748963 DOI: 10.1016/s1472-6483(10)62087-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A considerable proportion of offspring, in particular in ruminants and mice, born from nuclear transfer (NT)-derived and in-vitro-produced (IVP) embryos is affected by multiple abnormalities of which a high birthweight and an extended gestation length are the predominant features; a phenomenon that has been called 'large offspring syndrome' (LOS). The underlying mechanisms are largely unknown at present, but alterations of epigenetic modifications of embryonic and fetal gene expression patterns, primarily caused by alterations in DNA methylation are thought to be involved in this syndrome. In mammals, DNA methylation is essential for the regulation of transcription during development and differentiation. This review summarizes results from studies in which mRNA expression patterns from IVP and NT-derived embryos were compared with those of their in-vivo counterparts. Numerous aberrations have been found ranging from suppression of expression to de-novo overexpression or more frequently to a significant up- or down-regulation of a specific gene. These observations emphasize the need for further epigenetic studies during preimplantation embryo development to gain insight into the molecular regulation correlated with an undisturbed embryonic and fetal development. Understanding molecular mechanisms will aid improvements in biotechnologies applied to early embryos in all species, including humans.
Collapse
Affiliation(s)
- Christine Wrenzycki
- Department of Biotechnology, Institute for Animal Science (FAL), 31535 Neustadt, Germany.
| | | |
Collapse
|
14
|
Leal AM, Ferraz OP, Carvalho C, Freitas AC, Beniston RG, Becak W, Campo MS, Stocco dos Santos RC. Quercetin induces structural chromosomal aberrations and uncommon rearrangements in bovine cells transformed by the E7 protein of bovine papillomavirus type 4. Vet Comp Oncol 2003; 1:15-21. [DOI: 10.1046/j.1476-5829.2003.00008.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Kang YK, Park JS, Koo DB, Choi YH, Kim SU, Lee KK, Han YM. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J 2002; 21:1092-100. [PMID: 11867537 PMCID: PMC125883 DOI: 10.1093/emboj/21.5.1092] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cloning by nuclear transfer (NT) has been riddled with difficulties: most clones die before birth and survivors frequently display growth abnormalities. The cross-species similarity in abnormalities observed in cloned fetuses/animals leads us to suspect the fidelity of epigenetic reprogramming of the donor genome. Here, we found that single-copy sequences, unlike satellite sequences, are demethylated in pre-implantation NT embryos. The differential demethylation pattern between genomic sequences was confirmed by analyzing single blastocysts. It suggests selective demethylation of other developmentally important genes in NT embryos. We also observed a reverse relationship between methylation levels and inner cell mass versus trophectoderm (ICM/TE) ratios, which was found to be a result of another type of differential demethylation occurring in NT blastocysts where unequal methylation was maintained between ICM and TE regions. TE-localized methylation aberrancy suggests a widespread gene dysregulation in an extra-embryonic region, thereby resulting in placental dysfunction familiar to cloned fetuses/animals. These differential demethylations among genomic sequences and between differently allocated cells produce varied overall, but specified, methylation patterns, demonstrating that epigenetic reprogramming occurs in a limited fashion in NT embryos.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong-Mahn Han
- Animal Developmental Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB), PO Box 115, Yusong, Taejon 305-600, South Korea
Corresponding author e-mail address:
| |
Collapse
|