1
|
Yao Y, Yang B, Shi J. Crystalline Copper Hydroxide Nanosheets with KatG-like Dual Activities for Synergized Nanocatalytic Tumor Therapy. NANO LETTERS 2025; 25:8369-8378. [PMID: 40336174 DOI: 10.1021/acs.nanolett.5c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The enzyme-mimicking catalytic activities of inorganic nanomaterials have attracted broad attention recently. Catalase-peroxidase (KatG) is a bifunctional enzyme with both catalase and peroxidase activities that converts hydrogen peroxide (H2O2) into both oxygen (O2) and a radical, respectively. Herein, crystalline Cu(OH)2 nanosheets have been synthesized and demonstrated as inorganic nanocatalysts with KatG-like activity for nanocatalytic tumor therapy. The distinct crystalline structure of the Cu(OH)2 nanosheets features abundant bis(μ-hydroxo)CuIICuII dinuclear catalytically active sites, enabling efficient redox cycling to favor one two-electron transfer for O2 generation (catalatic catalysis) and two consecutive single-electron transfers for hydroxyl radical (•OH) generation (peroxidatic catalysis), successively. During tumor therapy, the O2 generation by the nanomaterial mitigates intratumoral hypoxia and sensitizes cancer cells to oxidative attack, resulting in significantly enhanced anticancer efficacy. This work bridges dual-active nanocatalysis with bifunctional enzymatic catalysis, presenting a crystalline inorganic nanomaterial with KatG-like activity and its synergy for nanocatalytic tumor therapy.
Collapse
Affiliation(s)
- Yufan Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| |
Collapse
|
2
|
Diep DTH, Vong LB, Tungpradabkul S. Function of Burkholderia pseudomallei RpoS and RpoN2 in bacterial invasion, intracellular survival, and multinucleated giant cell formation in mouse macrophage cell line. Antonie Van Leeuwenhoek 2024; 117:39. [PMID: 38388985 DOI: 10.1007/s10482-024-01944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Melioidosis, a human infectious disease with a high mortality rate in many tropical countries, is caused by the pathogen Burkholderia pseudomallei (B. pseudomallei). The function of the B. pseudomallei sigma S (RpoS) transcription factor in survival during the stationary growth phase and conditions of oxidative stress is well documented. Besides the rpoS, bioinformatics analysis of B. pseudomallei genome showed the existence of two rpoN genes, named rpoN1 and rpoN2. In this study, by using the mouse macrophage cell line RAW264.7 as a model of infection, the involvement of B. pseudomallei RpoS and RpoN2 in the invasion, intracellular survival leading to the reduction in multinucleated giant cell (MNGC) formation of RAW264.7 cell line were illustrated. We have demonstrated that the MNGC formation of RAW264.7 cell was dependent on a certain number of intracellular bacteria (at least 5 × 104). In addition, the same MNGC formation (15%) observed in RAW264.7 cells infected with either B. pseudomallei wild type with multiplicity of infection (MOI) 2 or RpoN2 mutant (∆rpoN2) with MOI 10 or RpoS mutant (∆rpoS) with MOI 100. The role of B. pseudomallei RpoS and RpoN2 in the regulation of type III secretion system on bipB-bipC gene expression was also illustrated in this study.
Collapse
Affiliation(s)
- Duong Thi Hong Diep
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Laboratory Department, University Medical Center HCMC, Ho Chi Minh City, Vietnam.
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh, Ho Chi Minh City, Vietnam
| | - Sumalee Tungpradabkul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Chen B, Xu J, Lu H, Zhu L. Remediation of benzo[a]pyrene contaminated soils by moderate chemical oxidation coupled with microbial degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161801. [PMID: 36739024 DOI: 10.1016/j.scitotenv.2023.161801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Chemical oxidation is a promising technology for the remediation of organics-contaminated soils. However, residual oxidants and transformation products have adverse effects on microbial activities. This work aimed at moderate chemical oxidation coupled with microbial degradation (MOMD) for the removal of benzo[a]pyrene (BaP) by optimizing the type and dosage of oxidants. Potassium permanganate (KMnO4), Fe2+ + sodium persulfate (Fe2+ + PS), Fenton's reagent (Fe2+ + H2O2), and hydrogen peroxide (H2O2) were compared for BaP removal from loam clay and sandy soils. Overall, the removal efficiency of BaP by a moderate dose of oxidant coupled indigenous microorganism was slightly lower than that by a high dose of relevant oxidant. The contributions of microbial degradation to the total removal of BaP varied for different oxidants and soils. The removal efficiency of BaP from loam clay sandy soil by a moderate dose of KMnO4 (25 mmol/L) was 94.3 ± 1.1 % and 92.5 ± 1.8 %, respectively, which were both relatively higher than those under other conditions. The indirect carbon footprint yielded by the moderate dose of oxidants was 39.2-72.8 % less than that by the complete oxidation. A moderate dose of oxidants also reduced disturbances to soil pH and OC. The microbial communities after MOMD treatment were dominated by Burkholderiaceae, Enterobacteriaceae, Alicyclobacillaceae, and Oxalobacteraceae. These dominant microorganisms promoted the removal of BaP through the expression of polycyclic aromatic hydrocarbon-ring hydroxylated dioxygenase gene. Compared with complete chemical oxidation, MOMD is also a promising technique with the utilization of indigenous microorganism for remediating BaP-contaminated soils.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Agriculture & Forest University, Lin'an, Zhejiang 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Ghazali AK, Firdaus-Raih M, Uthaya Kumar A, Lee WK, Hoh CC, Nathan S. Transitioning from Soil to Host: Comparative Transcriptome Analysis Reveals the Burkholderia pseudomallei Response to Different Niches. Microbiol Spectr 2023; 11:e0383522. [PMID: 36856434 PMCID: PMC10100664 DOI: 10.1128/spectrum.03835-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Burkholderia pseudomallei, a soil and water saprophyte, is responsible for the tropical human disease melioidosis. A hundred years since its discovery, there is still much to learn about B. pseudomallei proteins that are essential for the bacterium's survival in and interaction with the infected host, as well as their roles within the bacterium's natural soil habitat. To address this gap, bacteria grown under conditions mimicking the soil environment were subjected to transcriptome sequencing (RNA-seq) analysis. A dual RNA-seq approach was used on total RNA from spleens isolated from a B. pseudomallei mouse infection model at 5 days postinfection. Under these conditions, a total of 1,434 bacterial genes were induced, with 959 induced in the soil environment and 475 induced in bacteria residing within the host. Genes encoding metabolism and transporter proteins were induced when the bacteria were present in soil, while virulence factors, metabolism, and bacterial defense mechanisms were upregulated during active infection of mice. On the other hand, capsular polysaccharide and quorum-sensing pathways were inhibited during infection. In addition to virulence factors, reactive oxygen species, heat shock proteins, siderophores, and secondary metabolites were also induced to assist bacterial adaptation and survival in the host. Overall, this study provides crucial insights into the transcriptome-level adaptations which facilitate infection by soil-dwelling B. pseudomallei. Targeting novel therapeutics toward B. pseudomallei proteins required for adaptation provides an alternative treatment strategy given its intrinsic antimicrobial resistance and the absence of a vaccine. IMPORTANCE Burkholderia pseudomallei, a soil-dwelling bacterium, is the causative agent of melioidosis, a fatal infectious disease of humans and animals. The bacterium has a large genome consisting of two chromosomes carrying genes that encode proteins with important roles for survival in diverse environments as well as in the infected host. While a general mechanism of pathogenesis has been proposed, it is not clear which proteins have major roles when the bacteria are in the soil and whether the same proteins are key to successful infection and spread. To address this question, we grew the bacteria in soil medium and then in infected mice. At 5 days postinfection, bacteria were recovered from infected mouse organs and their gene expression was compared against that of bacteria grown in soil medium. The analysis revealed a list of genes expressed under soil growth conditions and a different set of genes encoding proteins which may be important for survival, replication, and dissemination in an infected host. These proteins are a potential resource for understanding the full adaptation mechanism of this pathogen. In the absence of a vaccine for melioidosis and with treatment being reliant on combinatorial antibiotic therapy, these proteins may be ideal targets for designing antimicrobials to treat melioidosis.
Collapse
Affiliation(s)
- Ahmad-Kamal Ghazali
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Asqwin Uthaya Kumar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn. Bhd., Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn. Bhd., Seri Kembangan, Selangor, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
5
|
Abstract
The soil saprophyte, Burkholderia pseudomallei, is the causative agent of melioidosis, a disease endemic in South East Asia and northern Australia. Exposure to B. pseudomallei by either inhalation or inoculation can lead to severe disease. B. pseudomallei rapidly shifts from an environmental organism to an aggressive intracellular pathogen capable of rapidly spreading around the body. The expression of multiple virulence factors at every stage of intracellular infection allows for rapid progression of infection. Following invasion or phagocytosis, B. pseudomallei resists host-cell killing mechanisms in the phagosome, followed by escape using the type III secretion system. Several secreted virulence factors manipulate the host cell, while bacterial cells undergo a shift in energy metabolism allowing for overwhelming intracellular replication. Polymerisation of host cell actin into “actin tails” propels B. pseudomallei to the membranes of host cells where the type VI secretion system fuses host cells into multinucleated giant cells (MNGCs) to facilitate cell-to-cell dissemination. This review describes the various mechanisms used by B. pseudomallei to survive within cells.
Collapse
Affiliation(s)
- Nicole M Bzdyl
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Clare L Moran
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Justine Bendo
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mitali Sarkar-Tyson
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
6
|
Saiprom N, Sangsri T, Tandhavanant S, Sengyee S, Phunpang R, Preechanukul A, Surin U, Tuanyok A, Lertmemongkolchai G, Chantratita W, West TE, Chantratita N. Genomic loss in environmental and isogenic morphotype isolates of Burkholderia pseudomallei is associated with intracellular survival and plaque-forming efficiency. PLoS Negl Trop Dis 2020; 14:e0008590. [PMID: 32991584 PMCID: PMC7546507 DOI: 10.1371/journal.pntd.0008590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/09/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei is an environmental bacterium that causes melioidosis. A facultative intracellular pathogen, B. pseudomallei can induce multinucleated giant cells (MNGCs) leading to plaque formation in vitro. B. pseudomallei can switch colony morphotypes under stress conditions. In addition, different isolates have been reported to have varying virulence in vivo, but genomic evolution and the relationship with plaque formation is poorly understood. METHODOLOGY/PRINCIPLE FINDINGS To gain insights into genetic underpinnings of virulence of B. pseudomallei, we screened plaque formation of 52 clinical isolates and 11 environmental isolates as well as 4 isogenic morphotype isolates of B. pseudomallei strains K96243 (types II and III) and 153 (types II and III) from Thailand in A549 and HeLa cells. All isolates except one environmental strain (A4) and K96243 morphotype II were able to induce plaque formation in both cell lines. Intracellular growth assay and confocal microscopy analyses demonstrated that the two plaque-forming-defective isolates were also impaired in intracellular replication, actin polymerization and MNGC formation in infected cells. Whole genome sequencing analysis and PCR revealed that both isolates had a large genomic loss on the same region in chromosome 2, which included Bim cluster, T3SS-3 and T6SS-5 genes. CONCLUSIONS/SIGNIFICANCE Our plaque screening and genomic studies revealed evidence of impairment in plaque formation in environmental isolates of B. pseudomallei that is associated with large genomic loss of genes important for intracellular multiplication and MNGC formation. These findings suggest that the genomic and phenotypic differences of environmental isolates may be associated with clinical infection.
Collapse
Affiliation(s)
- Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tanes Sangsri
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Princess of Naradhiwas University, Narathiwat, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anucha Preechanukul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Uriwan Surin
- Department of Medical Laboratory, Nakhon Phanom Hospital, Nakhon Phanom, Thailand
| | - Apichai Tuanyok
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - Ganjana Lertmemongkolchai
- Centre for Research and Development of Medical Diagnostic Laboratories, Department of Clinical Immunology, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Division of Pulmonary, Critical Care & Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States of America
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Sass AM, Coenye T. Low iron-induced small RNA BrrF regulates central metabolism and oxidative stress responses in Burkholderia cenocepacia. PLoS One 2020; 15:e0236405. [PMID: 32702060 PMCID: PMC7377471 DOI: 10.1371/journal.pone.0236405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/05/2020] [Indexed: 01/02/2023] Open
Abstract
Regulatory small RNAs play an essential role in maintaining cell homeostasis in bacteria in response to environmental stresses such as iron starvation. Prokaryotes generally encode a large number of RNA regulators, yet their identification and characterisation is still in its infancy for most bacterial species. Burkholderia cenocepacia is an opportunistic pathogen with high innate antimicrobial resistance, which can cause the often fatal cepacia syndrome in individuals with cystic fibrosis. In this study we characterise a small RNA which is involved in the response to iron starvation, a condition that pathogenic bacteria are likely to encounter in the host. BrrF is a small RNA highly upregulated in Burkholderia cenocepacia under conditions of iron depletion and with a genome context consistent with Fur regulation. Its computationally predicted targets include iron-containing enzymes of the tricarboxylic acid (TCA) cycle such as aconitase and succinate dehydrogenase, as well as iron-containing enzymes responsible for the oxidative stress response, such as superoxide dismutase and catalase. Phenotypic and gene expression analysis of BrrF deletion and overexpression mutants show that the regulation of these genes is BrrF-dependent. Expression of acnA, fumA, sdhA and sdhC was downregulated during iron depletion in the wild type strain, but not in a BrrF deletion mutant. TCA cycle genes not predicted as target for BrrF were not affected in the same manner by iron depletion. Likewise, expression of sodB and katB was dowregulated during iron depletion in the wild type strain, but not in a BrrF deletion mutant. BrrF overexpression reduced aconitase and superoxide dismutase activities and increased sensitivity to hydrogen peroxide. All phenotypes and gene expression changes of the BrrF deletion mutant could be complemented by overexpressing BrrF in trans. Overall, BrrF acts as a regulator of central metabolism and oxidative stress response, possibly as an iron-sparing measure to maintain iron homeostasis under conditions of iron starvation.
Collapse
Affiliation(s)
- Andrea M. Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
8
|
Procópio L, Pádula M, van Elsas JD, Seldin L. Oxidative damage induced by H2O2 reveals SOS adaptive transcriptional response of Dietzia cinnamea strain P4. World J Microbiol Biotechnol 2019; 35:53. [DOI: 10.1007/s11274-019-2628-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/08/2019] [Indexed: 11/28/2022]
|
9
|
OxyR and the hydrogen peroxide stress response in Caulobacter crescentus. Gene 2019; 700:70-84. [PMID: 30880241 DOI: 10.1016/j.gene.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/22/2022]
Abstract
Oxidative stress generated by hydrogen peroxide is faced by bacteria when encountering hostile environments. In order to define the physiological and regulatory networks controlling the oxidative stress response in the free-living bacterium Caulobacter crescentus, a whole transcriptome analysis of wild type and ΔoxyR strains in the presence of hydrogen peroxide for two different exposure times was carried out. The C. crescentus response to H2O2 includes a decrease of the assimilative sulfate reduction and a shift in the amino acid synthesis pathways into favoring the synthesis of histidine. Moreover, the expression of genes encoding enzymes for the depolymerization of polyhydroxybutyrate was increased, and the RpoH-dependent genes were severely repressed. Based on the expression pattern and sequence analysis, we postulate that OxyR is probably directly required for the induction of three genes (katG, ahpCF). The putative binding of OxyR to the ahpC regulatory region could be responsible for the use of one of two alternative promoters in response to oxidative stress. Nevertheless, OxyR is required for the expression of 103 genes in response to H2O2. Fur and part of its regulon were differentially expressed in response to hydrogen peroxide independently of OxyR. The non-coding RNA OsrA was upregulated in both strains, and an in silico analysis indicated that it may have a regulatory role. This work characterizes the physiological response to H2O2 in C. crescentus, the regulatory networks and differentially regulated genes in oxidative stress and the participation of OxyR in this process. It is proposed that besides OxyR, a second layer of regulation may be achieved by a small regulatory RNA and other transcriptional regulators.
Collapse
|
10
|
Duangurai T, Indrawattana N, Pumirat P. Burkholderia pseudomallei Adaptation for Survival in Stressful Conditions. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3039106. [PMID: 29992136 PMCID: PMC5994319 DOI: 10.1155/2018/3039106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, which can be fatal in humans. Melioidosis is prevalent in the tropical regions of Southeast Asia and Northern Australia. Ecological data have shown that this bacterium can survive as a free-living organism in environmental niches, such as soil and water, as well as a parasite living in host organisms, such as ameba, plants, fungi, and animals. This review provides an overview of the survival and adaptation of B. pseudomallei to stressful conditions induced by hostile environmental factors, such as salinity, oxidation, and iron levels. The adaptation of B. pseudomallei in host cells is also reviewed. The adaptive survival mechanisms of this pathogen mainly involve modulation of gene and protein expression, which could cause alterations in the bacteria's cell membrane, metabolism, and virulence. Understanding the adaptations of this organism to environmental factors provides important insights into the survival and pathogenesis of B. pseudomallei, which may lead to the development of novel strategies for the control, prevention, and treatment of melioidosis in the future.
Collapse
Affiliation(s)
- Taksaon Duangurai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
11
|
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium and the aetiological agent of melioidosis, a life-threatening infection that is estimated to account for ∼89,000 deaths per year worldwide. Diabetes mellitus is a major risk factor for melioidosis, and the global diabetes pandemic could increase the number of fatalities caused by melioidosis. Melioidosis is endemic across tropical areas, especially in southeast Asia and northern Australia. Disease manifestations can range from acute septicaemia to chronic infection, as the facultative intracellular lifestyle and virulence factors of B. pseudomallei promote survival and persistence of the pathogen within a broad range of cells, and the bacteria can manipulate the host's immune responses and signalling pathways to escape surveillance. The majority of patients present with sepsis, but specific clinical presentations and their severity vary depending on the route of bacterial entry (skin penetration, inhalation or ingestion), host immune function and bacterial strain and load. Diagnosis is based on clinical and epidemiological features as well as bacterial culture. Treatment requires long-term intravenous and oral antibiotic courses. Delays in treatment due to difficulties in clinical recognition and laboratory diagnosis often lead to poor outcomes and mortality can exceed 40% in some regions. Research into B. pseudomallei is increasing, owing to the biothreat potential of this pathogen and increasing awareness of the disease and its burden; however, better diagnostic tests are needed to improve early confirmation of diagnosis, which would enable better therapeutic efficacy and survival.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Meibergdreef 9, Rm. G2-132, 1105 AZ Amsterdam, The Netherlands
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Harjeet S Virk
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University and Royal Darwin Hospital, Darwin, Australia
| | - Sharon J Peacock
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David A B Dance
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Tropical Hygiene and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
12
|
Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A 2017; 114:E2233-E2242. [PMID: 28242693 DOI: 10.1073/pnas.1614902114] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Type VI secretion system (T6SS) is a versatile protein export machinery widely distributed in Gram-negative bacteria. Known to translocate protein substrates to eukaryotic and prokaryotic target cells to cause cellular damage, the T6SS has been primarily recognized as a contact-dependent bacterial weapon for microbe-host and microbial interspecies competition. Here we report contact-independent functions of the T6SS for metal acquisition, bacteria competition, and resistance to oxidative stress. We demonstrate that the T6SS-4 in Burkholderia thailandensis is critical for survival under oxidative stress and is regulated by OxyR, a conserved oxidative stress regulator. The T6SS-4 is important for intracellular accumulation of manganese (Mn2+) under oxidative stress. Next, we identified a T6SS-4-dependent Mn2+-binding effector TseM, and its interacting partner MnoT, a Mn2+-specific TonB-dependent outer membrane transporter. Similar to the T6SS-4 genes, expression of mnoT is regulated by OxyR and is induced under oxidative stress and low Mn2+ conditions. Both TseM and MnoT are required for efficient uptake of Mn2+ across the outer membrane under Mn2+-limited and -oxidative stress conditions. The TseM-MnoT-mediated active Mn2+ transport system is also involved in contact-independent bacteria-bacteria competition and bacterial virulence. This finding provides a perspective for understanding the mechanisms of metal ion uptake and the roles of T6SS in bacteria-bacteria competition.
Collapse
|
13
|
Ma Z, Russo VC, Rabadi SM, Jen Y, Catlett SV, Bakshi CS, Malik M. Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain. Mol Microbiol 2016; 101:856-78. [PMID: 27205902 DOI: 10.1111/mmi.13426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/21/2022]
Abstract
Francisella tularensis causes a lethal human disease known as tularemia. As an intracellular pathogen, Francisella survives and replicates in phagocytic cells, such as macrophages. However, to establish an intracellular niche, Francisella must overcome the oxidative stress posed by the reactive oxygen species (ROS) produced by the infected macrophages. OxyR and SoxR/S are two well-characterized transcriptional regulators of oxidative stress responses in several bacterial pathogens. Only the OxyR homolog is present in F. tularensis, while the SoxR homologs are absent. The functional role of OxyR has not been established in F. tularensis. We demonstrate that OxyR regulates oxidative stress responses and provides resistance against ROS, thereby contributing to the survival of the F. tularensis subsp. holarctica live vaccine strain (LVS) in macrophages and epithelial cells and contributing to virulence in mice. Proteomic analysis reveals the differential production of 128 proteins in the oxyR gene deletion mutant, indicating its global regulatory role in the oxidative stress response of F. tularensis. Moreover, OxyR regulates the transcription of the primary antioxidant enzyme genes by binding directly to their putative promoter regions. This study demonstrates that OxyR is an important virulence factor and transcriptional regulator of the oxidative stress response of the F. tularensis LVS.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Vincenzo C Russo
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Seham M Rabadi
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Yu Jen
- Department of Pathology, Westchester Medical Center, Valhalla, NY, USA
| | - Sally V Catlett
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | | | - Meenakshi Malik
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
14
|
Stone JK, DeShazer D, Brett PJ, Burtnick MN. Melioidosis: molecular aspects of pathogenesis. Expert Rev Anti Infect Ther 2014; 12:1487-99. [PMID: 25312349 DOI: 10.1586/14787210.2014.970634] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that causes melioidosis, a multifaceted disease that is highly endemic in southeast Asia and northern Australia. This facultative intracellular pathogen possesses a large genome that encodes a wide array of virulence factors that promote survival in vivo by manipulating host cell processes and disarming elements of the host immune system. Antigens and systems that play key roles in B. pseudomallei virulence include capsular polysaccharide, lipopolysaccharide, adhesins, specialized secretion systems, actin-based motility and various secreted factors. This review provides an overview of the current and steadily expanding knowledge regarding the molecular mechanisms used by this organism to survive within a host and their contribution to the pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Joshua K Stone
- Department of Microbiology and Immunology, University of South Alabama, 610 Clinic Drive, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
15
|
Jitprasutwit S, Ong C, Juntawieng N, Ooi WF, Hemsley CM, Vattanaviboon P, Titball RW, Tan P, Korbsrisate S. Transcriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of Sigma E under oxidative stress conditions. BMC Genomics 2014; 15:787. [PMID: 25214426 PMCID: PMC4175613 DOI: 10.1186/1471-2164-15-787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 09/08/2014] [Indexed: 11/12/2022] Open
Abstract
Background Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative bacterium widely distributed in soil and water in endemic areas. This soil saprophyte can survive harsh environmental conditions, even in soils where herbicides (containing superoxide generators) are abundant. Sigma factor E (σE) is a key regulator of extra-cytoplasmic stress response in Gram-negative bacteria. In this study, we identified the B. pseudomallei σE regulon and characterized the indirect role that σE plays in the regulation of spermidine, contributing to the successful survival of B. pseudomallei in stressful environments. Results Changes in the global transcriptional profiles of B. pseudomallei wild type and σE mutant under physiological and oxidative stress (hydrogen peroxide) conditions were determined. We identified 307 up-regulated genes under oxidative stress condition. Comparison of the transcriptional profiles of B. pseudomallei wild type and σE mutant under control or oxidative stress conditions identified 85 oxidative-responsive genes regulated by σE, including genes involved in cell membrane repair, maintenance of protein folding and oxidative stress response and potential virulence factors such as a type VI secretion system (T6SS). Importantly, we identified that the speG gene, encoding spermidine-acetyltransferase, is a novel member of the B. pseudomallei σE regulon. The expression of speG was regulated by σE, implying that σE plays an indirect role in the regulation of physiological level of spermidine to protect the bacteria during oxidative stress. Conclusion This study identified B. pseudomallei genes directly regulated by σE in response to oxidative stress and revealed the indirect role of σE in the regulation of the polyamine spermidine (via regulation of speG) for bacterial cell protection during oxidative stress. This study provides new insights into the regulatory mechanisms by which σE contributes to the survival of B. pseudomallei under stressful conditions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-787) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
16
|
Protection from oxidative stress relies mainly on derepression of OxyR-dependent KatB and Dps in Shewanella oneidensis. J Bacteriol 2013; 196:445-58. [PMID: 24214945 DOI: 10.1128/jb.01077-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella thrives in redox-stratified environments where accumulation of H2O2 becomes inevitable because of the chemical oxidation of reduced metals, sulfur species, or organic molecules. As a research model, the representative species Shewanella oneidensis has been extensively studied for its response to various stresses. However, little progress has been made toward an understanding of the physiological and genetic responses of this bacterium to oxidative stress, which is critically relevant to its application as a dissimilatory metal-reducing bacterium. In this study, we systematically investigated the mechanism underlying the response to H2O2 at cellular, genomic, and molecular levels. Using transcriptional profiling, we found that S. oneidensis is hypersensitive to H2O2 in comparison with Escherichia coli, and well-conserved defense genes such as ahpCF, katB, katG, and dps appear to form the first line of defense, whereas iron-sulfur-protecting proteins may not play a significant role. Subsequent identification and characterization of an analogue of the E. coli oxyR gene revealed that S. oneidensis OxyR is the master regulator that mediates the bacterial response to H2O2-induced oxidative stress by directly repressing or activating the defense genes. The sensitivity of S. oneidensis to H2O2 is likely attributable to the lack of an inducible manganese import mechanism during stress. To cope with stress, major strategies that S. oneidensis adopts include rapid removal of the oxidant and restriction of intracellular iron concentrations, both of which are achieved predominantly by derepression of the katB and dps genes.
Collapse
|
17
|
Abstract
Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research.
Collapse
Affiliation(s)
- Michael J Gray
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048; , ,
| | | | | |
Collapse
|
18
|
Teramoto H, Inui M, Yukawa H. OxyR acts as a transcriptional repressor of hydrogen peroxide-inducible antioxidant genes in Corynebacterium glutamicum R. FEBS J 2013; 280:3298-312. [PMID: 23621709 DOI: 10.1111/febs.12312] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 12/13/2022]
Abstract
OxyR, a LysR-type transcriptional regulator, has been established as a redox-responsive activator of antioxidant genes in bacteria. This study shows that OxyR acts as a transcriptional repressor of katA, dps, ftn and cydA in Corynebacterium glutamicum R. katA encodes H2O2-detoxifing enzyme catalase, dps and ftn are implicated in iron homeostasis and cydA encodes a subunit of cytochrome bd oxidase. Quantitative RT-PCR analyses revealed that expression of katA and dps, but not of ftn and cydA, was induced by H2O2. Disruption of the oxyR gene encoding OxyR resulted in a marked increase in katA and dps mRNAs to a level higher than that induced by H2O2, and the oxyR-deficient mutant showed a H2O2-resistant phenotype. This is in contrast to the conventional OxyR-dependent regulatory model. ftn and cydA were also upregulated by oxyR disruption but to a smaller extent. Electrophoretic mobility shift assays revealed that the OxyR protein specifically binds to all four upstream regions of the respective genes under reducing conditions. We observed that the oxidized form of OxyR similarly bound to not only the target promoter regions, but also nonspecific DNA fragments. Based on these findings, we propose that the transcriptional repression by OxyR is alleviated under oxidative stress conditions in a titration mechanism due to the decreased specificity of its DNA-binding activity. DNase I footprinting analyses revealed that the OxyR-binding site in the four target promoters is ~ 50 bp in length and has multiple T-N11-A motifs, a feature of LysR-type transcriptional regulators, but no significant overall sequence conservation.
Collapse
Affiliation(s)
- Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan
| | | | | |
Collapse
|
19
|
Kimura A, Yuhara S, Ohtsubo Y, Nagata Y, Tsuda M. Suppression of pleiotropic phenotypes of a Burkholderia multivorans fur mutant by oxyR mutation. MICROBIOLOGY-SGM 2012; 158:1284-1293. [PMID: 22361941 DOI: 10.1099/mic.0.057372-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fur (ferric uptake regulator) is an iron-responsive transcriptional regulator in many bacterial species, and the fur mutant of Burkholderia multivorans ATCC 17616 exhibits pleiotropic phenotypes, such as an inability to efficiently use several carbon sources, as well as high sensitivity to hydrogen peroxide (H(2)O(2)), paraquat (a superoxide-producing compound) and nitric oxide (NO). To gain more insight into the pleiotropic role of the Fur protein of ATCC 17616, spontaneous suppressor mutants of the ATCC 17616 fur mutant that restored tolerance to NO were isolated and characterized in this study. The microarray-based comparative genomic analysis and subsequent sequencing analysis indicated that such suppressor mutants had a 2 bp deletion in the oxyR gene, whose orthologues encode H(2)O(2)-responsive transcriptional regulators in other bacterial species. The suppressor mutants and the reconstructed fur-oxyR double-deletion mutant showed indistinguishable phenotypes in that they were all (i) more resistant than the fur mutant to H(2)O(2), superoxide, NO and streptonigrin (an iron-activated antibiotic) and (ii) able to use carbon sources that cannot efficiently support the growth of the fur mutant. These results clearly indicate that the oxyR mutation suppressed the pleiotropic effect of the B. multivorans fur mutant. The fur-oxyR double mutants were found to overexpress the KatG (catalase/peroxidase) and AhpC1 and AhpD (alkyl hydroperoxide reductase subunits C and D) proteins, and their enzymic activities to remove reactive oxygen and nitrogen species were suggested to be responsible for the suppression of phenotypes caused by the fur mutation.
Collapse
Affiliation(s)
- Akane Kimura
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Satoshi Yuhara
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yuji Nagata
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Masataka Tsuda
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
20
|
Chiang SM, Schellhorn HE. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys 2012; 525:161-9. [PMID: 22381957 DOI: 10.1016/j.abb.2012.02.007] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/31/2012] [Accepted: 02/12/2012] [Indexed: 01/24/2023]
Abstract
Oxidative stress, through the production of reactive oxygen species, is a natural consequence of aerobic metabolism. Escherichia coli has several major regulators activated during oxidative stress, including OxyR, SoxRS, and RpoS. OxyR and SoxR undergo conformation changes when oxidized in the presence of hydrogen peroxide and superoxide radicals, respectively, and subsequently control the expression of cognate genes. In contrast, the RpoS regulon is induced by an increase in RpoS levels. Current knowledge regarding the activation and function of these regulators and their dependent genes in E. coli during oxidative stress forms the scope of this review. Despite the enormous genomic diversity of bacteria, oxidative stress response regulators in E. coli are functionally conserved in a wide range of bacterial groups, possibly reflecting positive selection of these regulators. SoxRS and RpoS homologs are present and respond to oxidative stress in Proteobacteria, and OxyR homologs are present and function in H(2)O(2) resistance in a range of bacteria, from gammaproteobacteria to Actinobacteria. Bacteria have developed complex, adapted gene regulatory responses to oxidative stress, perhaps due to the prevalence of reactive oxygen species produced endogenously through metabolism or due to the necessity of aerotolerance mechanisms in anaerobic bacteria exposed to oxygen.
Collapse
Affiliation(s)
- Sarah M Chiang
- Department of Biology, McMaster University, 1280 Main St. West, Life Sciences Building, Hamilton, ON, Canada L8S 4K1
| | | |
Collapse
|
21
|
Vanaporn M, Wand M, Michell SL, Sarkar-Tyson M, Ireland P, Goldman S, Kewcharoenwong C, Rinchai D, Lertmemongkolchai G, Titball RW. Superoxide dismutase C is required for intracellular survival and virulence of Burkholderia pseudomallei. MICROBIOLOGY-SGM 2011; 157:2392-2400. [PMID: 21659326 DOI: 10.1099/mic.0.050823-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a life-threatening disease of humans. Within host cells, superoxide is an important mediator of pathogen killing. In this study, we have identified the B. pseudomallei K96243 sodC gene, shown that it has superoxide dismutase activity, and constructed an allelic deletion mutant of this gene. Compared with the wild-type, the mutant was more sensitive to killing by extracellular superoxide, but not to superoxide generated intracellularly. The sodC mutant showed a markedly decreased survival in J774A.1 mouse macrophages, and reduced numbers of bacteria were recovered from human polymorphonuclear neutrophils (PMNs) when compared with the wild-type. The numbers of wild-type or mutant bacteria recovered from human diabetic neutrophils were significantly lower than from normal human neutrophils. The sodC mutant was attenuated in BALB/c mice. Our results indicate that SodC plays a key role in the virulence of B. pseudomallei, but that diabetics are not more susceptible to infection because of a reduced ability of PMNs to kill by superoxide.
Collapse
Affiliation(s)
- Muthita Vanaporn
- Department of Microbiology and Immunology, Mahidol University, Rajvithi Road, Bangkok 10400, Thailand
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Matthew Wand
- Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Stephen L Michell
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Mitali Sarkar-Tyson
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Philip Ireland
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Stan Goldman
- Genetic Chemistry Inc., 200 Page Mill Road, Palo Alto, CA 94306, USA
| | - Chidchamai Kewcharoenwong
- The Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Darawan Rinchai
- The Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ganjana Lertmemongkolchai
- The Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
22
|
Regulation of catalase-peroxidase KatG is OxyR dependent and Fur independent in Caulobacter crescentus. J Bacteriol 2011; 193:1734-44. [PMID: 21257767 DOI: 10.1128/jb.01339-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most organisms that grow in the presence of oxygen possess catalases and/or peroxidases, which are necessary for scavenging the H(2)O(2) produced by aerobic metabolism. In this work we investigate the pathways that regulate the Caulobacter crescentus katG gene, encoding the only enzyme with catalase-peroxidase function in this bacterium. The transcriptional start site of the katG gene was determined, showing a short 5' untranslated region. The katG regulatory region was mapped by serial deletions, and the results indicate that there is a single promoter, which is responsible for induction at stationary phase. An oxyR mutant strain was constructed; it showed decreased katG expression, and no KatG protein or catalase-peroxidase activity was detected in stationary-phase cell extracts, implying that OxyR is the main positive regulator of the C. crescentus katG gene. Purified OxyR protein bound to the katG regulatory region between nucleotides -42 and -91 from the transcription start site, as determined by a DNase I footprinting assay, and a canonical OxyR binding site was found in this region. Moreover, OxyR binding was shown to be redox dependent, given that only oxidized proteins bound adjacent to the -35 sequence of the promoter and the katG P1 promoter was activated by OxyR in an H(2)O(2)-dependent manner. On the other hand, this work showed that the iron-responsive regulator Fur does not regulate C. crescentus katG, since a fur mutant strain presented wild-type levels of katG transcription and catalase-peroxidase production and activity, and the purified Fur protein was not able to bind to the katG regulatory region.
Collapse
|
23
|
The catalase-peroxidase KatG is required for virulence of Xanthomonas campestris pv. campestris in a host plant by providing protection against low levels of H2O2. J Bacteriol 2009; 191:7372-7. [PMID: 19783631 DOI: 10.1128/jb.00788-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas campestris pv. campestris katG encodes a catalase-peroxidase that has a role in protecting the bacterium against micromolar concentrations of H(2)O(2). A knockout mutation in katG that causes loss of catalase-peroxidase activity correlates with increased susceptibility to H(2)O(2) and a superoxide generator and is avirulent in a plant model system. katG expression is induced by oxidants in an OxyR-dependent manner.
Collapse
|
24
|
Chun H, Choi O, Goo E, Kim N, Kim H, Kang Y, Kim J, Moon JS, Hwang I. The quorum sensing-dependent gene katG of Burkholderia glumae is important for protection from visible light. J Bacteriol 2009; 191:4152-7. [PMID: 19395481 PMCID: PMC2698513 DOI: 10.1128/jb.00227-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/21/2009] [Indexed: 12/31/2022] Open
Abstract
Quorum sensing (QS) plays important roles in the pathogenicity of Burkholderia glumae, the causative agent of bacterial rice grain rot. We determined how QS is involved in catalase expression in B. glumae. The QS-defective mutant of B. glumae exhibited less catalase activity than wild-type B. glumae. A beta-glucuronidase assay of a katG::Tn3-gusA78 reporter fusion protein revealed that katG expression is under the control of QS. Furthermore, katG expression was upregulated by QsmR, a transcriptional activator for flagellar-gene expression that is regulated by QS. A gel mobility shift assay confirmed that QsmR directly activates katG expression. The katG mutant produced toxoflavin but exhibited less severe disease than BGR1 on rice panicles. Under visible light conditions and a photon flux density of 61.6 micromol(-1) m(-2), the survival rate of the katG mutant was 10(5)-fold lower than that of BGR1. This suggests that KatG is a major catalase that protects bacterial cells from visible light, which probably results in less severe disease caused by the katG mutant.
Collapse
Affiliation(s)
- Heejin Chun
- Department of Agricultural Biotechnology, Seoul National University, Seoul , Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Charalabous P, Risk JM, Jenkins R, Birss AJ, Hart CA, Smalley JW. Characterization of a bifunctional catalase-peroxidase of Burkholderia cenocepacia. ACTA ACUST UNITED AC 2007; 50:37-44. [PMID: 17371508 DOI: 10.1111/j.1574-695x.2007.00224.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isolates of Burkholderia cenocepacia express a putative haem-binding protein (molecular mass 97 kDa) that displays intrinsic peroxidase activity. Its role has been re-evaluated, and we now show that it is a bifunctional catalase-peroxidase, with activity against tetramethylbenzidine (TMB), o-dianisidine, pyrogallol, and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic) acid (ABTS). Both peroxidase and catalase activities are optimal at pH 5.5-6.0. The gene encoding this enzyme was cloned and expressed in Escherichia coli. We have named it katG because of its similarity to other katGs, including that from Burkholderia pseudomallei. It is substantially similar to a previously described catalase-peroxidase of B. cenocepacia (katA). MS analysis indicated that the initial katG translation product may be post-translationally modified in B. cenocepacia to give rise to the mature 97-kDa catalase-peroxidase.
Collapse
|
26
|
Loprasert S, Whangsuk W, Dubbs JM, Sallabhan R, Somsongkul K, Mongkolsuk S. HpdR is a transcriptional activator of Sinorhizobium meliloti hpdA, which encodes a herbicide-targeted 4-hydroxyphenylpyruvate dioxygenase. J Bacteriol 2007; 189:3660-4. [PMID: 17337579 PMCID: PMC1855912 DOI: 10.1128/jb.01662-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti hpdA, which encodes the herbicide target 4-hydroxyphenylpyruvate dioxygenase, is positively regulated by HpdR. Gel mobility shift and DNase I footprinting analyses revealed that HpdR binds to a region that spans two conserved direct-repeat sequences within the hpdR-hpdA intergenic space. HpdR-dependent hpdA transcription occurs in the presence of 4-hydroxyphenylpyruvate, tyrosine, and phenylalanine, as well as during starvation.
Collapse
Affiliation(s)
- Suvit Loprasert
- Laboratory of Biotechnology, Chulabhorn Research Institute, Vibhavadee-Rangsit Highway, Bangkok 10210, Thailand.
| | | | | | | | | | | |
Collapse
|
27
|
Keith KE, Valvano MA. Characterization of SodC, a periplasmic superoxide dismutase from Burkholderia cenocepacia. Infect Immun 2007; 75:2451-60. [PMID: 17325048 PMCID: PMC1865777 DOI: 10.1128/iai.01556-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia is a gram-negative, non-spore-forming bacillus and a member of the Burkholderia cepacia complex. B. cenocepacia can survive intracellularly in phagocytic cells and can produce at least one superoxide dismutase (SOD). The inability of O2- to cross the cytoplasmic membrane, coupled with the periplasmic location of Cu,ZnSODs, suggests that periplasmic SODs protect bacteria from superoxide that has an exogenous origin (for example, when cells are faced with reactive oxygen intermediates generated by host cells in response to infection). In this study, we identified the sodC gene encoding a Cu,ZnSOD in B. cenocepacia and demonstrated that a sodC null mutant was not sensitive to a H2O2, 3-morpholinosydnonimine, or paraquat challenge but was killed by exogenous superoxide generated by the xanthine/xanthine oxidase method. The sodC mutant also exhibited a growth defect in liquid medium compared to the parental strain, which could be complemented in trans. The mutant was killed more rapidly than the parental strain was killed in murine macrophage-like cell line RAW 264.7, but killing was eliminated when macrophages were treated with an NADPH oxidase inhibitor. We also confirmed that SodC is periplasmic and identified the metal cofactor. B. cenocepacia SodC was resistant to inhibition by H2O2 and was unusually resistant to KCN for a Cu,ZnSOD. Together, these observations establish that B. cenocepacia produces a periplasmic Cu,ZnSOD that protects this bacterium from exogenously generated O2- and contributes to intracellular survival of this bacterium in macrophages.
Collapse
Affiliation(s)
- Karen E Keith
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
28
|
Lumjiaktase P, Diggle SP, Loprasert S, Tungpradabkul S, Daykin M, Cámara M, Williams P, Kunakorn M. Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. Microbiology (Reading) 2006; 152:3651-3659. [PMID: 17159218 DOI: 10.1099/mic.0.29226-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a fatal human tropical disease. The non-specific DNA-binding protein DpsA plays a key role in protecting B. pseudomallei from oxidative stress mediated, for example, by organic hydroperoxides. The regulation of dpsA expression is poorly understood but one possibility is that it is regulated in a cell population density-dependent manner via N-acylhomoserine lactone (AHL)-dependent quorum sensing (QS) since a lux-box motif has been located within the dpsA promoter region. Using liquid chromatography and tandem mass spectrometry, it was first established that B. pseudomallei strain PP844 synthesizes AHLs. These were identified as N-octanoylhomoserine lactone (C8-HSL), N-(3-oxooctanoyl)homoserine lactone (3-oxo-C8-HSL), N-(3-hydroxyoctanoyl)-homoserine lactone (3-hydroxy-C8-HSL), N-decanoylhomoserine lactone (C10-HSL), N-(3-hydroxydecanoyl) homoserine lactone (3-hydroxy-C10-HSL) and N-(3-hydroxydodecanoyl)homoserine lactone (3-hydroxy-C12-HSL). Mutation of the genes encoding the LuxI homologue BpsI or the LuxR homologue BpsR resulted in the loss of C8-HSL and 3-oxo-C8-HSL synthesis, demonstrating that BpsI was responsible for directing the synthesis of these AHLs only and that bpsI expression and hence C8-HSL and 3-oxo-C8-HSL production depends on BpsR. In bpsI, bpsR and bpsIR mutants, dpsA expression was substantially down-regulated. Furthermore, dpsA expression in Escherichia coli required both BpsR and C8-HSL. bpsIR-deficient mutants exhibited hypersensitivity to the organic hydroperoxide tert-butyl hydroperoxide by displaying a reduction in cell viability which was restored by provision of exogenous C8-HSL (bpsI mutant only), by complementation with the bpsIR genes or by overexpression of dpsA. These data indicate that in B. pseudomallei, QS regulates the response to oxidative stress at least in part via the BpsR/C8-HSL-dependent regulation of DpsA.
Collapse
Affiliation(s)
- Putthapoom Lumjiaktase
- Department of Pathology, Faculty of Medicine-Ramathibodi Hospital, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Stephen P Diggle
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Suvit Loprasert
- Department Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Sumalee Tungpradabkul
- Department of Biochemistry, Faculty of Sciences, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Mavis Daykin
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Miguel Cámara
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mongkol Kunakorn
- Department of Pathology, Faculty of Medicine-Ramathibodi Hospital, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
29
|
Zeller T, Li K, Klug G. Expression of the trxC gene of Rhodobacter capsulatus: response to cellular redox status is mediated by the transcriptional regulator OxyR. J Bacteriol 2006; 188:7689-95. [PMID: 16916895 PMCID: PMC1636272 DOI: 10.1128/jb.00660-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 08/07/2006] [Indexed: 11/20/2022] Open
Abstract
Despite the importance of thioredoxins in cellular functions, little is known about the regulation of trx genes. To understand the molecular mechanisms involved in the regulation of the Rhodobacter capsulatus trxC gene, the expression of this gene was investigated. We describe OxyR-dependent redox regulation of the trxC gene that adjusts the levels of thioredoxins in the cell.
Collapse
Affiliation(s)
- Tanja Zeller
- Institut für Mikrobiologie und Molekularbiologie, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | |
Collapse
|
30
|
Pongpom P, Cooper CR, Vanittanakom N. Isolation and characterization of a catalase-peroxidase gene from the pathogenic fungus,Penicillium marneffei. Med Mycol 2005; 43:403-11. [PMID: 16178368 DOI: 10.1080/13693780400007144] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Penicillium marneffei is a facultative intracellular pathogen that causes common opportunistic infection in AIDS patients in Southeast Asian countries. The pathogen can usually survive and replicate inside the phagosome of macrophages, and is also found extracellularly in blood smears or host tissue. Surviving within the alveolar macrophage is a primary key to the success of P. marneffei invasion. However, the mechanism of survival under oxidative stress in this environment has not been elucidated. An antigenic catalase-peroxidase protein-encoding gene (cpeA) was isolated by antibody screening of a cDNA library derived from the yeast phase of P. marneffei. DNA sequence analysis of this gene revealed an open reading frame encoding a 748 amino acid polypeptide with a predicted molecular mass of 82.4 kDa. The deduced amino acid sequence was 45-69% identical to that of catalase-peroxidases from many bacteria and fungi. Potential iron regulated binding elements and conserved active sites for peroxidases were found in the peptide sequence. Southern blot analysis showed that the P. marneffei genome contained a single copy of the cpeA. This gene displayed a high level of expression, specifically being induced when the temperature was shifted to 37 degrees C, the condition whereby the pathogenic yeast phase of P. marneffei is formed. The high expression of the cpeA mRNA transcripts at 37 degrees C may contribute to the survival of this dimorphic fungus in host cells.
Collapse
Affiliation(s)
- Patthama Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | |
Collapse
|
31
|
Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S. DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch Microbiol 2004; 182:96-101. [PMID: 15241582 DOI: 10.1007/s00203-004-0694-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/01/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
The human pathogen, Burkholderia pseudomalle, is able to survive and multiply in hostile environments such as within macrophages. In an attempt to understand its strategy to cope with oxidative stress, the physiological role and gene regulation of a nonspecific DNA-binding protein (DpsA) was investigated. Expression of dpsA increases in response to oxidative stress through increased transcription from the upstream katG (catalase-peroxidase) promoter, which is OxyR dependent. dpsA is also transcribed from its own promoter, which is activated by osmotic stress in an OxyR-independent manner. DpsA-deficient mutants are hypersensitive to tert-butyl hydroperoxide, while overexpression of DpsA leads to increased resistance to organic oxidants. B. pseudomallei DpsA can also protect Escherichia coli against organic hydroperoxide toxicity. The mechanism of DpsA-mediated resistance to organic hydroperoxides was shown to differ from that of alkyl hydroperoxide reductase.
Collapse
Affiliation(s)
- Suvit Loprasert
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, 10210, Bangkok, Thailand.
| | | | | | | |
Collapse
|
32
|
Prapagdee B, Vattanaviboon P, Mongkolsuk S. The role of a bifunctional catalase-peroxidase KatA in protection of Agrobacterium tumefaciens from menadione toxicity. FEMS Microbiol Lett 2004; 232:217-23. [PMID: 15033242 DOI: 10.1016/s0378-1097(04)00075-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 01/12/2004] [Accepted: 01/21/2004] [Indexed: 11/23/2022] Open
Abstract
Agrobacterium tumefaciens is an aerobic plant pathogenic bacterium that is exposed to reactive oxygen species produced either as by-products of aerobic metabolism or by the defense systems of host plants. The physiological function of the bifunctional catalase-peroxidase (KatA) in the protection of A. tumefaciens from reactive oxygen species other than H(2)O(2) was evaluated in the katA mutant (PB102). Unexpectedly, PB102 was highly sensitive to the superoxide generator menadione. The expression of katA from a plasmid vector complemented the menadione-hypersensitive phenotype. A. tumefaciens possesses an additional catalase gene, a monofunctional catalase encoded by catE. Neither inactivation nor high-level expression of the catE gene altered the menadione resistance level. Moreover, heterologous expression of the catalase-peroxidase-encoding gene katG from Burkholderia pseudomallei, but not the monofunctional catalase gene katE from Xanthomonas campestris could restore normal levels of menadione resistance to PB102. A recent observation suggests that the menadione resistance phenotype involves increased activities of organic peroxide-metabolizing enzymes. Heterologous expression of X. campestris alkyl hydroperoxide reductase from a plasmid vector failed to complement the menadione-sensitive phenotype of PB102. The level of menadione resistance shows a direct correlation with the level of peroxidase activity of KatA. This is a novel role for KatA and suggests that resistance to menadione toxicity is mediated by a new, and as yet unknown, mechanism in A. tumefaciens.
Collapse
Affiliation(s)
- Benjaphorn Prapagdee
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | | | |
Collapse
|
33
|
Abstract
Intracellular bacterial pathogens have evolved mechanisms to enter and exit eukaryotic cells using the power of actin polymerisation and to subvert the activity of cellular enzymes and signal transduction pathways. The proteins deployed by bacteria to subvert cellular processes often mimic eukaryotic proteins in their structure or function. Studies on the exploitation of host cells by the facultative intracellular pathogen Burkholderia pseudomallei are providing novel insights into the pathogenesis of melioidosis, a serious invasive disease of animals and humans that is endemic in tropical and subtropical areas. B. pseudomallei can invade epithelial cells, survive and proliferate inside phagocytes, escape from endocytic vesicles, form actin-based membrane protrusions and induce host cell fusion. Here we review current understanding of the molecular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Mark P Stevens
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire, United Kingdom
| | | |
Collapse
|