1
|
Jaramillo A, Satta A, Pinto F, Faraloni C, Zittelli GC, Silva Benavides AM, Torzillo G, Schumann C, Méndez JF, Berggren G, Lindblad P, Parente M, Esposito S, Diano M. Outlook on Synthetic Biology-Driven Hydrogen Production: Lessons from Algal Photosynthesis Applied to Cyanobacteria. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2025; 39:4987-5006. [PMID: 40134520 PMCID: PMC11932386 DOI: 10.1021/acs.energyfuels.4c04772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 03/27/2025]
Abstract
Photobiological hydrogen production offers a sustainable route to clean energy by harnessing solar energy through photosynthetic microorganisms. The pioneering sulfur-deprivation technique developed by Melis and colleagues in the green alga Chlamydomonas reinhardtii successfully enabled sustained hydrogen production by downregulating photosystem II (PSII) activity to reduce oxygen evolution, creating anaerobic conditions necessary for hydrogenase activity. Inspired by this approach, we present the project of the European consortium PhotoSynH2, which builds on these biological insights and employs synthetic biology to replicate and enhance this strategy in cyanobacteria, specifically, Synechocystis sp. PCC 6803. By genetically engineering precise downregulation of PSII, we aim to reduce oxygen evolution without the unintended effects associated with nutrient deprivation, enabling efficient hydrogen production. Additionally, re-engineering endogenous respiration to continuously replenish glycogen consumed during respiration allows matching oxygen production with consumption, maintaining anaerobic conditions conducive to hydrogen production. This review discusses how focusing on molecular-level processes and leveraging advanced genetic tools can lead to a new methodology that potentially offers improved results over traditional approaches. By redirecting electron flow and optimizing redox pathways, we seek to enhance hydrogen production efficiency in cyanobacteria. Our approach demonstrates how harnessing photosynthesis through synthetic biology can contribute to scalable and sustainable hydrogen production, addressing the growing demand for renewable energy and advancing toward a carbon-neutral future.
Collapse
Affiliation(s)
- Alfonso Jaramillo
- De
novo Synthetic Biology Lab, i2sysbio, CSIC-University
of Valencia, Parc Científic
Universitat de València, Calle Catedrático
Agustín Escardino, 9, 46980 Paterna, Spain
| | - Alessandro Satta
- De
novo Synthetic Biology Lab, i2sysbio, CSIC-University
of Valencia, Parc Científic
Universitat de València, Calle Catedrático
Agustín Escardino, 9, 46980 Paterna, Spain
| | - Filipe Pinto
- i3S
- Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cecilia Faraloni
- Istituto
per la Bioeconomia, CNR, Via Madonna del Piano 10 Sesto Fiorentino, I-50019 Firenze, Italy
| | - Graziella Chini Zittelli
- Istituto
per la Bioeconomia, CNR, Via Madonna del Piano 10 Sesto Fiorentino, I-50019 Firenze, Italy
| | - Ana Margarita Silva Benavides
- Centro
de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, San José 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto
per la Bioeconomia, CNR, Via Madonna del Piano 10 Sesto Fiorentino, I-50019 Firenze, Italy
- Centro
de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, San José 2060, Costa Rica
| | - Conrad Schumann
- Molecular
Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Jorge Fernández Méndez
- Microbial
Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Gustav Berggren
- Molecular
Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Peter Lindblad
- Microbial
Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Maddalena Parente
- M2M
Engineering sas, Via Coroglio, Science Center, Business Innovation Center, 80124 Naples, Italy
| | - Serena Esposito
- M2M
Engineering sas, Via Coroglio, Science Center, Business Innovation Center, 80124 Naples, Italy
| | - Marcello Diano
- M2M
Engineering sas, Via Coroglio, Science Center, Business Innovation Center, 80124 Naples, Italy
| |
Collapse
|
2
|
Choo P, Forsman JA, Hui L, Khaing EP, Summerfield TC, Eaton-Rye JJ. The PsbJ protein is required for photosystem II activity in centers lacking the PsbO and PsbV lumenal subunits. PHOTOSYNTHESIS RESEARCH 2022; 151:103-111. [PMID: 34273062 DOI: 10.1007/s11120-021-00862-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Photosystem II (PS II) of oxygenic photosynthesis is found in the thylakoid membranes of plastids and cyanobacteria. The mature PS II complex comprises a central core of four membrane proteins that bind the majority of the redox-active cofactors. In cyanobacteria the central core is surrounded by 13 low-molecular-weight (LMW) subunits which each consist of one or two transmembrane helices. Three additional hydrophilic subunits known as PsbO, PsbU and PsbV are found associated with hydrophilic loops belonging to the core proteins protruding into the thylakoid lumen. During biogenesis the majority of the LMW subunits are known to initially associate with individual pre-assembly complexes consisting of one or more of the core proteins; however, the point at which the PsbJ LMW subunit binds to PS II is not known. The majority of models for PS II biogenesis propose that the three extrinsic proteins and PsbJ bind in the final stages of PS II assembly. We have investigated the impact of creating the double mutants ∆PsbJ:∆PsbO, ∆PsbJ:∆PsbU and ∆PsbJ:∆PsbV to investigate potential cooperation between these subunits in the final stages of biogenesis. Our results indicate that PsbJ can bind to PS II in the absence of any one of the extrinsic proteins. However, unlike their respective single mutants, the ∆PsbJ:∆PsbO and ∆PsbJ:∆PsbV strains were not photoautotrophic and were unable to support oxygen evolution suggesting a functional oxygen-evolving complex could not assemble in these strains. In contrast, the PS II centers formed in the ∆PsbJ:∆PsbU strain were capable of photoautotrophic growth and could support oxygen evolution when whole-chain electron transport was supported by the addition of bicarbonate.
Collapse
Affiliation(s)
- Priscilla Choo
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jack A Forsman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Liangliang Hui
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ei Phyo Khaing
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
3
|
Morris JN, Kovács S, Vass I, Summerfield TC, Eaton-Rye JJ. Environmental pH and a Glu364 to Gln mutation in the chlorophyll-binding CP47 protein affect redox-active TyrD and charge recombination in Photosystem II. FEBS Lett 2018; 593:163-174. [PMID: 30485416 DOI: 10.1002/1873-3468.13307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
In Photosystem II, loop E of the chlorophyll-binding CP47 protein is located near a redox-active tyrosine, YD , forming a symmetrical analog to loop E in CP43, which provides a ligand to the oxygen-evolving complex (OEC). A Glu364 to Gln substitution in CP47, near YD , does not affect growth in the cyanobacterium Synechocystis sp. PCC 6803; however, deletion of the extrinsic protein PsbV in this mutant leads to a strain displaying a pH-sensitive phenotype. Using thermoluminescence, chlorophyll fluorescence, and flash-induced oxygen evolution analyses, we demonstrate that Glu364 influences the stability of YD and the redox state of the OEC, and highlight the effects of external pH on photosynthetic electron transfer in intact cyanobacterial cells.
Collapse
Affiliation(s)
- Jaz N Morris
- Department of Botany, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sándor Kovács
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | |
Collapse
|
4
|
Morris JN, Eaton-Rye JJ, Summerfield TC. Environmental pH and the Requirement for the Extrinsic Proteins of Photosystem II in the Function of Cyanobacterial Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1135. [PMID: 27555848 PMCID: PMC4977308 DOI: 10.3389/fpls.2016.01135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In one of the final stages of cyanobacterial Photosystem II (PS II) assembly, binding of up to four extrinsic proteins to PS II stabilizes the oxygen-evolving complex (OEC). Growth of cyanobacterial mutants deficient in certain combinations of these thylakoid-lumen-associated polypeptides is sensitive to changes in environmental pH, despite the physical separation of the membrane-embedded PS II complex from the external environment. In this perspective we discuss the effect of environmental pH on OEC function and photoautotrophic growth in cyanobacteria with reference to pH-sensitive PS II mutants lacking extrinsic proteins. We consider the possibilities that, compared to pH 10.0, pH 7.5 increases susceptibility to PS II-generated reactive oxygen species (ROS) causing photoinhibition and reducing PS II assembly in some mutants, and that perturbations to channels in the lumenal regions of PS II might alter the accessibility of water to the active site as well as egress of oxygen and protons to the thylakoid lumen. Reduced levels of PS II in these mutants, and reduced OEC activity arising from the disruption of substrate/product channels, could reduce the trans-thylakoid pH gradient (ΔpH), leading to the impairment of photosynthesis. Growth of some PS II mutants at pH 7.5 can be rescued by elevating CO2 levels, suggesting that the pH-sensitive phenotype might primarily be an indirect result of back-pressure in the electron transport chain that results in heightened production of ROS by the impaired photosystem.
Collapse
Affiliation(s)
- Jaz N. Morris
- Department of Botany, University of OtagoDunedin, New Zealand
| | | | | |
Collapse
|
5
|
Roose JL, Frankel LK, Mummadisetti MP, Bricker TM. The extrinsic proteins of photosystem II: update. PLANTA 2016; 243:889-908. [PMID: 26759350 DOI: 10.1007/s00425-015-2462-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/25/2015] [Indexed: 05/24/2023]
Abstract
Recent investigations have provided important new insights into the structures and functions of the extrinsic proteins of Photosystem II. This review is an update of the last major review on the extrinsic proteins of Photosystem II (Bricker et al., Biochemistry 31:4623-4628 2012). In this report, we will examine advances in our understanding of the structure and function of these components. These proteins include PsbO, which is uniformly present in all oxygenic organisms, the PsbU, PsbV, CyanoQ, and CyanoP proteins, found in the cyanobacteria, and the PsbP, PsbQ and PsbR proteins, found in the green plant lineage. These proteins serve to stabilize the Mn4CaO5 cluster and optimize oxygen evolution at physiological calcium and chloride concentrations. The mechanisms used to perform these functions, however, remain poorly understood. Recently, important new findings have significantly advanced our understanding of the structures, locations and functions of these important subunits. We will discuss the biochemical, structural and genetic studies that have been used to elucidate the roles played by these proteins within the photosystem and their locations within the photosynthetic complex. Additionally, we will examine open questions needing to be addressed to provide a coherent picture of the role of these components within the photosystem.
Collapse
Affiliation(s)
- Johnna L Roose
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Laurie K Frankel
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Manjula P Mummadisetti
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Touloupakis E, Cicchi B, Benavides AMS, Torzillo G. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.). Appl Microbiol Biotechnol 2015; 100:1333-1341. [PMID: 26541331 PMCID: PMC4717179 DOI: 10.1007/s00253-015-7024-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 11/29/2022]
Abstract
Culturing cyanobacteria in a highly alkaline environment is a possible strategy for controlling contamination by other organisms. Synechocystis PCC 6803 cells were grown in continuous cultures to assess their growth performance at different pH values. Light conversion efficiency linearly decreased with the increase in pH and ranged between 12.5 % (PAR) at pH 7.5 (optimal) and decreased to 8.9 % at pH 11.0. Photosynthetic activity, assessed by measuring both chlorophyll fluorescence and photosynthesis rate, was not much affected going from pH 7.5 to 11.0, while productivity, growth yield, and biomass yield on light energy declined by 32, 28, and 26 % respectively at pH 11.0. Biochemical composition of the biomass did not change much within pH 7 and 10, while when grown at pH 11.0, carbohydrate content increased by 33 % while lipid content decreased by about the same amount. Protein content remained almost constant (average 65.8 % of dry weight). Cultures maintained at pH above 11.0 could grow free of contaminants (protozoa and other competing microalgae belonging to the species of Poterioochromonas).
Collapse
Affiliation(s)
- Eleftherios Touloupakis
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Bernardo Cicchi
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Ana Margarita Silva Benavides
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy.
| |
Collapse
|
7
|
Pigolev AV, Klimov VV. The green alga Chlamydomonas reinhardtii as a tool for in vivo study of site-directed mutations in PsbO protein of photosystem II. BIOCHEMISTRY (MOSCOW) 2015; 80:662-73. [DOI: 10.1134/s0006297915060036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
The importance of the hydrophilic region of PsbL for the plastoquinone electron acceptor complex of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1435-46. [PMID: 24576450 DOI: 10.1016/j.bbabio.2014.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 11/23/2022]
Abstract
The PsbL protein is a 4.5kDa subunit at the monomer-monomer interface of Photosystem II (PS II) consisting of a single membrane-spanning domain and a hydrophilic stretch of ~15 residues facing the cytosolic (or stromal) side of the photosystem. Deletion of conserved residues in the N-terminal region has been used to investigate the importance of this hydrophilic extension. Using Synechocystis sp. PCC 6803, three deletion strains: ∆(N6-N8), ∆(P11-V12) and ∆(E13-N15), have been created. The ∆(N6-N8) and ∆(P11-V12) strains remained photoautotrophic but were more susceptible to photodamage than the wild type; however, the ∆(E13-N15) cells had the most severe phenotype. The Δ(E13-N15) mutant showed decreased photoautotrophic growth, a reduced number of PS II centers, impaired oxygen evolution in the presence of PS II-specific electron acceptors, and was highly susceptible to photodamage. The decay kinetics of chlorophyll a variable fluorescence after a single turnover saturating flash and the sensitivity to low concentrations of PS II-directed herbicides in the Δ(E13-N15) strain indicate that the binding of plastoquinone to the QB-binding site had been altered such that the affinity of QB is reduced. In addition, the PS II-specific electron acceptor 2,5-dimethyl-p-benzoquinone was found to inhibit electron transfer through the quinone-acceptor complex of the ∆(E13-N15) strain. The PsbL Y20A mutant was also investigated and it exhibited increased susceptibility to photodamage and increased herbicide sensitivity. Our data suggest that the N-terminal hydrophilic region of PsbL influences forward electron transfer from QA through indirect interactions with the D-E loop of the D1 reaction center protein. Our results further indicate that disruption of interactions between the N-terminal region of PsbL and other PS II subunits or lipids destabilizes PS II dimer formation. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
|
9
|
Summerfield TC, Crawford TS, Young RD, Chua JPS, Macdonald RL, Sherman LA, Eaton-Rye JJ. Environmental pH affects photoautotrophic growth of Synechocystis sp. PCC 6803 strains carrying mutations in the lumenal proteins of PSII. PLANT & CELL PHYSIOLOGY 2013; 54:859-74. [PMID: 23444302 DOI: 10.1093/pcp/pct036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synechocystis sp. strain PCC 6803 grows photoautotrophically across a broad pH range, but wild-type cultures reach a higher density at elevated pH; however, photoheterotrophic growth is similar at high and neutral pH. A number of PSII mutants each lacking at least one lumenal extrinsic protein, and carrying a second PSII lumenal mutation, are able to grow photoautotrophically in BG-11 medium at pH 10.0, but not pH 7.5. We investigated the basis of this pH effect and observed no pH-specific change in variable fluorescence yield from PSII centers of the wild type or the pH-dependent ΔPsbO:ΔPsbU and ΔPsbV:ΔCyanoQ strains; however, 77 K fluorescence emission spectra indicated increased coupling of the phycobilisome (PBS) antenna at pH 10.0 in all mutants. DNA microarray data showed a cell-wide response to transfer from pH 10.0 to pH 7.5, including decreased mRNA levels of a number of oxidative stress-responsive transcripts. We hypothesize that this transcriptional response led to increased tolerance against reactive oxygen species and in particular singlet oxygen. This response enabled photoautotrophic growth of the PSII mutants at pH 10.0. This hypothesis was supported by increased resistance of all strains to rose bengal at pH 10.0 compared with pH 7.5.
Collapse
Affiliation(s)
- Tina C Summerfield
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kim HW, Vannela R, Rittmann BE. Responses of Synechocystis sp. PCC 6803 to total dissolved solids in long-term continuous operation of a photobioreactor. BIORESOURCE TECHNOLOGY 2013. [PMID: 23201518 DOI: 10.1016/j.biortech.2012.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study evaluated how Synechocystis sp. PCC 6803 responds to high total dissolved solids (TDS) associated with eliminating nutrient limitation during long-term operation of a photobioreactor. The unique feature is that the TDS were not dominated by Na(+) and Cl(-), as in seawater, but by HCO(3)(-) and NO(3)(-) from nutrient delivery. The TDS-stress threshold was about 10 g/L. Whereas inorganic N and P limitations slowed the rate of inorganic C (C(i)) uptake in the light, TDS stress was manifested most strongly as a substantial increase of endogenous respiration rate at night. Relief from TDS stress was incomplete when lowered pH led to a HCO(3)(-) increase (560 mgC/L as a threshold). Impaired photosynthesis led to a cascade of reduced C(i)-uptake, pH decrease, HCO(3)(-) accumulation, and HCO(3)(-)-associated stress. Thus, long-term photobioreactor operation requires balancing the delivery rates of CO(2), N, P, and other TDS components to avoid general and C(i)-associated TDS stresses.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, PO Box 875701, Tempe, AZ 85287-5701, USA
| | | | | |
Collapse
|
11
|
Najafpour MM, Moghaddam AN, Yang YN, Aro EM, Carpentier R, Eaton-Rye JJ, Lee CH, Allakhverdiev SI. Biological water-oxidizing complex: a nano-sized manganese-calcium oxide in a protein environment. PHOTOSYNTHESIS RESEARCH 2012; 114:1-13. [PMID: 22941557 DOI: 10.1007/s11120-012-9778-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
The resolution of Photosystem II (PS II) crystals has been improved using isolated PS II from the thermophilic cyanobacterium Thermosynechococcus vulcanus. The new 1.9 Å resolution data have provided detailed information on the structure of the water-oxidizing complex (Umena et al. Nature 473: 55-61, 2011). The atomic level structure of the manganese-calcium cluster is important for understanding the mechanism of water oxidation and to design an efficient catalyst for water oxidation in artificial photosynthetic systems. Here, we have briefly reviewed our knowledge of the structure and function of the cluster.
Collapse
|
12
|
Pigolev AV, Timoshevsky DS, Klimov VV. Effect of K223E and K226E amino acid substitutions in PsbO protein of photosystem 2 on stability and functional activity of the water-oxidizing complex in Chlamydomonas reinhardtii. BIOCHEMISTRY (MOSCOW) 2012; 77:71-7. [DOI: 10.1134/s0006297912010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Abasova L, Deák Z, Schwarz R, Vass I. The role of the PsbU subunit in the light sensitivity of PSII in the cyanobacterium Synechococcus 7942. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 105:149-56. [DOI: 10.1016/j.jphotobiol.2011.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
|
14
|
The extrinsic proteins of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:121-42. [PMID: 21801710 DOI: 10.1016/j.bbabio.2011.07.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/08/2023]
Abstract
In this review we examine the structure and function of the extrinsic proteins of Photosystem II. These proteins include PsbO, present in all oxygenic organisms, the PsbP and PsbQ proteins, which are found in higher plants and eukaryotic algae, and the PsbU, PsbV, CyanoQ, and CyanoP proteins, which are found in the cyanobacteria. These proteins serve to optimize oxygen evolution at physiological calcium and chloride concentrations. They also shield the Mn(4)CaO(5) cluster from exogenous reductants. Numerous biochemical, genetic and structural studies have been used to probe the structure and function of these proteins within the photosystem. We will discuss the most recent proposed functional roles for these components, their structures (as deduced from biochemical and X-ray crystallographic studies) and the locations of their proposed binding domains within the Photosystem II complex. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
15
|
Fagerlund RD, Eaton-Rye JJ. The lipoproteins of cyanobacterial photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:191-203. [PMID: 21349737 DOI: 10.1016/j.jphotobiol.2011.01.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/16/2022]
Abstract
Photosystem II (PSII) complexes from cyanobacteria and plants perform water splitting and plastoquinone reduction and yet have a different complement of lumenal extrinsic proteins. Whereas PSII from all organisms has the PsbO extrinsic protein, crystal structures of PSII from cyanobacteria have PsbV and PsbU while green algae and higher plants instead contain the extrinsic PsbP and PsbQ subunits. Proteomic studies in Synechocystis sp. PCC 6803 identified three further extrinsic proteins in the thylakoid lumen that are associated with cyanobacterial PSII and these are predicted to attach to the thylakoid membrane via a lipidated N-terminus. These proteins are cyanobacterial homologues to the PsbP and PsbQ subunits as well as to Psb27, an additional extrinsic protein associated with "inactive" photosystems that lack the other extrinsic polypeptides. The PsbQ homologue is not present in Prochlorococcus species but otherwise these proteins have been identified in most cyanobacteria although our phylogenetic analyses identified some strains that lack an apparent motif for lipidation in one or other of these subunits. Over the past decade the physiological function of these additional lipoproteins has been investigated in several cyanobacterial strains and recently the structures for each have been solved. This review will evaluate the physiological and structural results obtained for these lipid-attached extrinsic proteins and in silico protein docking of these proteins to PSII centers will be presented.
Collapse
Affiliation(s)
- Robert D Fagerlund
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | | |
Collapse
|
16
|
Zhang LF, Yang HM, Cui SX, Hu J, Wang J, Kuang TY, Norling B, Huang F. Proteomic analysis of plasma membranes of cyanobacterium Synechocystis sp. Strain PCC 6803 in response to high pH stress. J Proteome Res 2009; 8:2892-902. [PMID: 19351138 DOI: 10.1021/pr900024w] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are unique prokaryotes possessing plasma-, outer- and thylakoid membranes. The plasma membrane of a cyanobacterial cell serves as a crucial barrier against its environment and is essential for biogenesis of cyanobacterial photosystems. Previously, we have identified 79 different proteins in the plasma membrane of Synechocystis sp. Strain PCC 6803 based on 2D- and 1D- gels and MALDI-TOF MS. In this work, we have performed a proteomic study screening for high-pH-stress proteins in Synechocystis. 2-D gel profiles of plasma membranes isolated from both control and high pH-treated cells were constructed and compared quantitatively based on different protein staining methods including DIGE analysis. A total of 55 differentially expressed protein spots were identified using MALDI-TOF MS and MALDI-TOF/TOF MS, corresponding to 39 gene products. Twenty-five proteins were enhanced/induced and 14 reduced by high pH. One-third of the enhanced/induced proteins were transport and binding proteins of ABC transporters including 3 phosphate transport proteins. Other proteins include MinD involved in cell division, Cya2 in signaling and proteins involved in photosynthesis and respiration. Furthermore, among these proteins regulated by high pH, eight were found to be hypothetical proteins. Functional significance of the high-pH-stress proteins is discussed integrating current knowledge on cyanobacterial cell physiology.
Collapse
Affiliation(s)
- Li-Fang Zhang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gunnelius L, Tuominen I, Rantamäki S, Pollari M, Ruotsalainen V, Tyystjärvi E, Tyystjärvi T. SigC sigma factor is involved in acclimation to low inorganic carbon at high temperature in Synechocystis sp. PCC 6803. MICROBIOLOGY-SGM 2009; 156:220-229. [PMID: 19729407 DOI: 10.1099/mic.0.032565-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inactivation of the sigC gene (sll0184), encoding the group 2 sigma factor SigC, leads to a heat-sensitive phenotype of Synechocystis sp. PCC 6803. Cells of the DeltasigC strain grew poorly at 43 degrees C at pH 7.5 under ambient CO(2) conditions. Addition of inorganic carbon in the form of 3 % CO(2) or use of an alkaline growth medium (pH 8.3) restored the growth of the DeltasigC strain at 43 degrees C. These treatments compensate for the low concentration of inorganic carbon at high temperature. However, addition of organic carbon as glucose, pyruvate, succinate or 2-oxoglutarate did not restore growth of the DeltasigC strain at 43 degrees C. In the control strain, the amount of the SigC factor diminished after prolonged incubation at 43 degrees C if the pH of the growth medium was 7.5 or 6.7. Under alkaline conditions, the amount of the SigC factor remained constant at 43 degrees C and cells of the control strain grew better than at pH 7.5 or pH 6.7. The pH dependence of high-temperature growth was associated with changes in photosynthetic activity, indicating that the SigC factor is involved in adjustment of photosynthesis according to the amount of available inorganic carbon. Our results indicate that acclimation to low inorganic carbon is a part of acclimation to prolonged high temperature and that the SigC factor has a central role in this acclimation.
Collapse
Affiliation(s)
- Liisa Gunnelius
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Ilona Tuominen
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Susanne Rantamäki
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Maija Pollari
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Virpi Ruotsalainen
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Esa Tyystjärvi
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Taina Tyystjärvi
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
18
|
Enami I, Okumura A, Nagao R, Suzuki T, Iwai M, Shen JR. Structures and functions of the extrinsic proteins of photosystem II from different species. PHOTOSYNTHESIS RESEARCH 2008; 98:349-63. [PMID: 18716894 DOI: 10.1007/s11120-008-9343-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 07/23/2008] [Indexed: 05/03/2023]
Abstract
This minireview presents a summary of information available on the variety and binding properties of extrinsic proteins that form the oxygen-evolving complex of photosystem II (PSII) of cyanobacteria, red alga, diatom, green alga, euglena, and higher plants. In addition, the structure and function of extrinsic PsbO, PsbV, and PsbU proteins are summarized based on the crystal structure of thermophilic cyanobacterial PSII together with biochemical and genetic studies from various organisms.
Collapse
Affiliation(s)
- Isao Enami
- Department of Biology, Faculty of Science, Tokyo University of Science, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment. Appl Environ Microbiol 2008; 74:5276-84. [PMID: 18606800 DOI: 10.1128/aem.00883-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many cyanobacterial strains are able to grow at a pH range from neutral to pH 10 or 11. Such alkaline conditions favor cyanobacterial growth (e.g., bloom formation), and cyanobacteria must have developed strategies to adjust to changes in CO2 concentration and ion availability. Synechocystis sp. strain PCC 6803 exhibits similar photoautotrophic growth characteristics at pH 10 and pH 7.5, and we examined global gene expression following transfer from pH 7.5 to pH 10 to determine cellular adaptations at an elevated pH. The strategies used to develop homeostasis at alkaline pH had elements similar to those of many bacteria, as well as components unique to phototrophic microbes. Some of the response mechanisms previously identified in other bacteria included upregulation of Na+/H+ antiporters, deaminases, and ATP synthase. In addition, upregulated genes encoded transporters with the potential to contribute to osmotic, pH, and ion homeostasis (e.g., a water channel protein, a large-conductance mechanosensitive channel, a putative anion efflux transporter, a hexose/proton symporter, and ABC transporters of unidentified substrates). Transcriptional changes specific to photosynthetic microbes involved NADH dehydrogenases and CO2 fixation. The pH transition altered the CO2/HCO3(-) ratio within the cell, and the upregulation of three inducible bicarbonate transporters (BCT1, SbtA, and NDH-1S) likely reflected a response to this perturbed ratio. Consistent with this was increased transcript abundance of genes encoding carboxysome structural proteins and carbonic anhydrase. Interestingly, the transition to pH 10 resulted in increased abundance of transcripts of photosystem II genes encoding extrinsic and low-molecular-weight polypeptides, although there was little change in photosystem I gene transcripts.
Collapse
|
20
|
Summerfield TC, Eaton-Rye JJ, Sherman LA. Global gene expression of a delta PsbO:delta PsbU mutant and a spontaneous revertant in the cyanobacterium Synechocystis sp. strain PCC 6803. PHOTOSYNTHESIS RESEARCH 2007; 94:265-274. [PMID: 17990072 DOI: 10.1007/s11120-007-9237-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/25/2007] [Indexed: 05/25/2023]
Abstract
The photosystem II (PSII) double mutant delta PsbO:delta PsbU was unable to grow photoautotrophically at pH 7.5, but growth was restored at pH 10. We have isolated a pseudorevertant of this strain, which exhibited photoautotrophic growth at pH 7.5. PSII-specific oxygen evolution and assembled PSII centers in the pseudorevertant and the original delta PsbO:delta PsbU strains were similar at pH 7.5. Comparison of global gene expression of the two strains at pH 7.5 revealed that <4% of genes differed. In the pseudorevertant, up-regulated transcripts included stress-responsive genes, many of which were shown previously to be under the control of Hik34. Elevated transcripts included those encoding heat shock proteins (HspA, DnaK2 and HtpG), two Deg proteases (DegP and DegQ), and the orange carotenoid protein (OCP, Slr1963). Up-regulated genes encoded proteins localized to different cell compartments, including the thylakoid, plasma and outer membranes. We suggest that the cell wide up-regulation of stress response genes in the pseudorevertant may limit the impact of PSII instability that is observed in the delta PsbO:delta PsbU strain. Futhermore, the OCP has a photoprotective role mediating phycobilisome-associated nonphotochemical quenching, such that increased OCP levels in the pseudorevertant may reduce photons reaching these impaired centers. These two responses, in combination with uncharacterized stress responses, are sufficient to permit the growth of pseudorevertant at pH 7.5.
Collapse
Affiliation(s)
- Tina C Summerfield
- Department of Biological Sciences, Purdue University, 1392 Lilly Hall of Life Sciences, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
21
|
Roose JL, Wegener KM, Pakrasi HB. The extrinsic proteins of Photosystem II. PHOTOSYNTHESIS RESEARCH 2007; 92:369-87. [PMID: 17200881 DOI: 10.1007/s11120-006-9117-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 11/19/2006] [Indexed: 05/13/2023]
Abstract
Years of genetic, biochemical, and structural work have provided a number of insights into the oxygen evolving complex (OEC) of Photosystem II (PSII) for a variety of photosynthetic organisms. However, questions still remain about the functions and interactions among the various subunits that make up the OEC. After a brief introduction to the individual subunits Psb27, PsbP, PsbQ, PsbR, PsbU, and PsbV, a current picture of the OEC as a whole in cyanobacteria, red algae, green algae, and higher plants will be presented. Additionally, the role that these proteins play in the dynamic life cycle of PSII will be discussed.
Collapse
Affiliation(s)
- Johnna L Roose
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
22
|
Kurian D, Phadwal K, Mäenpää P. Proteomic characterization of acid stress response inSynechocystis sp. PCC 6803. Proteomics 2006; 6:3614-24. [PMID: 16691555 DOI: 10.1002/pmic.200600033] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A comparative proteomic analysis using 2-DE coupled with MALDI-MS and LC-MS/MS was performed in Synechocystis sp. PCC 6803 to identify protein candidates involved in acid stress response in cyanobacteria. Comparison of soluble proteins from the cytoplasmic fraction of cells grown on media set at pH 7.5 and 5.5 using 2-DE identified four proteins, which showed significant changes in the abundance. Surprisingly, several general stress proteins, either the heat shock family proteins or chaperonins, did not show perceptible fold changes in response to acidity. Compared to the cytoplasmic proteome, the periplasmic proteome showed remarkable changes as a function of external pH. Protein expression profiling at different external pH, i.e., 9.0, 7.5, 6.0 and 5.5, allowed classifying the periplasmic proteins depending on their preferential expression patterns towards acidity or alkalinity. Among the acid- and base-induced proteins, oxalate decarboxylase and carbonic anhydrase were already known for their role in pH homeostasis. Several unknown proteins from the periplasm, that showed significant changes in response to pH, provide ideal targets for further studies in understanding pH stress response in cyanobacteria. This study also identified 14 novel proteins, hitherto unknown from the periplasmic space of Synechocystis.
Collapse
Affiliation(s)
- Dominic Kurian
- Laboratory of Plant Physiology and Molecular Biology, Department of Biology, University of Turku, Finland.
| | | | | |
Collapse
|
23
|
Summerfield TC, Winter RT, Eaton-Rye JJ. Investigation of a requirement for the PsbP-like protein in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2005; 84:263-8. [PMID: 16049784 DOI: 10.1007/s11120-004-6431-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 11/16/2004] [Indexed: 05/03/2023]
Abstract
The sll1418 gene encodes a PsbP-like protein in Synechocystis sp. PCC 6803. Expression of sll1418 was similar in BG-11 and in Cl- - or Ca2+ -limiting media, and inactivation of sll1418 did not prevent photoautotrophic growth in normal or nutrient-limiting conditions. Also the wild-type and DeltaPsbP strains exhibited similar oxygen evolution and assembly of Photosystem II (PS II) centers. Inactivation of sll1418 in the DeltaPsbO: DeltaPsbP, DeltaPsbQ:DeltaPsbP, DeltaPsbU:DeltaPsbP and DeltaPsbV:DeltaPsbP mutants did not prevent photoautotrophy or alter PS II assembly and oxygen evolution in these strains. Moreover, the absence of PsbP did not affect the ability of alkaline pH to restore photoautotrophic growth in the DeltaPsbO:DeltaPsbU strain. The PsbO, PsbU and PsbV proteins are required for thermostability of PS II and thermal acclimation in Synechocystis sp. PCC 6803 [Kimura et al. (2002) Plant Cell Physiol 43: 932-938]. However, thermostability and thermal acclimation in DeltaPsbP cells were similar to wild type. These results are consistent with the conclusion that PsbP is associated with approximately 3 of PS II centers, and may play a regulatory role in PS II [Thornton et al. (2004) Plant Cell 16: 2164-2175].
Collapse
Affiliation(s)
- Tina C Summerfield
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | |
Collapse
|
24
|
Eaton-Rye JJ. Requirements for different combinations of the extrinsic proteins in specific cyanobacterial photosystem II mutants. PHOTOSYNTHESIS RESEARCH 2005; 84:275-81. [PMID: 16049786 DOI: 10.1007/s11120-005-0748-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 01/17/2005] [Indexed: 05/03/2023]
Abstract
The crystallographic data available for Photosystem II (PS II) in cyanobacteria has now provided complete structures for loop E from CP43 and CP47 as well as the extrinsic subunits PsbO, PsbU and PsbV. Protein interactions between these subunits are essential for stable water splitting and there is evidence that the binding of PsbU facilitates optimal energy transfer from the phycobilisome. Interactions between PsbO and CP47 may also play a role in dimer stabilization while loop E of CP43 contributes directly to the water-splitting reaction. Recent evidence also suggests that homologs of PsbP and PsbQ play key roles in cyanobacterial PS II, and under nutrient-deficient conditions PsbQ appears essential for photoautotrophic growth.
Collapse
Affiliation(s)
- Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
25
|
Neufeld S, Zinchenko V, Stephan DP, Bader KP, Pistorius EK. On the functional significance of the polypeptide PsbY for photosynthetic water oxidation in the cyanobacterium Synechocystis sp. strain PCC 6803. Mol Genet Genomics 2004; 271:458-67. [PMID: 15042356 DOI: 10.1007/s00438-004-0997-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 02/18/2004] [Indexed: 12/15/2022]
Abstract
Recent investigations have revealed that the cyanobacterial photosystem II complex contains more than 26 polypeptides. The functions of most of the low-molecular-mass polypeptides, including PsbY, have remained elusive. Here we present a comparative characterization of the wild-type Synechocystis sp. strain PCC 6803 and a PsbY-free mutant derived from it. The results show that growth of the PsbY-free mutant was comparable to that of the wild-type when cells were cultivated in complete BG11 medium or under initial manganese or chloride limitation, and when illuminated at 20 or 200 microE m(-2) s(-1). However, while growth rates of both the wild-type and the PsbY-free mutant were reduced when cells were cultivated in BG11 medium in the absence of calcium, the reduction was significantly greater in the case of the PsbY-free mutant. This differential effect on growth of the mutant relative to the wild-type in CaCl(2) deficient medium was detected when the cells were illuminated with high-intensity light (200 microE m(-2) s(-1)) but not when light levels were lower (20 microE m(-2) s(-1)). The differential effect on growth was associated with lower O(2) evolving activity in the mutant compared to wild-type cells. The mutant was also found to be more sensitive to photoinhibition, and showed an altered pattern of fluorescence emission at 77 K. In addition, mass spectrometric analysis revealed that PsbY-free cells cultivated in CaCl(2) sufficient medium (in which no growth reduction was observed) had a significantly higher O(2) evolution from hydrogen peroxide and a lower O(2) evolution from water under flash light illumination than wild-type cells. These results imply that photosystem II is slightly impaired in the PsbY-free mutant, and that the mutant is less capable of coping with low levels of Ca(2+) than the wild-type.
Collapse
Affiliation(s)
- S Neufeld
- Biologie VIII: Molekulare Zellphysiologie, Universität Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany
| | | | | | | | | |
Collapse
|