1
|
Löhner A, Cogdell R, Köhler J. Contribution of low-temperature single-molecule techniques to structural issues of pigment-protein complexes from photosynthetic purple bacteria. J R Soc Interface 2018; 15:rsif.2017.0680. [PMID: 29321265 DOI: 10.1098/rsif.2017.0680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 11/12/2022] Open
Abstract
As the electronic energies of the chromophores in a pigment-protein complex are imposed by the geometrical structure of the protein, this allows the spectral information obtained to be compared with predictions derived from structural models. Thereby, the single-molecule approach is particularly suited for the elucidation of specific, distinctive spectral features that are key for a particular model structure, and that would not be observable in ensemble-averaged spectra due to the heterogeneity of the biological objects. In this concise review, we illustrate with the example of the light-harvesting complexes from photosynthetic purple bacteria how results from low-temperature single-molecule spectroscopy can be used to discriminate between different structural models. Thereby the low-temperature approach provides two advantages: (i) owing to the negligible photobleaching, very long observation times become possible, and more importantly, (ii) at cryogenic temperatures, vibrational degrees of freedom are frozen out, leading to sharper spectral features and in turn to better resolved spectra.
Collapse
Affiliation(s)
- Alexander Löhner
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Richard Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany .,Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
2
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
3
|
Leiger K, Reisberg L, Freiberg A. Fluorescence Micro-Spectroscopy Study of Individual Photosynthetic Membrane Vesicles and Light-Harvesting Complexes. J Phys Chem B 2013; 117:9315-26. [DOI: 10.1021/jp4014509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kristjan Leiger
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
| | - Liis Reisberg
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
| | - Arvi Freiberg
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
- Institute
of Molecular and Cell
Biology, University of Tartu, Riia 23,
Tartu 51010, Estonia
| |
Collapse
|
4
|
Kunz R, Timpmann K, Southall J, Cogdell RJ, Freiberg A, Köhler J. Exciton Self Trapping in Photosynthetic Pigment–Protein Complexes Studied by Single-Molecule Spectroscopy. J Phys Chem B 2012; 116:11017-23. [DOI: 10.1021/jp3040456] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ralf Kunz
- Experimental Physics IV and
Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| | - Kõu Timpmann
- Institute of Physics, University of Tartu, Riia 142, Tartu EE-51014, Estonia
| | - June Southall
- Institute of Molecular, Cell and
Systems Biology, College of Medical Veterinary and Life Sciences,
Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Richard J. Cogdell
- Institute of Molecular, Cell and
Systems Biology, College of Medical Veterinary and Life Sciences,
Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, Riia 142, Tartu EE-51014, Estonia
- Institute of Molecular and Cell
Biology, University of Tartu, Riia 23,
Tartu EE-51010, Estonia
| | - Jürgen Köhler
- Experimental Physics IV and
Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
5
|
Sumino A, Dewa T, Takeuchi T, Sugiura R, Sasaki N, Misawa N, Tero R, Urisu T, Gardiner AT, Cogdell RJ, Hashimoto H, Nango M. Construction and structural analysis of tethered lipid bilayer containing photosynthetic antenna proteins for functional analysis. Biomacromolecules 2011; 12:2850-8. [PMID: 21650465 DOI: 10.1021/bm200585y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The construction and structural analysis of a tethered planar lipid bilayer containing bacterial photosynthetic membrane proteins, light-harvesting complex 2 (LH2), and light-harvesting core complex (LH1-RC) is described and establishes this system as an experimental platform for their functional analysis. The planar lipid bilayer containing LH2 and/or LH1-RC complexes was successfully formed on an avidin-immobilized coverglass via an avidin-biotin linkage. Atomic force microscopy (AFM) showed that a smooth continuous membrane was formed there. Lateral diffusion of these membrane proteins, observed by a fluorescence recovery after photobleaching (FRAP), is discussed in terms of the membrane architecture. Energy transfer from LH2 to LH1-RC within the tethered membrane was observed by steady-state fluorescence spectroscopy, indicating that the tethered membrane can mimic the natural situation.
Collapse
Affiliation(s)
- Ayumi Sumino
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pflock TJ, Oellerich S, Southall J, Cogdell RJ, Ullmann GM, Köhler J. The Electronically Excited States of LH2 Complexes from Rhodopseudomonas acidophila Strain 10050 Studied by Time-Resolved Spectroscopy and Dynamic Monte Carlo Simulations. I. Isolated, Non-Interacting LH2 Complexes. J Phys Chem B 2011; 115:8813-20. [DOI: 10.1021/jp202353c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobias J. Pflock
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Silke Oellerich
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - G. Matthias Ullmann
- Computational Biochemistry/Bioinformatics, University of Bayreuth, D-95440 Bayreuth
| | - Jürgen Köhler
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
7
|
Uchiyama D, Oikawa H, Otomo K, Nango M, Dewa T, Fujiyoshi S, Matsushita M. Reconstitution of bacterial photosynthetic unit in a lipid bilayer studied by single-molecule spectroscopy at 5 K. Phys Chem Chem Phys 2011; 13:11615-9. [PMID: 21597611 DOI: 10.1039/c1cp20172g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a model of photosynthetic unit (PSU), self-assembled aggregates of pigment-protein complexes from photosynthetic bacteria were prepared in a lipid bilayer by reconstitution of the light-harvesting 2 (LH2) complex and light-harvesting 1-reaction center (LH1-RC) complex through detergent removal of their micelles in the presence of lipids. By performing polarization-controlled fluorescence and fluorescence-excitation spectroscopy on single aggregates at a temperature of 5 K, the composition of individual aggregates was determined and excitation energy transfer (EET) between constituent complexes was observed. LH2 and LH1-RC from a bacterium, Rhodobacter (Rb.) sphaeroides, were found to form a trimeric aggregate in which EET takes place from one LH2 to two LH1-RCs. In contrast, a heterodimer of LH2 and LH1-RC in which EET works was found to assemble from a combination of complexes of different bacterial species, that is, LH2 from Rb. sphaeroides and LH1-RC from Rhodopseudomonas (Rps.) palustris.
Collapse
Affiliation(s)
- Daisuke Uchiyama
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Ernst D, Hildner R, Hippius C, Würthner F, Köhler J. Photoblinking dynamics in single calix[4]arene-linked perylene bisimide dimers. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.09.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Oellerich S, Köhler J. Low-temperature single-molecule spectroscopy on photosynthetic pigment-protein complexes from purple bacteria. PHOTOSYNTHESIS RESEARCH 2009; 101:171-179. [PMID: 19544008 DOI: 10.1007/s11120-009-9450-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Accepted: 05/27/2009] [Indexed: 05/27/2023]
Abstract
The primary reactions of purple bacterial photosynthesis take place within two well characterized pigment-protein complexes, the core Reaction Center-Light Harvesting 1 (RC-LH1) complex and the more peripheral Light Harvesting 2 (LH2) complex. These antenna complexes serve to absorb incident solar radiation and to transfer it to the reaction-centers, where it is used to 'power' the photosynthetic redox reaction. This review provides an overview of how the character of the electronically excited states of these pigment-protein complexes are determined by quantum mechanics and how the respective spectral signatures can be observed by single-molecule spectroscopy.
Collapse
Affiliation(s)
- Silke Oellerich
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research, Universität Bayreuth, Universtitätsstrasse 30, Bayreuth, Germany
| | | |
Collapse
|
10
|
|
11
|
|
12
|
van Grondelle R, Novoderezhkin VI. Energy transfer in photosynthesis: experimental insights and quantitative models. Phys Chem Chem Phys 2005; 8:793-807. [PMID: 16482320 DOI: 10.1039/b514032c] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We overview experimental and theoretical studies of energy transfer in the photosynthetic light-harvesting complexes LH1, LH2, and LHCII performed during the past decade since the discovery of high-resolution structure of these complexes. Experimental findings obtained with various spectroscopic techniques makes possible a modelling of the excitation dynamics at a quantitative level. The modified Redfield theory allows a precise assignment of the energy transfer pathways together with a direct visualization of the whole excitation dynamics where various regimes from a coherent motion of delocalized exciton to a hopping of localized excitations are superimposed. In a single complex it is possible to observe the switching between these regimes driven by slow conformational motion (as we demonstrate for LH2). Excitation dynamics under quenched conditions in higher-plant complexes is discussed.
Collapse
Affiliation(s)
- Rienk van Grondelle
- Department of Biophysics, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
13
|
Vacha F, Bumba L, Kaftan D, Vacha M. Microscopy and single molecule detection in photosynthesis. Micron 2005; 36:483-502. [PMID: 15951188 DOI: 10.1016/j.micron.2005.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/18/2005] [Accepted: 04/19/2005] [Indexed: 11/30/2022]
Abstract
Progress in various fields of microscopy techniques brought up enormous possibilities to study the photosynthesis down to the level of individual pigment-protein complexes. The aim of this review is to present recent developments in the photosynthesis research obtained using such highly advanced techniques. Three areas of microscopy techniques covering optical microscopy, electron microscopy and scanning probe microscopy are reviewed. Whereas the electron microscopy and scanning probe microscopy are used in photosynthesis mainly for structural studies of photosynthetic pigment-protein complexes, the optical microscopy is used also for functional studies.
Collapse
Affiliation(s)
- Frantisek Vacha
- Institute of Physical Biology, University of South Bohemia, Budejovice, Czech Republic.
| | | | | | | |
Collapse
|
14
|
Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ. About Supramolecular Assemblies of π-Conjugated Systems. Chem Rev 2005; 105:1491-546. [PMID: 15826018 DOI: 10.1021/cr030070z] [Citation(s) in RCA: 2276] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Freek J M Hoeben
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | |
Collapse
|