1
|
Renaud EA, Maupin AJM, Besteiro S. Iron‑sulfur cluster biogenesis and function in Apicomplexa parasites. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119876. [PMID: 39547273 DOI: 10.1016/j.bbamcr.2024.119876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Iron‑sulfur cluster are ubiquitous and ancient protein cofactors that support a wide array of essential cellular functions. In eukaryotes, their assembly requires specific and dedicated machineries in each subcellular compartment. Apicomplexans are parasitic protists that are collectively responsible for a significant burden on the health of humans and other animals, and most of them harbor two organelles of endosymbiotic origin: a mitochondrion, and a plastid of high metabolic importance called the apicoplast. Consequently, apicomplexan parasites have distinct iron‑sulfur cluster assembly machineries located to their endosymbiotic organelles, as well as a cytosolic pathway. Recent findings have not only shown the importance of iron‑sulfur cluster assembly for the fitness of these parasites, but also highlighted parasite-specific features that may be promising for the development of targeted anti-parasitic strategies.
Collapse
|
2
|
Lahree A, Mello-Vieira J, Mota MM. The nutrient games - Plasmodium metabolism during hepatic development. Trends Parasitol 2023; 39:445-460. [PMID: 37061442 DOI: 10.1016/j.pt.2023.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
Malaria is a febrile illness caused by species of the protozoan parasite Plasmodium and is characterized by recursive infections of erythrocytes, leading to clinical symptoms and pathology. In mammals, Plasmodium parasites undergo a compulsory intrahepatic development stage before infecting erythrocytes. Liver-stage parasites have a metabolic configuration to facilitate the replication of several thousand daughter parasites. Their metabolism is of interest to identify cellular pathways essential for liver infection, to kill the parasite before onset of the disease. In this review, we summarize the current knowledge on nutrient acquisition and biosynthesis by liver-stage parasites mostly generated in murine malaria models, gaps in knowledge, and challenges to create a holistic view of the development and deficiencies in this field.
Collapse
Affiliation(s)
- Aparajita Lahree
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - João Mello-Vieira
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
3
|
Akuh OA, Elahi R, Prigge ST, Seeber F. The ferredoxin redox system - an essential electron distributing hub in the apicoplast of Apicomplexa. Trends Parasitol 2022; 38:868-881. [PMID: 35999149 PMCID: PMC9481715 DOI: 10.1016/j.pt.2022.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
The apicoplast, a relict plastid found in most species of the phylum Apicomplexa, harbors the ferredoxin redox system which supplies electrons to enzymes of various metabolic pathways in this organelle. Recent reports in Toxoplasma gondii and Plasmodium falciparum have shown that the iron-sulfur cluster (FeS)-containing ferredoxin is essential in tachyzoite and blood-stage parasites, respectively. Here we review ferredoxin's crucial contribution to isoprenoid and lipoate biosynthesis as well as tRNA modification in the apicoplast, highlighting similarities and differences between the two species. We also discuss ferredoxin's potential role in the initial reductive steps required for FeS synthesis as well as recent evidence that offers an explanation for how NADPH required by the redox system might be generated in Plasmodium spp.
Collapse
Affiliation(s)
- Ojo-Ajogu Akuh
- FG16 Parasitology, Robert Koch-Institute, Berlin, Germany; Division of Biomedical Science and Biochemistry, Australian National University, Canberra, Australia
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Frank Seeber
- FG16 Parasitology, Robert Koch-Institute, Berlin, Germany.
| |
Collapse
|
4
|
Disrupting the plastidic iron-sulfur cluster biogenesis pathway in Toxoplasma gondii has pleiotropic effects irreversibly impacting parasite viability. J Biol Chem 2022; 298:102243. [PMID: 35810787 PMCID: PMC9386495 DOI: 10.1016/j.jbc.2022.102243] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/27/2022] Open
Abstract
Like many other apicomplexan parasites, Toxoplasma gondii contains a plastid harboring key metabolic pathways, including the sulfur utilization factor (SUF) pathway that is involved in the biosynthesis of iron-sulfur clusters. These cofactors are crucial for a variety of proteins involved in important metabolic reactions, potentially including plastidic pathways for the synthesis of isoprenoid and fatty acids. It was shown previously that impairing the NFS2 cysteine desulfurase, involved in the first step of the SUF pathway, leads to an irreversible killing of intracellular parasites. However, the metabolic impact of disrupting the pathway remained unexplored. Here, we generated another mutant of this pathway, deficient in the SUFC ATPase, and investigated in details the phenotypic consequences of TgNFS2 and TgSUFC depletion on the parasites. Our analysis confirms that Toxoplasma SUF mutants are severely and irreversibly impacted in division and membrane homeostasis, and suggests a defect in apicoplast-generated fatty acids. However, we show that increased scavenging from the host or supplementation with exogenous fatty acids do not fully restore parasite growth, suggesting that this is not the primary cause for the demise of the parasites and that other important cellular functions were affected. For instance, we also show that the SUF pathway is key for generating the isoprenoid-derived precursors necessary for the proper targeting of GPI-anchored proteins and for parasite motility. Thus, we conclude plastid-generated iron-sulfur clusters support the functions of proteins involved in several vital downstream cellular pathways, which implies the SUF machinery may be explored for new potential anti-Toxoplasma targets.
Collapse
|
5
|
Rei Yan SL, Wakasuqui F, Du X, Groves MR, Wrenger C. Lipoic Acid Metabolism as a Potential Chemotherapeutic Target Against Plasmodium falciparum and Staphylococcus aureus. Front Chem 2021; 9:742175. [PMID: 34805091 PMCID: PMC8600131 DOI: 10.3389/fchem.2021.742175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Lipoic acid (LA) is an organic compound that plays a key role in cellular metabolism. It participates in a posttranslational modification (PTM) named lipoylation, an event that is highly conserved and that occurs in multimeric metabolic enzymes of very distinct microorganisms such as Plasmodium sp. and Staphylococcus aureus, including pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KDH). In this mini review, we revisit the recent literature regarding LA metabolism in Plasmodium sp. and Staphylococcus aureus, by covering the lipoate ligase proteins in both microorganisms, the role of lipoate ligase proteins and insights for possible inhibitors of lipoate ligases.
Collapse
Affiliation(s)
- Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences-ICB, University of São Paulo, São Paulo, Brazil
| | - Felipe Wakasuqui
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences-ICB, University of São Paulo, São Paulo, Brazil
| | - Xiaochen Du
- Structural Biology in Drug Design, Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Matthew R Groves
- Structural Biology in Drug Design, Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences-ICB, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Pamukcu S, Cerutti A, Bordat Y, Hem S, Rofidal V, Besteiro S. Differential contribution of two organelles of endosymbiotic origin to iron-sulfur cluster synthesis and overall fitness in Toxoplasma. PLoS Pathog 2021; 17:e1010096. [PMID: 34793583 PMCID: PMC8639094 DOI: 10.1371/journal.ppat.1010096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are one of the most ancient and ubiquitous prosthetic groups, and they are required by a variety of proteins involved in important metabolic processes. Apicomplexan parasites have inherited different plastidic and mitochondrial Fe-S clusters biosynthesis pathways through endosymbiosis. We have investigated the relative contributions of these pathways to the fitness of Toxoplasma gondii, an apicomplexan parasite causing disease in humans, by generating specific mutants. Phenotypic analysis and quantitative proteomics allowed us to highlight notable differences in these mutants. Both Fe-S cluster synthesis pathways are necessary for optimal parasite growth in vitro, but their disruption leads to markedly different fates: impairment of the plastidic pathway leads to a loss of the organelle and to parasite death, while disruption of the mitochondrial pathway trigger differentiation into a stress resistance stage. This highlights that otherwise similar biochemical pathways hosted by different sub-cellular compartments can have very different contributions to the biology of the parasites, which is something to consider when exploring novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
| | - Aude Cerutti
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Yann Bordat
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Sonia Hem
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Valérie Rofidal
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
7
|
Holthaus D, Delgado-Betancourt E, Aebischer T, Seeber F, Klotz C. Harmonization of Protocols for Multi-Species Organoid Platforms to Study the Intestinal Biology of Toxoplasma gondii and Other Protozoan Infections. Front Cell Infect Microbiol 2021; 10:610368. [PMID: 33692963 PMCID: PMC7937733 DOI: 10.3389/fcimb.2020.610368] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
The small intestinal epithelium is the primary route of infection for many protozoan parasites. Understanding the mechanisms of infection, however, has been hindered due to the lack of appropriate models that recapitulate the complexity of the intestinal epithelium. Here, we describe an in vitro platform using stem cell-derived intestinal organoids established for four species that are important hosts of Apicomplexa and other protozoa in a zoonotic context: human, mouse, pig and chicken. The focus was set to create organoid-derived monolayers (ODMs) using the transwell system amenable for infection studies, and we provide straightforward guidelines for their generation and differentiation from organ-derived intestinal crypts. To this end, we reduced medium variations to an absolute minimum, allowing generation and differentiation of three-dimensional organoids for all four species and the subsequent generation of ODMs. Quantitative RT-PCR, immunolabeling with antibodies against marker proteins as well as transepithelial-electrical resistance (TEER) measurements were used to characterize ODM's integrity and functional state. These experiments show an overall uniform generation of monolayers suitable for Toxoplasma gondii infection, although robustness in terms of generation of stable TEER levels and cell differentiation status varies from species to species. Murine duodenal ODMs were then infected with T. gondii and/or Giardia duodenalis, two parasites that temporarily co-inhabit the intestinal niche but have not been studied previously in cellular co-infection models. T. gondii alone did not alter TEER values, integrity and transcriptional abundance of tight junction components. In contrast, in G. duodenalis-infected ODMs all these parameters were altered and T. gondii had no apparent influence on the G. duodenalis-triggered phenotype. In conclusion, we provide robust protocols for the generation, differentiation and characterization of intestinal organoids and ODMs from four species. We show their applications for comparative studies on parasite-host interactions during the early phase of a T. gondii infection but also its use for co-infections with other relevant intestinal protozoans.
Collapse
Affiliation(s)
| | | | | | | | - Christian Klotz
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
8
|
Swift RP, Rajaram K, Elahi R, Liu HB, Prigge ST. Roles of Ferredoxin-Dependent Proteins in the Apicoplast of Plasmodium falciparum Parasites. mBio 2021; 13:e0302321. [PMID: 35164549 PMCID: PMC8844926 DOI: 10.1128/mbio.03023-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form a redox system that is hypothesized to play a central role in the maintenance and function of the apicoplast organelle of malaria parasites. The Fd/FNR system provides reducing power to various iron-sulfur cluster (FeS)-dependent proteins in the apicoplast and is believed to help to maintain redox balance in the organelle. While the Fd/FNR system has been pursued as a target for antimalarial drug discovery, Fd, FNR, and the FeS proteins presumably reliant on their reducing power play an unknown role in parasite survival and apicoplast maintenance. To address these questions, we generated genetic deletions of these proteins in a parasite line containing an apicoplast bypass system. Through these deletions, we discovered that Fd, FNR, and certain FeS proteins are essential for parasite survival but found that none are required for apicoplast maintenance. Additionally, we addressed the question of how Fd and its downstream FeS proteins obtain FeS cofactors by deleting the FeS transfer proteins SufA and NfuApi. While individual deletions of these proteins revealed their dispensability, double deletion resulted in synthetic lethality, demonstrating a redundant role in providing FeS clusters to Fd and other essential FeS proteins. Our data support a model in which the reducing power from the Fd/FNR system to certain downstream FeS proteins is essential for the survival of blood-stage malaria parasites but not for organelle maintenance, while other FeS proteins are dispensable for this stage of parasite development. IMPORTANCE Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form one of the few known redox systems in the apicoplast of malaria parasites and provide reducing power to iron-sulfur (FeS) cluster proteins within the organelle. While the Fd/FNR system has been explored as a drug target, the essentiality and roles of this system and the identity of its downstream FeS proteins have not been determined. To answer these questions, we generated deletions of these proteins in an apicoplast metabolic bypass line (PfMev) and determined the minimal set of proteins required for parasite survival. Moving upstream of this pathway, we also generated individual and dual deletions of the two FeS transfer proteins that deliver FeS clusters to Fd and downstream FeS proteins. We found that both transfer proteins are dispensable, but double deletion displayed a synthetic lethal phenotype, demonstrating their functional redundancy. These findings provide important insights into apicoplast biochemistry and drug development.
Collapse
Affiliation(s)
- Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Cui J, Shen B. Transcriptomic analyses reveal distinct response of porcine macrophages to Toxoplasma gondii infection. Parasitol Res 2020; 119:1819-1828. [PMID: 32399721 DOI: 10.1007/s00436-020-06677-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
Toxoplasma gondii is an obligate protozoan parasite infecting diverse hosts. Studies have demonstrated that different hosts respond differently to Toxoplasma infection. Pigs are among the most susceptible hosts of T. gondii, but the host-pathogen interactions that shape the outcome of infection in pigs are completely unknown. Here, we used dual RNA-seq to profile the transcriptomic changes of porcine alveolar macrophages (PAMs) upon Toxoplasma infection. Our results indicated that PAMs initiated different responses to Toxoplasma infection compared with mouse macrophages. First, although infected PAMs upregulated numerous pro-inflammatory factors, IL-12, which plays critical roles in IL-12~IFN-γ-mediated immunity against Toxoplasma infection in mice, was found unchanged during PAM infection. Second, the gene encoding iNOS that is responsible for nitric oxide (NO) production was also not induced in infected PAMs. Consistently, there was no NO level change in PAMs after infection. Third, it seems like Toxoplasma infection inhibited apoptosis in PAMs. On the parasite side, the most obvious change is the upregulation of genes involved in metabolism and macromolecule synthesis, such as the type II fatty acid synthesis in the apicoplast. Together, these results revealed distinct responses of PAMs to Toxoplasma infection and provide novel insights into Toxoplasma-pig interactions.
Collapse
Affiliation(s)
- Jianmin Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020; 295:701-714. [PMID: 31767680 PMCID: PMC6970920 DOI: 10.1074/jbc.aw119.008150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Apicomplexa phylum comprises diverse parasitic organisms that have evolved from a free-living ancestor. These obligate intracellular parasites exhibit versatile metabolic capabilities reflecting their capacity to survive and grow in different hosts and varying niches. Determined by nutrient availability, they either use their biosynthesis machineries or largely depend on their host for metabolite acquisition. Because vitamins cannot be synthesized by the mammalian host, the enzymes required for their synthesis in apicomplexan parasites represent a large repertoire of potential therapeutic targets. Here, we review recent advances in metabolic reconstruction and functional studies coupled to metabolomics that unravel the interplay between biosynthesis and salvage of vitamins and cofactors in apicomplexans. A particular emphasis is placed on Toxoplasma gondii, during both its acute and latent stages of infection.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| |
Collapse
|
11
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49928-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Delgado Betancourt E, Hamid B, Fabian BT, Klotz C, Hartmann S, Seeber F. From Entry to Early Dissemination- Toxoplasma gondii's Initial Encounter With Its Host. Front Cell Infect Microbiol 2019; 9:46. [PMID: 30891433 PMCID: PMC6411707 DOI: 10.3389/fcimb.2019.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is a zoonotic intracellular parasite, able to infect any warm-blooded animal via ingestion of infective stages, either contained in tissue cysts or oocysts released into the environment. While immune responses during infection are well-studied, there is still limited knowledge about the very early infection events in the gut tissue after infection via the oral route. Here we briefly discuss differences in host-specific responses following infection with oocyst-derived sporozoites vs. tissue cyst-derived bradyzoites. A focus is given to innate intestinal defense mechanisms and early immune cell events that precede T. gondii's dissemination in the host. We propose stem cell-derived intestinal organoids as a model to study early events of natural host-pathogen interaction. These offer several advantages such as live cell imaging and transcriptomic profiling of the earliest invasion processes. We additionally highlight the necessity of an appropriate large animal model reflecting human infection more closely than conventional infection models, to study the roles of dendritic cells and macrophages during early infection.
Collapse
Affiliation(s)
| | - Benjamin Hamid
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Benedikt T Fabian
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Christian Klotz
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
13
|
Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother 2018; 104:8-27. [PMID: 29758416 DOI: 10.1016/j.biopha.2018.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/22/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - T R Bhardwaj
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - D N Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
14
|
Conditional knock-out of lipoic acid protein ligase 1 reveals redundancy pathway for lipoic acid metabolism in Plasmodium berghei malaria parasite. Parasit Vectors 2017; 10:315. [PMID: 28655332 PMCID: PMC5488443 DOI: 10.1186/s13071-017-2253-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/19/2017] [Indexed: 11/04/2022] Open
Abstract
Background Lipoic acid is a cofactor for α-keto acid dehydrogenase system that is involved in the central energy metabolism. In the apicomplexan parasite, Plasmodium, lipoic acid protein ligase 1 (LplA1) and LplA2 catalyse the ligation of acquired lipoic acid to the dehydrogenase complexes in the mitochondrion. The enzymes LipB and LipA mediate lipoic acid synthesis and ligation to the enzymes in the apicoplast. These enzymes in the lipoic acid metabolism machinery have been shown to play important roles in the biology of Plasmodium parasites, but the relationship between the enzymes is not fully elucidated. Methods We used an anhydrotetracycline (ATc)-inducible transcription system to generate transgenic P. berghei parasites in which the lplA1 gene was conditionally knocked out (LplA1-cKO). Phenotypic changes and the lplA1 and lplA2 gene expression profiles of cloned LplA1-cKO parasites were analysed. Results LplA1-cKO parasites showed severely impaired growth in vivo in the first 8 days of infection, and retarded blood-stage development in vitro, in the absence of ATc. However, these parasites resumed viability in the late stage of infection and mounted high levels of parasitemia leading to the death of the hosts. Although lplA1 mRNA expression was regulated tightly by ATc during the whole course of infection, lplA2 mRNA expression was significantly increased in the late stage of infection only in the LplA1-cKO parasites that were not exposed to ATc. Conclusions The lplA2 gene can be activated as an alternative pathway to compensate for the loss of LplA1 activity and to maintain lipoic acid metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2253-y) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Martins-Duarte ÉS, Carias M, Vommaro R, Surolia N, de Souza W. Apicoplast fatty acid synthesis is essential for pellicle formation at the end of cytokinesis in Toxoplasma gondii. J Cell Sci 2016; 129:3320-31. [PMID: 27457282 DOI: 10.1242/jcs.185223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/19/2016] [Indexed: 01/19/2023] Open
Abstract
The apicomplexan protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, harbors an apicoplast, a plastid-like organelle with essential metabolic functions. Although the FASII fatty acid biosynthesis pathway located in the apicoplast is essential for parasite survival, the cellular effects of FASII disruption in T. gondii had not been examined in detail. Here, we combined light and electron microscopy techniques - including focused ion beam scanning electron microscopy (FIB-SEM) - to characterize the effect of FASII disruption in T. gondii, by treatment with the FASII inhibitor triclosan or by inducible knockdown of the FASII component acyl carrier protein. Morphological analyses showed that FASII disruption prevented cytokinesis completion in T. gondii tachyzoites, leading to the formation of large masses of 'tethered' daughter cells. FIB-SEM showed that tethered daughters had a mature basal complex, but a defect in new membrane addition between daughters resulted in incomplete pellicle formation. Addition of exogenous fatty acids to medium suppressed the formation of tethered daughter cells and supports the notion that FASII is essential to generate lipid substrates required for the final step of parasite division.
Collapse
Affiliation(s)
- Érica S Martins-Duarte
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| | - Maira Carias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| | - Rossiane Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| | - Namita Surolia
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India, 560064
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| |
Collapse
|
16
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
17
|
Comparative Analysis of Apicoplast-Targeted Protein Extension Lengths in Apicomplexan Parasites. BIOMED RESEARCH INTERNATIONAL 2015; 2015:452958. [PMID: 26114107 PMCID: PMC4465681 DOI: 10.1155/2015/452958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/25/2014] [Indexed: 11/17/2022]
Abstract
In general, the mechanism of protein translocation through the apicoplast membrane requires a specific extension of a functionally important region of the apicoplast-targeted proteins. The corresponding signal peptides were detected in many apicomplexans but not in the majority of apicoplast-targeted proteins in Toxoplasma gondii. In T. gondii signal peptides are either much diverged or their extension region is processed, which in either case makes the situation different from other studied apicomplexans. We propose a statistic method to compare extensions of the functionally important regions of apicoplast-targeted proteins. More specifically, we provide a comparison of extension lengths of orthologous apicoplast-targeted proteins in apicomplexan parasites. We focus on results obtained for the model species T. gondii, Neospora caninum, and Plasmodium falciparum. With our method, cross species comparisons demonstrate that, in average, apicoplast-targeted protein extensions in T. gondii are 1.5-fold longer than in N. caninum and 2-fold longer than in P. falciparum. Extensions in P. falciparum less than 87 residues in size are longer than the corresponding extensions in N. caninum and, reversely, are shorter if they exceed 88 residues.
Collapse
|
18
|
Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts. Mol Biochem Parasitol 2015; 199:34-50. [DOI: 10.1016/j.molbiopara.2015.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/25/2022]
|
19
|
Frohnecke N, Klein S, Seeber F. Protein-protein interaction studies provide evidence for electron transfer from ferredoxin to lipoic acid synthase in Toxoplasma gondii. FEBS Lett 2014; 589:31-6. [PMID: 25433292 DOI: 10.1016/j.febslet.2014.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/08/2023]
Abstract
The only known redox system in the apicoplast, a plastid-like organelle of apicomplexan parasites, is ferredoxin and ferredoxin-associated reductase. Ferredoxin donates electrons to different enzymes, presumably including lipoate synthase (LipA), which is essential for fatty acid biosynthesis. We recombinantly expressed and characterized LipA from the protozoan parasite Toxoplasma gondii, generated LipA-specific antibodies and confirmed the apicoplast localization of LipA. Electron transfer from ferredoxin to LipA would require direct protein-protein interaction. Such a robust interaction between the two proteins was demonstrated in both yeast and bacterial two-hybrid systems. Taken together, our results provide strong evidence for a role of ferredoxin as an electron donor to LipA.
Collapse
Affiliation(s)
- Nora Frohnecke
- FG16 Parasitologie, Robert Koch-Institut, 13353 Berlin, Germany
| | - Sandra Klein
- FG16 Parasitologie, Robert Koch-Institut, 13353 Berlin, Germany
| | - Frank Seeber
- FG16 Parasitologie, Robert Koch-Institut, 13353 Berlin, Germany.
| |
Collapse
|
20
|
Pantothenic acid biosynthesis in the parasite Toxoplasma gondii: a target for chemotherapy. Antimicrob Agents Chemother 2014; 58:6345-53. [PMID: 25049241 DOI: 10.1128/aac.02640-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a major food pathogen and neglected parasitic infection that causes eye disease, birth defects, and fetal abortion and plays a role as an opportunistic infection in AIDS. In this study, we investigated pantothenic acid (vitamin B5) biosynthesis in T. gondii. Genes encoding the full repertoire of enzymes for pantothenate synthesis and subsequent metabolism to coenzyme A were identified and are expressed in T. gondii. A panel of inhibitors developed to target Mycobacterium tuberculosis pantothenate synthetase were tested and found to exhibit a range of values for inhibition of T. gondii growth. Two inhibitors exhibited lower effective concentrations than the currently used toxoplasmosis drug pyrimethamine. The inhibition was specific for the pantothenate pathway, as the effect of the pantothenate synthetase inhibitors was abrogated by supplementation with pantothenate. Hence, T. gondii encodes and expresses the enzymes for pantothenate synthesis, and this pathway is essential for parasite growth. These promising findings increase our understanding of growth and metabolism in this important parasite and highlight pantothenate synthetase as a new drug target.
Collapse
|
21
|
Transcription regulation of plastid genes involved in sulfate transport in Viridiplantae. BIOMED RESEARCH INTERNATIONAL 2013; 2013:413450. [PMID: 24073405 PMCID: PMC3773388 DOI: 10.1155/2013/413450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/12/2013] [Indexed: 12/14/2022]
Abstract
This study considers transcription regulation of plastid genes involved in sulfate transport in the parasites of invertebrate (Helicosporidium sp.) and other species of the Viridiplantae. A one-box conserved motif with the consensus TAAWATGATT is found near promoters upstream the cysT and cysA genes in many species. In certain cases, the motif is repeated two or three times.
Collapse
|
22
|
Storm J, Müller S. Lipoic acid metabolism of Plasmodium--a suitable drug target. Curr Pharm Des 2012; 18:3480-9. [PMID: 22607141 PMCID: PMC3426790 DOI: 10.2174/138161212801327266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/12/2012] [Indexed: 11/22/2022]
Abstract
α-Lipoic acid (6,8-thioctic acid; LA) is a vital co-factor of α-ketoacid dehydrogenase complexes and the glycine cleavage system. In recent years it was shown that biosynthesis and salvage of LA in Plasmodium are necessary for the parasites to complete their complex life cycle. LA salvage requires two lipoic acid protein ligases (LplA1 and LplA2). LplA1 is confined to the mitochondrion while LplA2 is located in both the mitochondrion and the apicoplast. LplA1 exclusively uses salvaged LA and lipoylates α-ketoglutarate dehydrogenase, branched chain α-ketoacid dehydrogenase and the H-protein of the glycine cleavage system. LplA2 cannot compensate for the loss of LplA1 function during blood stage development suggesting a specific function for LplA2 that has yet to be elucidated. LA salvage is essential for the intra-erythrocytic and liver stage development of Plasmodium and thus offers great potential for future drug or vaccine development. LA biosynthesis, comprising octanoyl-acyl carrier protein (ACP) : protein N-octanoyltransferase (LipB) and lipoate synthase (LipA), is exclusively found in the apicoplast of Plasmodium where it generates LA de novo from octanoyl-ACP, provided by the type II fatty acid biosynthesis (FAS II) pathway also present in the organelle. LA is the co-factor of the acetyltransferase subunit of the apicoplast located pyruvate dehydrogenase (PDH), which generates acetyl-CoA, feeding into FAS II. LA biosynthesis is not vital for intra-erythrocytic development of Plasmodium, but the deletion of several genes encoding components of FAS II or PDH was detrimental for liver stage development of the parasites indirectly suggesting that the same applies to LA biosynthesis. These data provide strong evidence that LA salvage and biosynthesis are vital for different stages of Plasmodium development and offer potential for drug and vaccine design against malaria.
Collapse
Affiliation(s)
- Janet Storm
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | |
Collapse
|
23
|
Banerjee T, Jaijyan DK, Surolia N, Singh AP, Surolia A. Apicoplast triose phosphate transporter (TPT) gene knockout is lethal for Plasmodium. Mol Biochem Parasitol 2012; 186:44-50. [PMID: 23041242 DOI: 10.1016/j.molbiopara.2012.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 01/01/2023]
Abstract
The C3, C5, C6 type sugar phosphate transporters bring sugars inside apicoplast, thus providing energy, reducing power and elements like carbon to apicoplast. Plasmodium berghei has two C3 type sugar phosphate transporters in the membrane of apicoplast: triose phosphate transporter (TPT) and phosphoenolpyruvate transporter (PPT). Here we report that P. berghei TPT knockout parasites failed to survive. However, PPT knockout parasite behaved similar to the wild type in the blood stages. The absence of PPT in other life stages, leads to defects in the development of parasite and was required at both mosquito as well as liver stages. This study also underlines the essentiality of triose transporters for apicoplast and its downstream pathways.
Collapse
Affiliation(s)
- Tanushree Banerjee
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
24
|
A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS Pathog 2011; 7:e1002392. [PMID: 22144892 PMCID: PMC3228799 DOI: 10.1371/journal.ppat.1002392] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/06/2011] [Indexed: 11/26/2022] Open
Abstract
Parasites of the phylum Apicomplexa cause diseases that impact global health and economy. These unicellular eukaryotes possess a relict plastid, the apicoplast, which is an essential organelle and a validated drug target. However, much of its biology remains poorly understood, in particular its elaborate compartmentalization: four membranes defining four different spaces. Only a small number of organellar proteins have been identified in particular few proteins are known for non-luminal apicoplast compartments. We hypothesized that enlarging the catalogue of apicoplast proteins will contribute toward identifying new organellar functions and expand the realm of targets beyond a limited set of characterized pathways. We developed a bioinformatic screen based on mRNA abundance over the cell cycle and on phyletic distribution. We experimentally assessed 57 genes, and of 30 successful epitope tagged candidates eleven novel apicoplast proteins were identified. Of those, seven appear to target to the lumen of the organelle, and four localize to peripheral compartments. To address their function we then developed a robust system for the construction of conditional mutants via a promoter replacement strategy. We confirm the feasibility of this system by establishing conditional mutants for two selected genes – a luminal and a peripheral apicoplast protein. The latter is particularly intriguing as it encodes a hypothetical protein that is conserved in and unique to Apicomplexan parasites and other related organisms that maintain a red algal endosymbiont. Our studies suggest that this peripheral plastid protein, PPP1, is likely localized to the periplastid compartment. Conditional disruption of PPP1 demonstrated that it is essential for parasite survival. Phenotypic analysis of this mutant is consistent with a role of the PPP1 protein in apicoplast biogenesis, specifically in import of nuclear-encoded proteins into the organelle. Apicomplexa are a group of parasites that cause important diseases, including malaria and several AIDS associated opportunistic infections. The parasites depend on an algal endosymbiont, the apicoplast, and this provides an Achilles' heel for drug development. We use Toxoplasma gondii as a model to characterize the biology and function of the apicoplast. In this study we apply a strategy to identify new apicoplast proteins and to prioritize them as potential targets through the analysis of genetic mutants. To aid this goal we develop a new parasite line and a protocol enabling the streamlined construction of conditional mutants. Using this new approach we discover numerous new apicoplast proteins, many of them have no assigned function yet. We demonstrate that function can be deduced using our genetic approach by establishing the essential role in apicoplast protein import for a new factor with intriguing localization and evolutionary history.
Collapse
|
25
|
Casteel J, Miernyk JA, Thelen JJ. Mapping the lipoylation site of Arabidopsis thaliana plastidial dihydrolipoamide S-acetyltransferase using mass spectrometry and site-directed mutagenesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1355-1361. [PMID: 21798751 DOI: 10.1016/j.plaphy.2011.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/05/2011] [Indexed: 05/31/2023]
Abstract
Catalytic enhancement achieved by the pyruvate dehydrogenase complex (PDC) results from a combination of substrate channeling plus active-site coupling. The mechanism for active-site coupling involves lipoic acid prosthetic groups covalently attached to Lys in the primary sequence of the dihydrolipoyl S-acetyltransferase (E2) component. Arabidopsis thaliana plastidial E2 (AtplE2-1A-His(6)) was expressed in Escherichia coli. Analysis of recombinant protein by SDS-PAGE revealed a Mr 59,000 band. Supplementation of bacterial culture medium with l-lipoic acid (LA) shifted the band to Mr 57,000. Intact mass determinations using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) revealed the faster migrating E2 species was 189 Da larger than the slower migrating form, exactly the difference that would result from addition of a single lipoamide group. Results from systematic MALDI-TOF analysis of Lys-containing tryptic peptides derived from purified recombinant AtplE2-1A indicate that Lys96 is the site of lipoyl-addition. Analysis of Lys96 site-directed mutant proteins showed that they migrated as single species during SDS-PAGE when expressed in either the absence or presence of supplemental LA. Results from both intact and tryptic peptide mass determinations by MALDI-TOF MS confirmed that the mutant proteins were not lipoylated. The A. thaliana plastidial E2 subunit includes a single lipoyl-prosthetic group covalently attached to Lys96. Despite low primary sequence identity with bacterial E2, the plant E2 protein was recognized and modified by E. coli E2 lipoyl-addition system. Results from meta-genomic analysis suggest a β-turn is more important in defining the site for LA addition than a conserved sequence motif.
Collapse
Affiliation(s)
- Jill Casteel
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
26
|
Martin N, Christensen QH, Mansilla MC, Cronan JE, de Mendoza D. A novel two-gene requirement for the octanoyltransfer reaction of Bacillus subtilis lipoic acid biosynthesis. Mol Microbiol 2011; 80:335-49. [PMID: 21338420 DOI: 10.1111/j.1365-2958.2011.07597.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Bacillus subtilis genome encodes three apparent lipoyl ligase homologues: yhfJ, yqhM and ywfL, which we have renamed lplJ, lipM and lipL respectively. We show that LplJ encodes the sole lipoyl ligase of this bacterium. Physiological and biochemical characterization of a ΔlipM strain showed that LipM is absolutely required for the endogenous lipoylation of all lipoate-dependent proteins, confirming its role as the B. subtilis octanoyltransferase. However, we also report that in contrast to Escherichia coli, B. subtilis requires a third protein for lipoic acid assembly, LipL. B. subtilis ΔlipL strains are unable to synthesize lipoic acid despite the presence of LipM and the sulphur insertion enzyme, LipA, which should suffice for lipoic acid biosynthesis based on the E. coli model. LipM is only required for the endogenous lipoylation pathway, whereas LipL also plays a role in lipoic acid scavenging. Expression of E. coli lipB allows growth of B. subtilisΔlipL or ΔlipM strains in the absence of supplements. In contrast, growth of an E. coliΔlipB strain can be complemented with lipM, but not lipL. These data together with those of the companion article provide evidence that LipM and LipL catalyse sequential reactions in a novel pathway for lipoic acid biosynthesis.
Collapse
Affiliation(s)
- Natalia Martin
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | | | | | | | |
Collapse
|
27
|
Abstract
Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] is an enzyme cofactor required for intermediate metabolism in free-living cells. Lipoic acid was discovered nearly 60 years ago and was shown to be covalently attached to proteins in several multicomponent dehydrogenases. Cells can acquire lipoate (the deprotonated charge form of lipoic acid that dominates at physiological pH) through either scavenging or de novo synthesis. Microbial pathogens implement these basic lipoylation strategies with a surprising variety of adaptations which can affect pathogenesis and virulence. Similarly, lipoylated proteins are responsible for effects beyond their classical roles in catalysis. These include roles in oxidative defense, bacterial sporulation, and gene expression. This review surveys the role of lipoate metabolism in bacterial, fungal, and protozoan pathogens and how these organisms have employed this metabolism to adapt to niche environments.
Collapse
|
28
|
Abstract
This article is an attempt to identify the most significant highlights of Toxoplasma research over the last 25 years. It has been a period of enormous progress and the top 25 most significant advances, in the view of this author, are described. These range from the bench to the bedside and represent a tremendous body of work from countless investigators. And, having laid out so much that has been discovered, it is impossible not to also reflect on the challenges that lie ahead. These, too, are briefly discussed. Finally, while every effort has been made to view the field as a whole, the molecular biology background of the author almost certainly will have skewed the relative importance attached to past and future advances. Despite this, it is hoped that the reader will agree with, or at least not disagree too strongly with, most of the choices presented here.
Collapse
Affiliation(s)
- John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5124, USA.
| |
Collapse
|
29
|
Seeber F, Soldati-Favre D. Metabolic Pathways in the Apicoplast of Apicomplexa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:161-228. [DOI: 10.1016/s1937-6448(10)81005-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
30
|
Brooks CF, Johnsen H, van Dooren GG, Muthalagi M, Lin SS, Bohne W, Fischer K, Striepen B. The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. Cell Host Microbe 2009; 7:62-73. [PMID: 20036630 DOI: 10.1016/j.chom.2009.12.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 10/15/2009] [Accepted: 11/09/2009] [Indexed: 01/22/2023]
Abstract
Apicomplexa are unicellular eukaryotic pathogens that carry a vestigial algal endosymbiont, the apicoplast. The physiological function of the apicoplast and its integration into parasite metabolism remain poorly understood and at times controversial. We establish that the Toxoplasma apicoplast membrane-localized phosphate translocator (TgAPT) is an essential metabolic link between the endosymbiont and the parasite cytoplasm. TgAPT is required for fatty acid synthesis in the apicoplast, but this may not be its most critical function. Further analyses demonstrate that TgAPT also functions to supply the apicoplast with carbon skeletons for additional pathways and, indirectly, with energy and reduction power. Genetic ablation of the transporter results in rapid death of parasites. The dramatic consequences of loss of its activity suggest that targeting TgAPT could be a viable strategy to identify antiparasitic compounds.
Collapse
Affiliation(s)
- Carrie F Brooks
- Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Agrawal S, van Dooren GG, Beatty WL, Striepen B. Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. J Biol Chem 2009; 284:33683-91. [PMID: 19808683 DOI: 10.1074/jbc.m109.044024] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most apicomplexan parasites harbor a relict chloroplast, the apicoplast, that is critical for their survival. Whereas the apicoplast maintains a small genome, the bulk of its proteins are nuclear encoded and imported into the organelle. Several models have been proposed to explain how proteins might cross the four membranes that surround the apicoplast; however, experimental data discriminating these models are largely missing. Here we present genetic evidence that apicoplast protein import depends on elements derived from the ER-associated protein degradation (ERAD) system of the endosymbiont. We identified two sets of ERAD components in Toxoplasma gondii, one associated with the ER and cytoplasm and one localized to the membranes of the apicoplast. We engineered a conditional null mutant in apicoplast Der1, the putative pore of the apicoplast ERAD complex, and found that loss of Der1(Ap) results in loss of apicoplast protein import and subsequent death of the parasite.
Collapse
Affiliation(s)
- Swati Agrawal
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
32
|
Sadovskaya TA, Seliverstov AV. Analysis of the 5′-leader regions of several plastid genes in protozoa of the phylum apicomplexa and red algae. Mol Biol 2009. [DOI: 10.1134/s0026893309040037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Günther S, Matuschewski K, Müller S. Knockout studies reveal an important role of Plasmodium lipoic acid protein ligase A1 for asexual blood stage parasite survival. PLoS One 2009; 4:e5510. [PMID: 19434237 PMCID: PMC2677453 DOI: 10.1371/journal.pone.0005510] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 04/08/2009] [Indexed: 01/12/2023] Open
Abstract
Lipoic acid (LA) is a dithiol-containing cofactor that is essential for the function of α-keto acid dehydrogenase complexes. LA acts as a reversible acyl group acceptor and ‘swinging arm’ during acyl-coenzyme A formation. The cofactor is post-translationally attached to the acyl-transferase subunits of the multienzyme complexes through the action of octanoyl (lipoyl): N-octanoyl (lipoyl) transferase (LipB) or lipoic acid protein ligases (LplA). Remarkably, apicomplexan parasites possess LA biosynthesis as well as scavenging pathways and the two pathways are distributed between mitochondrion and a vestigial organelle, the apicoplast. The apicoplast-specific LipB is dispensable for parasite growth due to functional redundancy of the parasite's lipoic acid/octanoic acid ligases/transferases. In this study, we show that LplA1 plays a pivotal role during the development of the erythrocytic stages of the malaria parasite. Gene disruptions in the human malaria parasite P. falciparum consistently were unsuccessful while in the rodent malaria model parasite P. berghei the LplA1 gene locus was targeted by knock-in and knockout constructs. However, the LplA1(−) mutant could not be cloned suggesting a critical role of LplA1 for asexual parasite growth in vitro and in vivo. These experimental genetics data suggest that lipoylation during expansion in red blood cells largely occurs through salvage from the host erythrocytes and subsequent ligation of LA to the target proteins of the malaria parasite.
Collapse
Affiliation(s)
- Svenja Günther
- Division of Infection & Immunity and Wellcome Centre for Parasitology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kai Matuschewski
- Department of Parasitology, Heidelberg University, School of Medicine, Im Neuenheimer Feld, Heidelberg, Germany
| | - Sylke Müller
- Division of Infection & Immunity and Wellcome Centre for Parasitology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Günther S, Storm J, Müller S. Plasmodium falciparum: Organelle-specific acquisition of lipoic acid. Int J Biochem Cell Biol 2009; 41:748-52. [DOI: 10.1016/j.biocel.2008.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/22/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
|
35
|
Seeber F, Limenitakis J, Soldati-Favre D. Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. Trends Parasitol 2008; 24:468-78. [PMID: 18775675 DOI: 10.1016/j.pt.2008.07.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 11/15/2022]
Abstract
Apicomplexans form a large group of obligate intracellular parasites that occupy diverse environmental niches. To adapt to their hosts, these parasites have evolved sophisticated strategies to access host-cell nutrients and minimize exposure to the host's defence mechanisms. Concomitantly, they have drastically reshaped their own metabolic functions by retaining, losing or gaining genes for metabolic enzymes. Although several Apicomplexans remain experimentally intractable, bioinformatic analyses of their genomes have generated preliminary metabolic maps. Here, we compare the metabolic pathways of five Apicomplexans, focusing on their different mitochondrial functions, which highlight their adaptation to their individual intracellular habitats.
Collapse
Affiliation(s)
- Frank Seeber
- Molecular Parasitology, Institute for Biology, Humboldt University, Philippstr. 13, 10115 Berlin, Germany
| | | | | |
Collapse
|
36
|
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can infect virtually any nucleated cell. During invasion Toxoplasma creates the parasitophorous vacuole, a subcellular compartment that acts as an interface between the parasite and host, and serves as a platform for modulation of host cell functions that support parasite replication and infection. Spatial reorganization of host organelles and cytoskeleton around the parasitophorous vacuole are observed following entry, and recent evidence suggests this interior redecorating promotes parasite nutrient acquisition. New findings also reveal that Toxoplasma manipulates host signaling pathways by deploying parasite kinases and a phosphatase, including at least two that infiltrate the host nucleus. Toxoplasma infection additionally controls several cellular pathways to establish an anti-apoptotic environment, and subverts immune cells as a conduit for dissemination. In this review we discuss these recent developments in understanding how Toxoplasma achieves widespread success as a human and animal parasite by manipulating its host.
Collapse
Affiliation(s)
- J Laliberté
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5751 Medical Science Building II, Ann Arbor, Michigan 48109-0620, USA.
| | | |
Collapse
|
37
|
Günther S, Wallace L, Patzewitz EM, McMillan PJ, Storm J, Wrenger C, Bissett R, Smith TK, Müller S. Apicoplast lipoic acid protein ligase B is not essential for Plasmodium falciparum. PLoS Pathog 2008; 3:e189. [PMID: 18069893 PMCID: PMC2134950 DOI: 10.1371/journal.ppat.0030189] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/26/2007] [Indexed: 11/19/2022] Open
Abstract
Lipoic acid (LA) is an essential cofactor of alpha-keto acid dehydrogenase complexes (KADHs) and the glycine cleavage system. In Plasmodium, LA is attached to the KADHs by organelle-specific lipoylation pathways. Biosynthesis of LA exclusively occurs in the apicoplast, comprising octanoyl-[acyl carrier protein]: protein N-octanoyltransferase (LipB) and LA synthase. Salvage of LA is mitochondrial and scavenged LA is ligated to the KADHs by LA protein ligase 1 (LplA1). Both pathways are entirely independent, suggesting that both are likely to be essential for parasite survival. However, disruption of the LipB gene did not negatively affect parasite growth despite a drastic loss of LA (>90%). Surprisingly, the sole, apicoplast-located pyruvate dehydrogenase still showed lipoylation, suggesting that an alternative lipoylation pathway exists in this organelle. We provide evidence that this residual lipoylation is attributable to the dual targeted, functional lipoate protein ligase 2 (LplA2). Localisation studies show that LplA2 is present in both mitochondrion and apicoplast suggesting redundancy between the lipoic acid protein ligases in the erythrocytic stages of P. falciparum.
Collapse
Affiliation(s)
- Svenja Günther
- Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Parasitology, Glasgow, United Kingdom
| | - Lynsey Wallace
- Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Parasitology, Glasgow, United Kingdom
| | - Eva-Maria Patzewitz
- Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Parasitology, Glasgow, United Kingdom
| | - Paul J McMillan
- Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Parasitology, Glasgow, United Kingdom
| | - Janet Storm
- Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Parasitology, Glasgow, United Kingdom
| | - Carsten Wrenger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ryan Bissett
- Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Parasitology, Glasgow, United Kingdom
| | - Terry K Smith
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sylke Müller
- Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Parasitology, Glasgow, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Is dihydrolipoic acid among the reductive activators of parasite CysHis proteases? Exp Parasitol 2007; 118:604-13. [PMID: 18068706 DOI: 10.1016/j.exppara.2007.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 10/19/2007] [Accepted: 11/02/2007] [Indexed: 11/23/2022]
Abstract
Activities of mature CysHis proteases depend upon relative rates of oxidations vs. reductions of catalytic sulfur by multiple enzymatic and non-enzymatic reactions. CysHis peptidolysis is inhibited by Fe3+ but not Fe2+. Others report the paradox that malarial parasites require exogenous free lipoic acid (LA) from human host, although the apicoplast organelle produces it. Extra-cellular LA disulfide can be taken up and reduced to dihydrolipoic acid (DHLA) by reductases of any cell type. Here, the opposing effects of DHLA vs. Fe3+ on the falcipain-2 hemoglobinase were investigated employing Z-Phe-Arg-AMC substrate. Despite limited solubility, non-regenerated DHLA (10 microM, threshold 2 microM) was found to be the most potent activator of the air-inactivated (sulfoxygenated) protease discovered thus far. Activation was preemptively opposed by Fe3+, but not Fe2+. However, cruzain from T. cruzi, and cathepsin B from mammal were indistinguishable in their responsiveness to DHLA and Fe redox. Thus, DHLA activation vs. Fe3+ inhibition is not unique to falcipain-2 or apicomplexans but is rather a primordial feature of CysHis peptidolysis. Free LA and/or unassociated lipoylated enzyme subunits could be among multiple pathways shuttling reducing equivalents to reduction of proteins, including CysHis proteases. It is discussed that opposing DHLA-Fe3+ modification of plasmodial proteolysis might be a specialized adaptation to intra-erythrocytic growth.
Collapse
|
39
|
Mazumdar J, Striepen B. Make it or take it: fatty acid metabolism of apicomplexan parasites. EUKARYOTIC CELL 2007; 6:1727-35. [PMID: 17715365 PMCID: PMC2043401 DOI: 10.1128/ec.00255-07] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jolly Mazumdar
- Department of Cellular Biology, University of Georgia, Paul D Coverdell Center, Athens, GA 30602, USA
| | | |
Collapse
|
40
|
Allary M, Lu JZ, Zhu L, Prigge ST. Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum. Mol Microbiol 2007; 63:1331-44. [PMID: 17244193 PMCID: PMC2796473 DOI: 10.1111/j.1365-2958.2007.05592.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Plasmodium falciparum possesses genes for lipoate biosynthesis and scavenging, but it is not known if these pathways are functional, nor what their relative contribution to the survival of intraerythrocytic parasites might be. We detected in parasite extracts four lipoylated proteins, one of which cross-reacted with antibodies against the E2 subunit of apicoplast-localized pyruvate dehydrogenase (PDH). Two highly divergent parasite lipoate ligase A homologues (LplA), LipL1 (previously identified as LplA) and LipL2, restored lipoate scavenging in lipoylation-deficient bacteria, indicating that Plasmodium has functional lipoate-scavenging enzymes. Accordingly, intraerythrocytic parasites scavenged radiolabelled lipoate and incorporated it into three proteins likely to be mitochondrial. Scavenged lipoate was not attached to the PDH E2 subunit, implying that lipoate scavenging drives mitochondrial lipoylation, while apicoplast lipoylation relies on biosynthesis. The lipoate analogue 8-bromo-octanoate inhibited LipL1 activity and arrested P. falciparum in vitro growth, decreasing the incorporation of radiolabelled lipoate into parasite proteins. Furthermore, growth inhibition was prevented by lipoate addition in the medium. These results are consistent with 8-bromo-octanoate specifically interfering with lipoate scavenging. Our study suggests that lipoate metabolic pathways are not redundant, and that lipoate scavenging is critical for Plasmodium intraerythrocytic survival.
Collapse
Affiliation(s)
- Marina Allary
- Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jeff Zhiqiang Lu
- Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Liqun Zhu
- Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sean T. Prigge
- Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Milani M, Balconi E, Aliverti A, Mastrangelo E, Seeber F, Bolognesi M, Zanetti G. Ferredoxin-NADP+ reductase from Plasmodium falciparum undergoes NADP+-dependent dimerization and inactivation: functional and crystallographic analysis. J Mol Biol 2007; 367:501-13. [PMID: 17258767 DOI: 10.1016/j.jmb.2007.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/22/2006] [Accepted: 01/03/2007] [Indexed: 11/30/2022]
Abstract
The completion of the Plasmodium falciparum genome sequence has recently promoted the search for new antimalarial drugs. More specifically, metabolic pathways of the apicoplast, a key organelle for survival of the parasite, have been recognized as potential targets for the development of specific new antimalarial agents. As most apicomplexan parasites, P. falciparum displays a plant-type ferredoxin-NADP(+) reductase, yielding reduced ferredoxin for essential biosynthetic pathways in the apicoplast. Here we report a molecular, kinetic and ligand binding characterization of the recombinant ferredoxin-NADP(+) reductase from P. falciparum, in the light of current data available for plant ferredoxin-NADP(+) reductases. In parallel with the functional characterization, we describe the crystal structures of P. falciparum ferredoxin-NADP(+) reductase in free form and in complex with 2'-phospho-AMP (at 2.4 and 2.7 A resolution, respectively). The enzyme displays structural properties likely to be unique to plasmodial reductases. In particular, the two crystal structures highlight a covalent dimer, which relies on the oxidation of residue Cys99 in two opposing subunits, and a helix-coil transition that occurs in the NADP-binding domain, triggered by 2'-phospho-AMP binding. Studies in solution show that NADP(+), as well as 2'-phospho-AMP, promotes the formation of the disulfide-stabilized dimer. The isolated dimer is essentially inactive, but full activity is recovered upon disulfide reduction. The occurrence of residues unique to the plasmodial enzyme, and the discovery of specific conformational properties, highlight the NADP-binding domain of P. falciparum ferredoxin-NADP(+) reductase as particularly suited for the rational development of antimalarial compounds.
Collapse
Affiliation(s)
- Mario Milani
- CNR-INFM, Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133-Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Mazumdar J, H. Wilson E, Masek K, A. Hunter C, Striepen B. Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc Natl Acad Sci U S A 2006; 103:13192-7. [PMID: 16920791 PMCID: PMC1559775 DOI: 10.1073/pnas.0603391103] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apicomplexan parasites are the cause of numerous important human diseases including malaria and AIDS-associated opportunistic infections. Drug treatment for these diseases is not satisfactory and is threatened by resistance. The discovery of the apicoplast, a chloroplast-like organelle, presents drug targets unique to these parasites. The apicoplast-localized fatty acid synthesis (FAS II) pathway, a metabolic process fundamentally divergent from the analogous FAS I pathway in humans, represents one such target. However, the specific biological roles of apicoplast FAS II remain elusive. Furthermore, the parasite genome encodes additional and potentially redundant pathways for the synthesis of fatty acids. We have constructed a conditional null mutant of acyl carrier protein, a central component of the FAS II pathway in Toxoplasma gondii. Loss of FAS II severely compromises parasite growth in culture. We show FAS II to be required for the activation of pyruvate dehydrogenase, an important source of the metabolic precursor acetyl-CoA. Interestingly, acyl carrier protein knockout also leads to defects in apicoplast biogenesis and a consequent loss of the organelle. Most importantly, in vivo knockdown of apicoplast FAS II in a mouse model results in cure from a lethal challenge infection. In conclusion, our study demonstrates a direct link between apicoplast FAS II functions and parasite survival and pathogenesis. Our genetic model also offers a platform to dissect the integration of the apicoplast into parasite metabolism, especially its postulated interaction with the mitochondrion.
Collapse
Affiliation(s)
| | - Emma H. Wilson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| | - Kate Masek
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| | - Boris Striepen
- *Department of Cellular Biology and
- Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D. W. Brooks Drive, Athens, GA 30602; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Crawford MJ, Thomsen-Zieger N, Ray M, Schachtner J, Roos DS, Seeber F. Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO J 2006; 25:3214-22. [PMID: 16778769 PMCID: PMC1500979 DOI: 10.1038/sj.emboj.7601189] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 05/17/2006] [Indexed: 11/09/2022] Open
Abstract
In contrast to other eukaryotes, which manufacture lipoic acid, an essential cofactor for several vital dehydrogenase complexes, within the mitochondrion, we show that the plastid (apicoplast) of the obligate intracellular protozoan parasite Toxoplasma gondii is the only site of de novo lipoate synthesis. However, antibodies specific for protein-attached lipoate reveal the presence of lipoylated proteins in both, the apicoplast and the mitochondrion of T. gondii. Cultivation of T. gondii-infected cells in lipoate-deficient medium results in substantially reduced lipoylation of mitochondrial (but not apicoplast) proteins. Addition of exogenous lipoate to the medium can rescue this effect, showing that the parasite scavenges this cofactor from the host. Exposure of T. gondii to lipoate analogues in lipoate-deficient medium leads to growth inhibition, suggesting that T. gondii might be auxotrophic for this cofactor. Phylogenetic analyses reveal the secondary loss of the mitochondrial lipoate synthase gene after the acquisition of the plastid. Our studies thus reveal an unexpected metabolic deficiency in T. gondii and raise the question whether the close interaction of host mitochondria with the parasitophorous vacuole is connected to lipoate supply by the host.
Collapse
Affiliation(s)
- Michael J Crawford
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Manisha Ray
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Frank Seeber
- FB Biologie, Parasitologie, Philipps Universität, Marburg, Germany
- FB Biologie, Parasitologie, Universität Marburg, Karl-von-Frisch-Str., 35043 Marburg, Germany. Tel.: +49 6421 2823498; Fax: +49 6421 2821531; E-mail:
| |
Collapse
|
44
|
Ma Q, Zhao X, Eddine AN, Geerlof A, Li X, Cronan JE, Kaufmann SHE, Wilmanns M. The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase. Proc Natl Acad Sci U S A 2006; 103:8662-7. [PMID: 16735476 PMCID: PMC1472244 DOI: 10.1073/pnas.0510436103] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipoic acid is essential for the activation of a number of protein complexes involved in key metabolic processes. Growth of Mycobacterium tuberculosis relies on a pathway in which the lipoate attachment group is synthesized from an endogenously produced octanoic acid moiety. In patients with multiple-drug-resistant M. tuberculosis, expression of one gene from this pathway, lipB, encoding for octanoyl-[acyl carrier protein]-protein acyltransferase is considerably up-regulated, thus making it a potential target in the search for novel antiinfectives against tuberculosis. Here we present the crystal structure of the M. tuberculosis LipB protein at atomic resolution, showing an unexpected thioether-linked active-site complex with decanoic acid. We provide evidence that the transferase functions as a cysteine/lysine dyad acyltransferase, in which two invariant residues (Lys-142 and Cys-176) are likely to function as acid/base catalysts. Analysis by MS reveals that the LipB catalytic reaction proceeds by means of an internal thioesteracyl intermediate. Structural comparison of LipB with lipoate protein ligase A indicates that, despite conserved structural and sequence active-site features in the two enzymes, 4'-phosphopantetheine-bound octanoic acid recognition is a specific property of LipB.
Collapse
Affiliation(s)
- Qingjun Ma
- *EMBL–Hamburg Unit, European Molecular Biology Laboratory, Notkestrasse 85, 22603 Hamburg, Germany
| | - Xin Zhao
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, IL 61801
| | - Ali Nasser Eddine
- Department of Immunology, Max Planck Institute for Infection Biology, Schumannstrasse 21/22, 10117 Berlin, Germany; and
| | - Arie Geerlof
- *EMBL–Hamburg Unit, European Molecular Biology Laboratory, Notkestrasse 85, 22603 Hamburg, Germany
| | - Xinping Li
- Proteomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - John E. Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, IL 61801
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Schumannstrasse 21/22, 10117 Berlin, Germany; and
| | - Matthias Wilmanns
- *EMBL–Hamburg Unit, European Molecular Biology Laboratory, Notkestrasse 85, 22603 Hamburg, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Zhao X, Miller JR, Cronan JE. The reaction of LipB, the octanoyl-[acyl carrier protein]:protein N-octanoyltransferase of lipoic acid synthesis, proceeds through an acyl-enzyme intermediate. Biochemistry 2006; 44:16737-46. [PMID: 16342964 DOI: 10.1021/bi051865y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lipB gene of Escherichia coli encodes an enzyme (LipB) that transfers the octanoyl moiety of octanoyl-acyl carrier protein (octanoyl-ACP) to the lipoyl domains of the 2-oxo acid dehydrogenases and the H subunit of glycine cleavage enzyme. We report that the LipB reaction proceeds through an acyl-enzyme intermediate in which the octanoyl moiety forms a thioester bond with the thiol of residue C169. The intermediate was catalytically competent in that the octanoyl group of the purified octanoylated LipB was transferred either to an 87-residue lipoyl domain derived from E. coli pyruvate dehydrogenase or to ACP (in the reversal of the physiological reaction). The octanoylated LipB linkage was cleaved by thiol reagents and by neutral hydroxylamine, strongly suggesting a thioester bond. Separation and mass spectral analyses of the peptides of the unmodified and octanoylated proteins showed that each of the assigned peptides of the two proteins had identical masses, indicating that none of these peptides were octanoylated. However, the one major peptide that we failed to recover was that predicted to contain all three LipB cysteine residues. These three cysteine residues were therefore targeted for site-directed mutagenesis and only C169 was found to be essential for LipB function in vivo. The C169S protein had no detectable activity whereas the C169A protein retained trace activity. Surprisingly, both proteins lacking C169 formed an octanoyl-LipB species, although neither was catalytically competent. The octanoyl-LipB species formed by the C169S protein was resistant to neutral hydroxylamine treatment, consistent with formation of an ester linkage to the serine hydroxyl group. The octanoyl-C169A LipB species was probably acylated at C147. LipB species that lacked all three cysteine residues also formed a catalytically incompetent octanoyl adduct, indicating the presence of a reactive side chain other than a cysteine thiol that lies adjacent to the active site.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
46
|
Plasmodium falciparum possesses organelle-specific α-keto acid dehydrogenase complexes and lipoylation pathways. Biochem Soc Trans 2005. [DOI: 10.1042/bst0330977] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human malaria parasite Plasmodium falciparum possesses a single mitochondrion and a plastid-like organelle called the apicoplast. Both organelles contain members of the KADH (α-keto acid dehydrogenase) complexes – multienzyme complexes that are involved in intermediate metabolism. In the asexual blood stage forms of the parasites, the α-ketoglutarate dehydrogenase and branched chain KADH complexes are both located in the mitochondrion, whereas the pyruvate dehydrogenase is exclusively found in the apicoplast. In agreement with this distribution, Plasmodium parasites have two separate and organelle-specific pathways that guarantee lipoylation of the KADH complexes in both organelles. A biosynthetic pathway comprised of lipoic acid synthase and lipoyl (octanoyl)-ACP:protein Nε-lipoyltransferase B is present in the apicoplast, whereas the mitochondrion is supplied with exogenous lipoic acid, and ligation of the metabolite to the KADH complexes is accomplished by a lipoate protein ligase A similar to that of bacteria and plants. Both pathways are excellent potential targets for the design of new antimalarial drugs.
Collapse
|
47
|
Foth BJ, Stimmler LM, Handman E, Crabb BS, Hodder AN, McFadden GI. The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol 2005; 55:39-53. [PMID: 15612915 DOI: 10.1111/j.1365-2958.2004.04407.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The relict plastid (apicoplast) of apicomplexan parasites synthesizes fatty acids and is a promising drug target. In plant plastids, a pyruvate dehydrogenase complex (PDH) converts pyruvate into acetyl-CoA, the major fatty acid precursor, whereas a second, distinct PDH fuels the tricarboxylic acid cycle in the mitochondria. In contrast, the presence of genes encoding PDH and related enzyme complexes in the genomes of five Plasmodium species and of Toxoplasma gondii indicate that these parasites contain only one single PDH. PDH complexes are comprised of four subunits (E1alpha, E1beta, E2, E3), and we confirmed four genes encoding a complete PDH in Plasmodium falciparum through sequencing of cDNA clones. In apicomplexan parasites, many nuclear-encoded proteins are targeted to the apicoplast courtesy of two-part N-terminal leader sequences, and the presence of such N-terminal sequences on all four PDH subunits as well as phylogenetic analyses strongly suggest that the P. falciparum PDH is located in the apicoplast. Fusion of the two-part leader sequences from the E1alpha and E2 genes to green fluorescent protein experimentally confirmed apicoplast targeting. Western blot analysis provided evidence for the expression of the E1alpha and E1beta PDH subunits in blood-stage malaria parasites. The recombinantly expressed catalytic domain of the PDH subunit E2 showed high enzymatic activity in vitro indicating that pyruvate is converted to acetyl-CoA in the apicoplast, possibly for use in fatty acid biosynthesis.
Collapse
Affiliation(s)
- Bernardo J Foth
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Wiesner J, Seeber F. The plastid-derived organelle ofprotozoan human parasites asa target of established and emerging drugs. Expert Opin Ther Targets 2005; 9:23-44. [PMID: 15757480 DOI: 10.1517/14728222.9.1.23] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human diseases like malaria, toxoplasmosis or cryptosporidiosis are caused by intracellular protozoan parasites of the phylum Apicomplexa and are still a major health problem worldwide. In the case of Plasmodium falciparum, the causative agent of tropical malaria, resistance against previously highly effective drugs is widespread and requires the continued development of new and affordable drugs. Most apicomplexan parasites possess a single plastid-derived organelle called apicoplast, which offers the great opportunity to tailor highly specific inhibitors against vital metabolic pathways resident in this compartment. This is due to the fact that several of these pathways, being of bacterial or algal origin, are absent in the mammalian host. In fact, the targets of several antibiotics already in use for years against some of these diseases can now be traced to the apicoplast and by knowing the molecular entities which are affected by these substances, improved drugs or drug combinations can be envisaged to emerge from this knowledge. Likewise, apicoplast-resident pathways like fatty acid or isoprenoid biosynthesis have already been proven to be the likely targets of the next drug generation. In this review the current knowledge on the different targets and available inhibitors (both established and experimental) will be summarised and an overview of the clinical efficacy of drugs that inhibit functions in the apicoplast and which have been tested in humans so far will be given.
Collapse
Affiliation(s)
- Jochen Wiesner
- Justus-Liebig-Universität Giessen, Biochemisches Institut, Friedrichstr. 24, D-35392 Giessen, Germany
| | | |
Collapse
|
49
|
Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2005; 2:203-16. [PMID: 15083156 DOI: 10.1038/nrmicro843] [Citation(s) in RCA: 444] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stuart A Ralph
- Institut Pasteur, Biology of Host-Parasite Interactions, 25 Rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gubbels MJ, Wieffer M, Striepen B. Fluorescent protein tagging in Toxoplasma gondii: identification of a novel inner membrane complex component conserved among Apicomplexa. Mol Biochem Parasitol 2005; 137:99-110. [PMID: 15279956 DOI: 10.1016/j.molbiopara.2004.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Revised: 05/05/2004] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite, and its sub-cellular organization shows clear adaptations to this life-style. In addition to organelles shared among all eukaryotes, the organism possesses a number of specialized compartments with important roles in host cell invasion and intra-cellular survival. These unique aspects of the parasite's biology are also reflected in its genome. The ongoing genome sequencing efforts for T. gondii and related apicomplexans predict a high proportion of genes unique to the phylum, which lack homologs in other model organisms. Knowing the sub-cellular localization of these gene products will be an important first step towards their functional characterization. We used a library approach wherein parasite genomic DNA was fused to the yellow fluorescent protein (YFP) gene. Parasites transformed with this library were screened by flow cytometry and fluorescence microscopy. Clones tagged in a wide variety of sub-cellular compartments (nucleus, mitochondria, ER, dense granules (secreted), spliceosome, plasma membrane, apicoplast, inner membrane complex) were isolated and confirmed using compartment specific markers. Clones with tags in parasite-specific localizations were subjected to insert rescue and phenotypic verification using an in vitro recombination system. Among the genes identified is a novel inner membrane complex gene (IMC3) conserved among Apicomplexa.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Center for Tropical and Emerging Global Diseases, University of Georgia, 724 Biological Sciences Building, Athens 30602, USA
| | | | | |
Collapse
|