1
|
Zaki M, Rajkhowa R, Holland C, Razal JM, Hegh DY, Mota-Santiago P, Lynch P, Allardyce BJ. Recreating Silk's Fibrillar Nanostructure by Spinning Solubilized, Undegummed Silk. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413786. [PMID: 39821271 DOI: 10.1002/adma.202413786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/19/2024] [Indexed: 01/19/2025]
Abstract
The remarkable toughness (>70 MJ m-3) of silkworm silk is largely attributed to its hierarchically arranged nanofibrillar nanostructure. Recreating such tough fibers through artificial spinning is often challenging, in part because degummed, dissolved silk is drastically different to the unspun native feedstock found in the spinning gland. The present work demonstrates a method to dissolve silk without degumming to produce a solution containing undegraded fibroin and sericin. This solution exhibits liquid-liquid phase separation above 10% (wt/wt), a behavior observed in the silk gland but not in degummed silk solutions to date. This partitioning enhances the stability of the undegummed solution, delaying gelation two-fold compared with degummed silk at the same concentration. When spun under identical conditions, undegummed solutions produces fibers 8× stronger and 218× tougher than degummed silk feedstocks. Through ultrasonication, undegummed wet spun fibers are seen to possess hierarchical structure of densely packed ≈20 nm nanofibrils, similar to native silks, although completely absent from fibers wet-spun from degummed silk solutions. This work demonstrates that the preservation of molecular weight, presence of sericin and stimulation of liquid-liquid phase separation underpin a new pathway to recreate a hierarchical fiber with structures akin to native silk.
Collapse
Affiliation(s)
- Martin Zaki
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Chris Holland
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Joselito Macabuhay Razal
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Dylan Yalmar Hegh
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Pablo Mota-Santiago
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Peter Lynch
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Benjamin James Allardyce
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons Road, Geelong, VIC, 3216, Australia
| |
Collapse
|
2
|
Rong W, Wei Y, Chen Y, Huang L, Huang S, Lv Y, Guan D, Li X. 16S rRNA Sequencing Analysis Uncovers Dose-Dependent Cupric Chloride Effects on Silkworm Gut Microbiome Composition and Diversity. Animals (Basel) 2024; 14:3634. [PMID: 39765538 PMCID: PMC11672621 DOI: 10.3390/ani14243634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Copper-based pesticides are extensively used in agriculture, yet their impacts on beneficial insects remain poorly understood. Here, we investigate how cupric chloride exposure affects the gut microbiome of Bombyx mori, a model organism crucial for silk production. Using 16S rRNA sequencing, we analyzed the gut bacterial communities of fifth-instar silkworm larvae exposed to different concentrations of cupric chloride (0, 4, and 8 g/kg) in an artificial diet. The high-dose exposure dramatically altered the microbial diversity and community structure, where the Bacteroidota abundance decreased from 50.43% to 23.50%, while Firmicutes increased from 0.93% to 18.92%. A network analysis revealed complex interactions between the bacterial genera, with Proteobacteria and Firmicutes emerging as key players in the community response to copper stress. The functional prediction indicated significant shifts in metabolic pathways and genetic information processing in the high-dose group. Notably, the low-dose treatment induced minimal changes in both the taxonomic composition and predicted functions, suggesting a threshold effect in the microbiome response to copper exposure. Our findings provide novel insights into how agricultural chemicals influence insect gut microbiota and highlight potential implications for silkworm health and silk production. This work contributes to understanding the ecological impacts of copper-based pesticides and may inform evidence-based policies for their use in sericulture regions.
Collapse
Affiliation(s)
- Wantao Rong
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Yanqi Wei
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Yazhen Chen
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Lida Huang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
| | - Shuiwang Huang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
| | - Yiwei Lv
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
| | - Delong Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China; (W.R.); (Y.W.); (Y.C.); (L.H.); (S.H.); (Y.L.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546399, China
| |
Collapse
|
3
|
Brookstein O, Shimoni E, Eliaz D, Kaplan-Ashiri I, Carmel I, Shimanovich U. Metal ions guide the production of silkworm silk fibers. Nat Commun 2024; 15:6671. [PMID: 39107276 PMCID: PMC11303403 DOI: 10.1038/s41467-024-50879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
Silk fibers' unique mechanical properties have made them desirable materials, yet their formation mechanism remains poorly understood. While ions are known to support silk fiber production, their exact role has thus far eluded discovery. Here, we use cryo-electron microscopy coupled with elemental analysis to elucidate the changes in the composition and spatial localization of metal ions during silk evolution inside the silk gland. During the initial protein secretion and storage stages, ions are homogeneously dispersed in the silk gland. Once the fibers are spun, the ions delocalize from the fibroin core to the sericin-coating layer, a process accompanied by protein chain alignment and increased feedstock viscosity. This change makes the protein more shear-sensitive and initiates the liquid-to-solid transition. Selective metal ion doping modifies silk fibers' mechanical performance. These findings enhance our understanding of the silk fiber formation mechanism, laying the foundations for developing new concepts in biomaterial design.
Collapse
Affiliation(s)
- Ori Brookstein
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Dror Eliaz
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Itay Carmel
- Department of Chemical and Structural Biology, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
4
|
Mu X, Amouzandeh R, Vogts H, Luallen E, Arzani M. A brief review on the mechanisms and approaches of silk spinning-inspired biofabrication. Front Bioeng Biotechnol 2023; 11:1252499. [PMID: 37744248 PMCID: PMC10512026 DOI: 10.3389/fbioe.2023.1252499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Silk spinning, observed in spiders and insects, exhibits a remarkable biological source of inspiration for advanced polymer fabrications. Because of the systems design, silk spinning represents a holistic and circular approach to sustainable polymer fabrication, characterized by renewable resources, ambient and aqueous processing conditions, and fully recyclable "wastes." Also, silk spinning results in structures that are characterized by the combination of monolithic proteinaceous composition and mechanical strength, as well as demonstrate tunable degradation profiles and minimal immunogenicity, thus making it a viable alternative to most synthetic polymers for the development of advanced biomedical devices. However, the fundamental mechanisms of silk spinning remain incompletely understood, thus impeding the efforts to harness the advantageous properties of silk spinning. Here, we present a concise and timely review of several essential features of silk spinning, including the molecular designs of silk proteins and the solvent cues along the spinning apparatus. The solvent cues, including salt ions, pH, and water content, are suggested to direct the hierarchical assembly of silk proteins and thus play a central role in silk spinning. We also discuss several hypotheses on the roles of solvent cues to provide a relatively comprehensive analysis and to identify the current knowledge gap. We then review the state-of-the-art bioinspired fabrications with silk proteins, including fiber spinning and additive approaches/three-dimensional (3D) printing. An emphasis throughout the article is placed on the universal characteristics of silk spinning developed through millions of years of individual evolution pathways in spiders and silkworms. This review serves as a stepping stone for future research endeavors, facilitating the in vitro recapitulation of silk spinning and advancing the field of bioinspired polymer fabrication.
Collapse
Affiliation(s)
- Xuan Mu
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | | | | | | | | |
Collapse
|
5
|
Liu Q, Wang X, Zhou Y, Tan X, Xie X, Li Y, Dong H, Tang Z, Zhao P, Xia Q. Dynamic Changes and Characterization of the Metal Ions in the Silk Glands and Silk Fibers of Silkworm. Int J Mol Sci 2023; 24:ijms24076556. [PMID: 37047527 PMCID: PMC10094808 DOI: 10.3390/ijms24076556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Metal ions are involved in the conformational transition of silk fibroin and influence the structure and mechanical properties of silk fibers. However, the dynamic characteristics of metal ions during the formation of silk fibers remain unclear. In this study, we found that the silk glands of silkworms contain various metal elements, with varying levels of the metal elements in different zones of the glands and higher levels in the anterior silk glands. Additionally, the content of various metallic elements in the silk glands varied greatly before and after spinning, similar to their content in different cocoon layers, thus, indicating that the anterior silk glands maintain a certain metal ion environment for the transport and conformational transformation of the silk proteins. Most of the metallic elements located in fibroin were confirmed using degumming experiments. For the first time, a scanning electron microscope energy spectrometry system was used to characterize the metal elements in the cross-section of silk and cocoons. These findings have deepened our understanding of the relationship between the overall metal ion environment and silk fiber formation and help us further conceptualize the utilization of metal ions as targets to improve the mechanical properties of the silk fibers.
Collapse
|
6
|
Qu J, Feng P, Zhu Q, Ren Y, Li B. Study on the Effect of Stretching on the Strength of Natural Silk Based on Different Feeding Methods. ACS Biomater Sci Eng 2021; 8:100-108. [PMID: 34918508 DOI: 10.1021/acsbiomaterials.1c01256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Silk is an important biological protein fiber, which has been widely developed and used in textile and biomedical fields due to its excellent mechanical properties and good biocompatibility. Strength is an important indicator that determines the value and use of silk. Although investigations have been made on the mechanical properties of silkworm silks and their dependence relationship with the microstructures, the variation of silk strength formed in the process of silkworm spinning has not been reported. By feeding the same strain of silkworms with mulberry leaves, mulberry leaves + artificial feed, and artificial feed, silks with three filament sizes were obtained, respectively. The tensile test results showed that the strength and filament size of silk are inversely proportional. The structure and fibrosis process of different-strength silks were analyzed. The results showed that, compared with ordinary silk, the β-sheet and crystallinity content of high-strength silk is higher, indicating that its fibrosis process is more sufficient. We proposed that the stretched degree of silk protein determines its structure and properties. During the spinning process of individual silkworms, the secretion of silk protein is not stable, which will cause changes in the stretched degree. The measurement results of the intraindividual stretched degree and strength verified that the degree of stretch determines the strength of the silk. This study not only provides a deeper understanding of the properties of silk protein but also is of interest for the design and development of advanced biomimetic silk materials.
Collapse
Affiliation(s)
- Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China.,Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
7
|
Koeppel A, Laity PR, Holland C. The influence of metal ions on native silk rheology. Acta Biomater 2020; 117:204-212. [PMID: 33007482 DOI: 10.1016/j.actbio.2020.09.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Whilst flow is the basis for silk fibre formation, subtle changes in a silk feedstocks' chemical environment may serve to increase both energetic efficiency and control hierarchical structure development during spinning. Despite the role of pH being largely understood, the influence of metal ions is not, only being inferred by correlative work and observations. Through a combination of rheology and microscopy, we provide a causative study of how the most abundant metal ions in the silk feedstock, Ca2+ and K+, affect its flow properties and structure. Our results show that Ca2+ ions increase viscosity and prevent molecular alignment and aggregation, providing ideal storage conditions for unspun silk. In contrast, the addition of K+ ions promotes molecular alignment and aggregation and therefore seems to transfer the silk feedstock into a spinning state which confirms recent 'sticky reptation' modelling hypotheses. Additionally, we characterised the influence of the ubiquitous kosmotropic agent Li+, used to prepare regenerated silk solutions, and find that it promotes molecular alignment and prevents aggregation which may permit a range of interesting artificial silk processing techniques to be developed. In summary, our results provide a clearer picture of how metal ions co-ordinate, control and thus contribute towards silk protein self-assembly which in turn can inspire structuring approaches in other biopolymer systems.
Collapse
|
8
|
Parlin AF, Stratton SM, Culley TM, Guerra PA. A laboratory-based study examining the properties of silk fabric to evaluate its potential as a protective barrier for personal protective equipment and as a functional material for face coverings during the COVID-19 pandemic. PLoS One 2020; 15:e0239531. [PMID: 32946526 PMCID: PMC7500605 DOI: 10.1371/journal.pone.0239531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
The worldwide shortage of single-use N95 respirators and surgical masks due to the COVID-19 pandemic has forced many health care personnel to use their existing equipment for as long as possible. In many cases, workers cover respirators with available masks in an attempt to extend their effectiveness against the virus. Due to low mask supplies, many people instead are using face coverings improvised from common fabrics. Our goal was to determine what fabrics would be most effective in both practices. Under laboratory conditions, we examined the hydrophobicity of fabrics (cotton, polyester, silk), as measured by their resistance to the penetration of small and aerosolized water droplets, an important transmission avenue for the virus causing COVID-19. We also examined the breathability of these fabrics and their ability to maintain hydrophobicity despite undergoing repeated cleaning. Laboratory-based tests were conducted when fabrics were fashioned as an overlaying barrier for respirators and when constructed as face coverings. When used as material in these two situations, silk was more effective at impeding the penetration and absorption of droplets due to its greater hydrophobicity relative to other tested fabrics. We found that silk face coverings repelled droplets in spray tests as well as disposable single-use surgical masks, and silk face coverings have the added advantage over masks such that they can be sterilized for immediate reuse. We show that silk is a hydrophobic barrier to droplets, can be more breathable than other fabrics that trap humidity, and are re-useable via cleaning. We suggest that silk can serve as an effective material for making hydrophobic barriers that protect respirators, and silk can now be tested under clinical conditions to verify its efficacy for this function. Although respirators are still the most appropriate form of protection, silk face coverings possess properties that make them capable of repelling droplets.
Collapse
Affiliation(s)
- Adam F. Parlin
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Samuel M. Stratton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Theresa M. Culley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
9
|
Goswami A, Devi D. Variations in the Metallic Ion Concentration in the Silk Gland and Cocoon of Silkworm Antheraea assamensis helfer. Biol Trace Elem Res 2020; 196:285-289. [PMID: 31691191 DOI: 10.1007/s12011-019-01919-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022]
Abstract
The natural spinning process in silkworms involves the conformation transition of the liquid silk protein present in the silk gland to make fiber. This conformation transition is influenced by different factors, and some studies suggested that changes in the metallic ion concentrations is one of them (Zhou et al. 2005). This study investigated the changes in the metallic ion compositions in the silk glands (before and during spinning) and cocoons of non-mulberry silkworm Antheraea assamensis helfer. Intact silk glands were dissected from mature 5th instar A. assamensis larvae. The glands were rinsed with deionized water and divided into five divisions: posterior silk gland (PSG), middle silk gland (MSG), anterior silk gland (ASG), posterior middle (PM) and anterior middle (AM) division of silk gland. Cocoon pieces and the gland parts were dried and digested in acid mixture to quantify the metallic contents in an atomic absorption spectrophotometer (Shimadzu, AA7000). We determined seven metals (Na, K, Mg, Ca, Cu, Zn, Fe) present in the different parts of the secretory pathway as well as in the fibers of A.assamensis. Our results suggested that the concentrations of Mg, Ca, Na, and K were more abundant in the gland than the Cu and Zn. Fe concentration was found comparatively less in amount in the gland. Amount of Ca found to be higher in the cocoons. The differences in the metallic ion concentrations in the gland parts before and during spinning suggested the possibility of their role in the formation of silk thread from luminal silk.
Collapse
Affiliation(s)
- Anurupa Goswami
- Seri-Biotech Laboratory, Biological and Chemical Sciences Section, Institute of Advance Study in Science and Technology (IASST) Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Dipali Devi
- Seri-Biotech Laboratory, Biological and Chemical Sciences Section, Institute of Advance Study in Science and Technology (IASST) Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
10
|
Wang H, Dong Q, Yao J, Shao Z, Ma J, Chen X. Colorless Silk/Copper Sulfide Hybrid Fiber and Fabric with Spontaneous Heating Property under Sunlight. Biomacromolecules 2020; 21:1596-1603. [PMID: 32159952 DOI: 10.1021/acs.biomac.0c00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With the increasing demand for comfort, thinness, and warmth of fabrics, various functional fibers have emerged. However, natural silkworm silk, as one of the most widely used natural fibers in textile, faces the issue that it cannot be modified during the spinning process like synthetic fibers. Herein, copper sulfide nanoparticles (CuS NPs) with a near-infrared (NIR) absorption property were first prepared by using regenerated silk fibroin (RSF) as the biological template. Then, trace CuS NPs prepared in RSF solution (no more than 100 ppm) were added into the RSF spinning dope to prepare colorless RSF/CuS hybrid fibers via wet-spinning process. The tensile test of the RSF/CuS hybrid fibers showed that the toughness was improved with the addition of CuS NPs, which completely met the requirements of textile development. The temperature of RSF/CuS hybrid fiber bundles could increase 18.5 °C within 3 min under 1064 nm laser irradiation with power density of 1.0 W/cm2. Finally, these RSF/CuS hybrid fiber bundles were woven into silk fabric or embroidered on a cotton fabric. Under the simulated sunlight, the temperature of RSF/CuS fabric could increase to more than 40 °C from room temperature. Also, as per the infrared images, the pattern of embroidery displayed a significant difference in temperature increase as compared to cotton matrix. Based on these results, an almost colorless RSF/CuS hybrid fiber that can be mass produced by wet spinning may have great potential in the fabrication of dyeable, light, and comfortable silk functional fabric with spontaneous heating characteristics under sunlight.
Collapse
Affiliation(s)
- Haipeng Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Qinglin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jimei Ma
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
11
|
Disruption of the Metal Ion Environment by EDTA for Silk Formation Affects the Mechanical Properties of Silkworm Silk. Int J Mol Sci 2019; 20:ijms20123026. [PMID: 31234286 PMCID: PMC6627089 DOI: 10.3390/ijms20123026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 11/22/2022] Open
Abstract
Silk fiber has become a research focus because of its comprehensive mechanical properties. Metal ions can influence the conformational transition of silk fibroin. Current research is mainly focused on the role of a single ion, rather than the whole metal ion environment. Here, we report the effects of the overall metal ion environment on the secondary structure and mechanical properties of silk fibers after direct injection and feeding of silkworms with EDTA. The metal composition of the hemolymph, silk gland, and silk fiber changed significantly post EDTA treatment. Synchrotron FTIR analysis indicated that the secondary structure of silk fiber after EDTA treatment changed dramatically; particularly, the β-sheets decreased and the β-turns increased. Post EDTA treatment, the silk fiber had significantly decreased strength, Young’s modulus, and toughness as compared with the control groups, while the strain exhibited no obvious change. These changes can be attributed to the change in the metal ion environment in the silk fibroin and sericin in the silk gland. Our investigation provides a new theoretical basis for the natural silk spinning process, and our findings could help develop a method to modify the mechanical properties of silk fiber using metal ions.
Collapse
|
12
|
Wang J, Zhang Y, Jin N, Mao C, Yang M. Protein-Induced Gold Nanoparticle Assembly for Improving the Photothermal Effect in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11136-11143. [PMID: 30869510 DOI: 10.1021/acsami.8b21488] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gold nanoparticles (AuNPs) are promising photothermal agents for cancer therapy. However, the absorption of spherical AuNPs is weak in the desired tissue-penetrating near-infrared (NIR) window, resulting in low photothermal efficiency within this window. Here, we show that fibrous nanostructures assembled from spherical AuNPs since the templating effect of silk fibroin (SF) could red-shift the optical absorption to NIR and thus present improved photothermal efficiency within the NIR window. Specifically, negatively charged SF, a protein derived from Bombyx mori, was assembled into nanofibers due to the interaction with the positively charged AuNPs and concomitantly templated the AuNPs into fibrous nanostructures. The resultant AuNPs/SF nanofibers presented higher NIR light absorption at 808 nm and higher photothermal efficiency under 808 nm NIR irradiation than nonassembled AuNPs. In vitro and in vivo analyses proved that AuNPs/SF nanofibers could efficiently kill breast cancer cells and destruct breast cancer tumor tissues under one-time NIR irradiation for 6 min by photothermal therapy (PTT) but nonassembled AuNPs could not. This work suggests that the self-assembled AuNPs/SF nanofibers are effective photosensitizers for PTT, and biotemplated assembly of photothermal agents into highly ordered nanostructures is a promising approach to increasing the PTT efficiency.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Applied Bioresource Research, College of Animal Science , Zhejiang University , Yuhangtang Road 866 , Hangzhou , 310058 Zhejiang , China
| | - Ying Zhang
- Institute of Applied Bioresource Research, College of Animal Science , Zhejiang University , Yuhangtang Road 866 , Hangzhou , 310058 Zhejiang , China
| | - Na Jin
- Institute of Applied Bioresource Research, College of Animal Science , Zhejiang University , Yuhangtang Road 866 , Hangzhou , 310058 Zhejiang , China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019-5251 , United States
- School of Materials Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science , Zhejiang University , Yuhangtang Road 866 , Hangzhou , 310058 Zhejiang , China
| |
Collapse
|
13
|
Cheng L, Huang H, Zeng J, Liu Z, Tong X, Li Z, Zhao H, Dai F. Effect of Different Additives in Diets on Secondary Structure, Thermal and Mechanical Properties of Silkworm Silk. MATERIALS (BASEL, SWITZERLAND) 2018; 12:E14. [PMID: 30577549 PMCID: PMC6337352 DOI: 10.3390/ma12010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
In this study, eight types of materials including nanoparticles (Cu and CaCO₃), metallic ions (Ca2+ and Cu2+), and amino acid substances (serine, tyrosine, sericin amino acid, and fibroin amino acid) were used as additives in silkworm diets to obtain in-situ modified silk fiber composites. The results indicate that tyrosine and fibroin amino acids significantly increase potassium content in silk fibers and induce the transformation of α-helices and random coils to β-sheet structures, resulting in higher crystallinities and better mechanical properties. However, the other additives-modified silk fibers show a decrease in β-sheet contents and a slight increase or even decrease in tensile strengths. This finding provides a green and effective approach to produce mechanically enhanced silk fibers with high crystallinity on a large scale. Moreover, the modification mechanisms of these additives were discussed in this study, which could offer new insights into the design and regulation of modified fibers or composites with desirable properties and functions.
Collapse
Affiliation(s)
- Lan Cheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China.
| | - Huiming Huang
- Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jingyou Zeng
- College of Biology, Hunan University, Changsha 410082, China.
| | - Zulan Liu
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Zhi Li
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China.
| | - Hongping Zhao
- Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
He Z, Liu Z, Zhou X, Huang H. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy. Proteins 2018; 86:621-628. [DOI: 10.1002/prot.25488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/08/2018] [Accepted: 02/24/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Zhipeng He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymer, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Zhao Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymer, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xiaofeng Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymer, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - He Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymer, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
15
|
Prajzler V, Min K, Kim S, Nekvindova P. The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum. MATERIALS 2018; 11:ma11010112. [PMID: 29324711 PMCID: PMC5793610 DOI: 10.3390/ma11010112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 11/16/2022]
Abstract
Silk fibroin protein has been reinvented as a new optical material for biophotonic applications because of its optical transparency, biocompatibility, and easy fabrication process. It is used in various silk-based optical devices, which makes it desirable to investigate the optical properties of silk from diverse perspectives. This paper presents our investigation of the optical properties of silk fibroin, extracted from Bombyx mori cocoons. We have measured transmission spectra from the visible to near-infrared region and investigated waveguiding properties by the prism-coupling technique for five wavelengths (473.0, 632.8, 964.0, 1311, and 1552 nm). From the measurements, we determined the values of refractive indices. The measurements also proved waveguiding properties for all of the wavelengths. Optical scattering losses were measured by the fiber probe technique at 632.8 nm and were estimated to be 0.22 dB·cm−1.
Collapse
Affiliation(s)
- Vaclav Prajzler
- Department of Microelectronics, Faculty of Electrical Engineering, Czech Technical University, Technicka 2, 168 27 Prague, Czech Republic.
| | - Kyungtaek Min
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Sunghwan Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Physics, Ajou University, Suwon 16499, Korea.
| | - Pavla Nekvindova
- Department of Inorganic Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology, Technicka 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
16
|
Rocha LK, Favaro LI, Rios AC, Silva EC, Silva WF, Stigliani TP, Guilger M, Lima R, Oliveira JM, Aranha N, Tubino M, Vila MM, Balcão VM. Sericin from Bombyx mori cocoons. Part I: Extraction and physicochemical-biological characterization for biopharmaceutical applications. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Sparkes J, Holland C. Analysis of the pressure requirements for silk spinning reveals a pultrusion dominated process. Nat Commun 2017; 8:594. [PMID: 28928362 PMCID: PMC5605702 DOI: 10.1038/s41467-017-00409-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/27/2017] [Indexed: 11/12/2022] Open
Abstract
Silks are remarkable materials with desirable mechanical properties, yet the fine details of natural production remain elusive and subsequently inaccessible to biomimetic strategies. Improved knowledge of the natural processes could therefore unlock development of a host of bio inspired fibre spinning systems. Here, we use the Chinese silkworm Bombyx mori to review the pressure requirements for natural spinning and discuss the limits of a biological extrusion domain. This provides a target for finite element analysis of the flow of silk proteins, with the aim of bringing the simulated and natural domains into closer alignment. Supported by two parallel routes of experimental validation, our results indicate that natural spinning is achieved, not by extruding the feedstock, but by the pulling of nascent silk fibres. This helps unravel the oft-debated question of whether silk is pushed or pulled from the animal, and provides impetus to the development of pultrusion-based biomimetic spinning devices.The natural production of silks remains elusive and subsequently inaccessible to biomimetic strategies. Here the authors show that silks cannot be spun by pushing alone, and that natural spinning is dominated by pultrusion, which provides design guidelines for future biomimetic spinning systems.
Collapse
Affiliation(s)
- James Sparkes
- The Natural Materials Group, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, South Yorkshire, UK
| | - Chris Holland
- The Natural Materials Group, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, South Yorkshire, UK.
| |
Collapse
|
18
|
Ngo HT, Bechtold T. Surface modification of textile material through deposition of regenerated silk fibroin. J Appl Polym Sci 2017. [DOI: 10.1002/app.45098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ha-Thanh Ngo
- Research Institute of Textile Chemistry and Textile Physics (Member of EPNOE-European Polysaccharide Network of Excellence); Leopold Franzens-University of Innsbruck; Hoechsterstraße 73 A-6850 Dornbirn
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics (Member of EPNOE-European Polysaccharide Network of Excellence); Leopold Franzens-University of Innsbruck; Hoechsterstraße 73 A-6850 Dornbirn
| |
Collapse
|
19
|
Wang X, Li Y, Liu Q, Chen Q, Xia Q, Zhao P. In vivo effects of metal ions on conformation and mechanical performance of silkworm silks. Biochim Biophys Acta Gen Subj 2016; 1861:567-576. [PMID: 27865996 DOI: 10.1016/j.bbagen.2016.11.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND The mechanism of silk fiber formation is of particular interest. Although in vitro evidence has shown that metal ions affect conformational transitions of silks, the in vivo effects of metal ions on silk conformations and mechanical performance are still unclear. METHODS This study explored the effects of metal ions on silk conformations and mechanical properties of silk fibers by adding K+ and Cu2+ into the silk fibroin solutions or injecting them into the silkworms. Aimed by CD analysis, FTIR analysis, and mechanical testing, the conformational and mechanical changes of the silks were estimated. By using BION Web Server, the interactions of K+ and N-terminal of silk fibroin were also simulated. RESULTS We presented that K+ and Cu2+ induced the conformational transitions of silk fibroin by forming β-sheet structures. Moreover, the mechanical parameters of silk fibers, such as strength, toughness and Young's modulus, were also improved after K+ or Cu2+ injection. Using BION Web Server, we found that potassium ions may have strong electrostatic interactions with the negatively charged residues. CONCLUSION We suggest that K+ and Cu2+ play crucial roles in the conformation and mechanical performances of silks and they are involved in the silk fiber formation in vivo. GENERAL SIGNIFICANCE Our results are helpful for clarifying the mechanism of silk fiber formation, and provide insights for modifying the mechanical properties of silk fibers.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, PR China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Qingsong Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Quanmei Chen
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, PR China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
20
|
Development of chemical isotope labeling liquid chromatography mass spectrometry for silkworm hemolymph metabolomics. Anal Chim Acta 2016; 942:1-11. [DOI: 10.1016/j.aca.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/15/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022]
|
21
|
Silk Spinning in Silkworms and Spiders. Int J Mol Sci 2016; 17:ijms17081290. [PMID: 27517908 PMCID: PMC5000687 DOI: 10.3390/ijms17081290] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023] Open
Abstract
Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes.
Collapse
|
22
|
Wang X, Zhao P, Li Y, Yi Q, Ma S, Xie K, Chen H, Xia Q. Modifying the Mechanical Properties of Silk Fiber by Genetically Disrupting the Ionic Environment for Silk Formation. Biomacromolecules 2015; 16:3119-25. [PMID: 26302212 DOI: 10.1021/acs.biomac.5b00724] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silks are widely used biomaterials, but there are still weaknesses in their mechanical properties. Here we report a method for improving the silk fiber mechanical properties by genetic disruption of the ionic environment for silk fiber formation. An anterior silk gland (ASG) specific promoter was identified and used for overexpressing ion-transporting protein in the ASG of silkworm. After isolation of the transgenic silkworms, we found that the metal ion content, conformation and mechanical properties of transgenic silk fibers changed accordingly. Notably, overexpressing endoplasmic reticulum Ca2+-ATPase in ASG decreased the calcium content of silks. As a consequence, silk fibers had more α-helix and β-sheet conformations, and their tenacity and extension increased significantly. These findings represent the in vivo demonstration of a correlation between metal ion content in the spinning duct and the mechanical properties of silk fibers, thus providing a novel method for modifying silk fiber properties.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University , 216 Tiansheng Road, Chongqing 400716, P. R. China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University , 216 Tiansheng Road, Chongqing 400716, P. R. China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University , 216 Tiansheng Road, Chongqing 400716, P. R. China
| | - Qiying Yi
- Animal Center, Chongqing Medical University , 1 Yixuanyuan Road, Chongqing 400016, P. R. China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University , 216 Tiansheng Road, Chongqing 400716, P. R. China
| | - Kang Xie
- State Key Laboratory of Silkworm Genome Biology, Southwest University , 216 Tiansheng Road, Chongqing 400716, P. R. China
| | - Huifang Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University , 216 Tiansheng Road, Chongqing 400716, P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University , 216 Tiansheng Road, Chongqing 400716, P. R. China
| |
Collapse
|
23
|
Mortimer B, Guan J, Holland C, Porter D, Vollrath F. Linking naturally and unnaturally spun silks through the forced reeling of Bombyx mori. Acta Biomater 2015; 11:247-55. [PMID: 25242653 DOI: 10.1016/j.actbio.2014.09.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/18/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
The forced reeling of silkworms offers the potential to produce a spectrum of silk filaments, spun from natural silk dope and subjected to carefully controlled applied processing conditions. Here we demonstrate that the envelope of stress-strain properties for forced reeled silks can encompass both naturally spun cocoon silk and unnaturally processed artificial silk filaments. We use dynamic mechanical thermal analysis (DMTA) to quantify the structural properties of these silks. Using this well-established mechanical spectroscopic technique, we show high variation in the mechanical properties and the associated degree of disordered hydrogen-bonded structures in forced reeled silks. Furthermore, we show that this disorder can be manipulated by a range of processing conditions and even ameliorated under certain parameters, such as annealing under heat and mechanical load. We conclude that the powerful combination of forced reeling silk and DMTA has tied together native/natural and synthetic/unnatural extrusion spinning. The presented techniques therefore have the ability to define the potential of Bombyx-derived proteins for use in fibre-based applications and serve as a roadmap to improve fibre quality via post-processing.
Collapse
|
24
|
Yang M, Zhou G, Shuai Y, Wang J, Zhu L, Mao C. Ca 2+-induced self-assembly of Bombyx mori silk sericin into a nanofibrous network-like protein matrix for directing controlled nucleation of hydroxylapatite nano-needles. J Mater Chem B 2015; 3:2455-2462. [PMID: 26029374 DOI: 10.1039/c4tb01944j] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone biomineralization is a well-regulated protein-mediated process where hydroxylapatite (HAP) crystals are nucleated with preferred orientation within self-assembled protein matrix. Mimicking this process is a promising approach to the production of bone-like protein/mineral nanocomposites for bone repair and regeneration. Towards the goal of fabricating such nanocomposites from sericin, a protein spun by Bombyx mori (B.mori) silkworm, and bone mineral HAP, for the first time we investigated the chemical mechanism underpinning the synergistic processes of the conformational change/self-assembly of B.mori sericin ( BS ) as well as the nucleation of HAP on the resultant self-assembled BS matrix. We found that BS , rich in anionic amino acid residues, could bind Ca2+ ions from the HAP precursor solution through electrostatic attraction. The Ca2+binding drove the conformational change of BS from random coils into β-sheets and its concomitant self-assembly into interconnected nanofibrous network-like protein matrix, which initiated the nucleation and growth of HAP crystals. HAP crystals directed by the resultant self-assembled BS matrix grew preferentially along their crystallographic c-axis, leading to the formation of HAP nano-needles. The HAP nano-needles in the self-assembled BS matrix were subsequently aggregated into globules, probably driven by the hydrogen bonding between C=O groups of BS and O-H groups of HAP nano-needles. The present work sheds light on the chemical mechanisms of BS self-assembly and the controlled mineralization directed by the self-assembled matrix. We also found that the resultant nanocomposites could promote the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Thus our work also generates a biomimetic approach to bone-like silk protein/mineral nanocomposite scaffolds that can find potential applications in bone repair and regeneration.
Collapse
Affiliation(s)
- Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China
| | - Guanshan Zhou
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China
| | - Yajun Shuai
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China
| | - Jie Wang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China
| | - Liangjun Zhu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5300, United States
| |
Collapse
|
25
|
Tulachan B, Meena SK, Rai RK, Mallick C, Kusurkar TS, Teotia AK, Sethy NK, Bhargava K, Bhattacharya S, Kumar A, Sharma RK, Sinha N, Singh SK, Das M. Electricity from the silk cocoon membrane. Sci Rep 2014; 4:5434. [PMID: 24961354 PMCID: PMC4069722 DOI: 10.1038/srep05434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/05/2014] [Indexed: 11/16/2022] Open
Abstract
Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.
Collapse
Affiliation(s)
- Brindan Tulachan
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
- These authors contributed equally to this work
| | - Sunil Kumar Meena
- Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
- These authors contributed equally to this work
| | - Ratan Kumar Rai
- Center for Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, UP, 226014, India
| | - Chandrakant Mallick
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Tejas Sanjeev Kusurkar
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering & Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Unit, Defense Institute Physiology and Allied Sciences, Defense Research Development Organization, Delhi, 110054, India
| | - Kalpana Bhargava
- Peptide and Proteomics Unit, Defense Institute Physiology and Allied Sciences, Defense Research Development Organization, Delhi, 110054, India
| | - Shantanu Bhattacharya
- Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering & Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | | | - Neeraj Sinha
- Center for Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, UP, 226014, India
| | - Sushil Kumar Singh
- Functional Materials Group, Solid State Physics Laboratory, Defense Research Development Organization, Delhi, 110054, India
| | - Mainak Das
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
- Design Program, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| |
Collapse
|
26
|
Cao Z, Wen J, Yao J, Chen X, Ni Y, Shao Z. Facile fabrication of the porous three-dimensional regenerated silk fibroin scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3522-9. [DOI: 10.1016/j.msec.2013.04.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 11/26/2022]
|
27
|
Karakutuk I, Ak F, Okay O. Diepoxide-Triggered Conformational Transition of Silk Fibroin: Formation of Hydrogels. Biomacromolecules 2012; 13:1122-8. [DOI: 10.1021/bm300006r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilknur Karakutuk
- Istanbul Technical University, Department of Chemistry, 34469 Istanbul, Turkey
| | - Fatih Ak
- Istanbul Technical University, Department of Chemistry, 34469 Istanbul, Turkey
| | - Oguz Okay
- Istanbul Technical University, Department of Chemistry, 34469 Istanbul, Turkey
| |
Collapse
|
28
|
Rajkhowa R, Naik R, Wang L, Smith SV, Wang X. An investigation into transition metal ion binding properties of silk fibers and particles using radioisotopes. J Appl Polym Sci 2010. [DOI: 10.1002/app.33059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Wilaiwan S, Chirapha B, Yaowalak S, Prasong S. Screening of Some Elements in Different Silk Cocoon Varieties. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/jas.2010.575.579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
ZHONG Y, YANG Y, CHEN X, SHAO Z. CU(Ⅱ)-INDUCED CONFORMATION TRANSITION OF REGENERATED SILK FIBROIN IN AQUEOUS SOLUTIONS. ACTA POLYM SIN 2009. [DOI: 10.3724/sp.j.1105.2009.01056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Inspiration from Natural Silks and Their Proteins. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s0065-2377(08)00205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Zhou L, Chen X, Shao Z, Huang Y, Knight DP. Effect of metallic ions on silk formation in the Mulberry silkworm, Bombyx mori. J Phys Chem B 2007; 109:16937-45. [PMID: 16853155 DOI: 10.1021/jp050883m] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A protein conformation transition from random coil and/or helical conformation to beta-sheet is known to be central to the process used by silk-spinning spiders and insects to convert concentrated protein solutions to tough insoluble threads. Several factors including pH, metallic ions, shear force, and/or elongational flow can initiate this transition in both spiders and silkworms. Here, we report the use of proton induced X-ray emission (PIXE), inductively coupled plasma mass spectroscopy (ICP-MS) and atomic adsorption spectroscopy (AAS) to investigate the concentrations of six metal elements (Na, K, Mg, Ca, Cu, and Zn) at different stages in the silk secretory pathway in the Bombyx mori silkworm. We also report the use of Raman spectra to monitor the effects of these six metallic ions on the conformation transition of natural silk fibroin dope and concentrated regenerated silk fibroin solution at concentrations similar to the natural dope. The results showed that the metal element contents increased from the posterior part to the anterior part of silk gland with the exception of Ca which decreased significantly in the anterior part. We show that these changes in composition can be correlated with (i) the ability of Mg2+, Cu2+, and Zn2+ to induce the conformation transition of silk fibroin to beta-sheet, (ii) the effect of Ca2+ in forming a stable protein network (gel), and (iii) the ability of Na+ and K+ to break down the protein network.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, National Microanalysis Center, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Cao Z, Chen X, Yao J, Huang L, Shao Z. The preparation of regenerated silk fibroin microspheres. SOFT MATTER 2007; 3:910-915. [PMID: 32900086 DOI: 10.1039/b703139d] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The objective of the present study is to investigate the possibility of preparing pure protein microspheres from regenerated silk fibroin (RSF). It is found that RSF microspheres, with predictable and controllable sizes ranging from 0.2 to 1.5 µm, can be prepared mild self-assembling of silk fibroin molecular chains. The merits of this novel method include a rather simple production apparatus and no potentially toxic agents, such as surfactants, initiators, cross-linking agents, The results show that the particle size and size distribution of RSF microspheres are greatly affected by the amount of ethanol additive, the freezing temperature and the concentration of silk fibroin. Finally, the mechanism of RSF microspheres formation is also discussed based on our experimental results.
Collapse
Affiliation(s)
- Zhengbing Cao
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Xin Chen
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Jinrong Yao
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Lei Huang
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Zhengzhong Shao
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
34
|
Chen X, Shao Z, Knight DP, Vollrath F. Conformation transition kinetics of Bombyx mori silk protein. Proteins 2007; 68:223-31. [PMID: 17436322 DOI: 10.1002/prot.21414] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Time-resolved FTIR analysis was used to monitor the conformation transition induced by treating regenerated Bombyx mori silk fibroin films and solutions with different concentrations of ethanol. The resulting curves showing the kinetics of the transition for both films and fibroin solutions were influenced by the ethanol concentration. In addition, for silk fibroin solutions the protein concentration also had an effect on the kinetics. At low ethanol concentrations (for example, less than 40% v/v in the case of film), films and fibroin solutions showed a phase in which beta-sheets slowly formed at a rate dependent on the ethanol concentration. Reducing the concentration of the fibroin in solutions also slowed the formation of beta-sheets. These observations suggest that this phase represents a nucleation step. Such a nucleation phase was not seen in the conformation transition at ethanol concentrations > 40% in films or > 50% in silk fibroin solutions. Our results indicate that the ethanol-induced conformation transition of silk fibroin in films and solutions is a three-phase process. The first phase is the initiation of beta-sheet structure (nucleation), the second is a fast phase of beta-sheet growth while the third phase represents a slow perfection of previously formed beta-sheet structure. The nucleation step can be very fast or relatively slow, depending on factors that influence protein chain mobility and intermolecular hydrogen bond formation. The findings give support to the previous evidence that natural silk spinning in silkworms is nucleation-dependent, and that silkworms (like spiders) use concentrated silk protein solutions, and careful control of the pH value and metallic ion content of the processing environment to speed up the nucleation step to produce a rapid conformation transition to convert the water soluble spinning dope to a tough solid silk fiber.
Collapse
Affiliation(s)
- Xin Chen
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.
| | | | | | | |
Collapse
|
35
|
Chen X, Shao Z, Vollrath F. The spinning processes for spider silk. SOFT MATTER 2006; 2:448-451. [PMID: 32680242 DOI: 10.1039/b601286h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This paper summarizes recent work in our groups on the factors that influence the formation of spider silks during the spinning process. The review encompasses: (a) extrusion variables that greatly affect the mechanical properties of the silk filaments; such as rate and temperature at spinning as well as the post-drawn treatment and (b) other factors affecting the conformation transition of the spider silk proteins (spidroin) such as pH and metallic ions. The observations taken together imply that the spinning process is at least as central as, and probably more important than, the composition of the 'raw' protein spinning solution. This conclusion leads us to suggest that in the future high-performance, artificial 'spider' silks may be spun from a range of solutions of silk and synthetic proteins.
Collapse
Affiliation(s)
- Xin Chen
- The Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Zhengzhong Shao
- The Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Fritz Vollrath
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
36
|
Zhou L, Chen X, Dai W, Shao Z. X-ray photoelectron spectroscopic and Raman analysis of silk fibroin–Cu(II) films. Biopolymers 2006; 82:144-51. [PMID: 16463361 DOI: 10.1002/bip.20472] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is evidence to suggest that Cu(II) is involved in the natural spinning process of a silkworm helping to convert the concentrated silk fibroin (SF) solution (or dope) into tough insoluble threads. To investigate the interaction between SF and Cu(II), a series of regenerated SF (RSF) films with different mass ratios of Cu(II) to SF were prepared. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical interaction between Cu(II) and SF in these Cu(II)-RSF films. A significant change in the binding energy of Cu 2p(3/2) demonstrated that the chemical state of Cu(II) in the Cu(II)-RSF films was affected by the interaction between Cu(II) and SF. Moreover, chemical shifts of N 1s and O 1s of SF were also detected, implying that Cu(II) may coordinate with both N and O atoms in the SF. In addition, Raman spectra of the same series of Cu(II)-RSF films recorded the conformation transition of SF that may occur by the coordination of Cu(II) and SF macromolecular chains.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Dicko C, Kenney JM, Vollrath F. β‐Silks: Enhancing and Controlling Aggregation. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:17-53. [PMID: 17190610 DOI: 10.1016/s0065-3233(06)73002-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It appears that fiber-forming proteins are not an exclusive group but that, with appropriate conditions, many proteins can potentially aggregate and form fibrils; though only certain proteins, for example, amyloids and silks, do so under normal physiological conditions. Even so, this suggests a ubiquitous aggregation mechanism in which the protein environment is at least as important as the sequence. An ideal model system in which forced and natural aggregation has been observed is silk. Silks have evolved specifically to readily form insoluble ordered structures with a wide range of structural functionality. The animal, be it silkworm or spider, will produce, store, and transport high molecular weight proteins in a complex environment to eventually allow formation of silk fibers with a variety of mechanical properties. Here we review fiber formation and its prerequisites, and discuss the mechanism by which the animal facilitates and modulates silk assembly to achieve controlled protein aggregation.
Collapse
Affiliation(s)
- Cedric Dicko
- Zoology Department, Oxford University, OX1 3PS, United Kingdom
| | | | | |
Collapse
|
38
|
Ayutsede J, Gandhi M, Sukigara S, Micklus M, Chen HE, Ko F. Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat. POLYMER 2005. [DOI: 10.1016/j.polymer.2004.11.029] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Zong XH, Zhou P, Shao ZZ, Chen SM, Chen X, Hu BW, Deng F, Yao WH. Effect of pH and Copper(II) on the Conformation Transitions of Silk Fibroin Based on EPR, NMR, and Raman Spectroscopy. Biochemistry 2004; 43:11932-41. [PMID: 15379533 DOI: 10.1021/bi049455h] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much attention has been paid to the natural mechanism of silkworm spinning due to the impressive mechanical properties of the natural fibers. Our results in the present work show that the fractional changes of the conformational components in regenerated silk fibroin (SF) extracted from Bombyx mori fibers is remarkably pH- and Cu(II)-dependent as demonstrated by Cu(II) EPR, (13)C NMR, and Raman spectroscopy. Cu(II) coordination atoms in SF are changed from four nitrogens to two nitrogens and two oxygens as well as to one nitrogen and three oxygens when the pH is lowered from 8.0 to 4.0. The addition of a given amount of Cu(II) into a SF solution could induce efficiently the SF conformational fractional change from silk I, a soluble helical conformation, to silk II, an insoluble beta-sheet conformation. This behavior is strikingly similar to that seen in prion protein and amyloid beta-peptide. On the basis of the similarity in the relevant sequence in SF to the octapeptide PHGGGWGQ in PrP, we suggest that at basic and neutral pH polypeptide AHGGYSGY in SF may form a 1:1 complex with Cu(II) by coordination of imidazole N(pi) of His together with two deprotonated main-chain nitrogens from two glycine residues and one nitrogen or oxygen from serine. Such a type of coordination may make the interaction between two adjacent beta-form polypeptide chains more difficult, thereby leading to an amorphous structure. Under weakly acidic conditions, however, Cu(II)-amide linkages may be broken and Cu(II) may switch to bind two N(tau) from two histidines in adjacent peptide chains, forming an intermolecular His(N(tau))-Cu(II)-His(N(tau)) bridge. This type of coordination may induce beta-sheet formation and aggregation, leading to a crystalline structure.
Collapse
Affiliation(s)
- Xiao-Hong Zong
- The Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|