1
|
Li B, Wang L, Li Z, Wang W, Zhi X, Huang X, Zhang Q, Chen Z, Zhang X, He Z, Xu J, Zhang L, Xu H, Zhang D, Xu Z. miR-3174 Contributes to Apoptosis and Autophagic Cell Death Defects in Gastric Cancer Cells by Targeting ARHGAP10. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:294-311. [PMID: 29246308 PMCID: PMC5684471 DOI: 10.1016/j.omtn.2017.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is a major health problem worldwide because of its high morbidity and mortality. Considering the well-established roles of miRNA in the regulation of GC carcinogenesis and progression, we screened differentially expressed microRNAs (miRNAs) by using The Cancer Genome Atlas (TCGA) and the GEO databases. We found that miR-3174 was the most significantly differentially expressed miRNA in GC. Ectopic miR-3174 expression was also detected in clinical GC patient samples and cell lines and associated with poor patient prognosis. Apoptosis and autophagic cell death are two types of programmed cell death, whereas both are deficient in gastric cancer. Our functional analyses demonstrated that miR-3174 inhibited mitochondria-dependent apoptosis and autophagic cell death in GC. Moreover, high expression of miR-3174 also resulted in Cisplatin resistance in GC cells. Using bioinformatics analyses combined with in vitro and in vivo experiments, we determined that miR-3174 directly targets ARHGAP10. Notably, ARHGAP10 promoted mitochondria-dependent apoptosis by enhancing p53 expression, which was followed by Bax trans-activation and caspase cleavage. ARHGAP10 also facilitated autophagic cell death by suppressing mammalian target of rapamycin complex 1 (mTOC1) activity. Our results reveal a potential miRNA-based clinical therapeutic target that may also serve as a predictive marker for GC.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiaofei Zhi
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoxu Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Qiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zheng Chen
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
2
|
Li A, Zhang W, Xia H, Miao Y, Zhou H, Zhang X, Dong Q, Li Q, Qiu X, Wang E. Overexpression of CASS4 promotes invasion in non-small cell lung cancer by activating the AKT signaling pathway and inhibiting E-cadherin expression. Tumour Biol 2016; 37:15157-15164. [PMID: 27677288 DOI: 10.1007/s13277-016-5411-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022] Open
Abstract
The role of Crk-associated substrate (CAS) family members in regulating invasion and metastasis has been described in several cancers. As the fourth member of the CAS family, CASS4 is also related with positive lymph node metastasis and poor prognosis in lung cancer. However, the underlying mechanisms and downstream effectors of CASS4 in the development and progression of non-small cell lung cancer (NSCLC) remain unclear. In this study, CASS4 overexpression inhibited E-cadherin expression and enhanced invasion in NSCLC cell line transfected with CASS4 plasmid, while CASS4 depletion upregulated E-cadherin expression and inhibited invasion in NSCLC cell line transfected with CASS4 siRNA. The effect of CASS4 overexpression in facilitating invasion of NSCLC cells was reversed by restoring E-cadherin expression, which indicates that CASS4 may promote invasion by inhibiting E-cadherin expression. Subsequent immunohistochemistry results confirmed that CASS4 overexpression correlated with loss of E-cadherin expression. We next investigated the phosphorylation levels of focal adhesion kinase (FAK), p38, extracellular signal-related kinase (ERK), and AKT after CASS4 plasmid or CASS4 siRNA transfection. CASS4 facilitated AKT (Ser473) phosphorylation. Treatment with an AKT phosphorylation inhibitor reversed the increased invasive capacity and downregulation of E-cadherin protein induced by CASS4 overexpression. Taken together, the present results indicate that CASS4 may promote NSCLC invasion by activating the AKT signaling pathway, thereby inhibiting E-cadherin expression.
Collapse
Affiliation(s)
- Ailin Li
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiwei Zhang
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huifang Xia
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China.
| | - Haijing Zhou
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Qianze Dong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Liang ZD, Lippman SM, Wu TT, Lotan R, Xu XC. RRIG1 mediates effects of retinoic acid receptor beta2 on tumor cell growth and gene expression through binding to and inhibition of RhoA. Cancer Res 2006; 66:7111-8. [PMID: 16849557 DOI: 10.1158/0008-5472.can-06-0812] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The expression of retinoic acid receptor beta2 (RAR-beta2) is frequently lost in various cancers and their premalignant lesions. However, the restoration of RAR-beta2 expression inhibits tumor cell growth and suppresses cancer development. To understand the molecular mechanisms responsible for this RAR-beta2-mediated antitumor activity, we did restriction fragment differential display-PCR and cloned a novel retinoid receptor-induced gene 1 (RRIG1), which is differentially expressed in RAR-beta2-positive and RAR-beta2-negative tumor cells. RRIG1 cDNA contains 2,851 bp and encodes a protein with 276 amino acids; the gene is localized at chromosome 9q34. Expressed in a broad range of normal tissues, RRIG1 is also lost in various cancer specimens. RRIG1 mediates the effect of RAR-beta2 on cell growth and gene expression (e.g., extracellular signal-regulated kinase 1/2 and cyclooxygenase-2). The RRIG1 protein is expressed in the cell membrane and binds to and inhibits the activity of a small GTPase RhoA. Whereas induction of RRIG1 expression inhibits RhoA activation and f-actin formation and consequently reduces colony formation, invasion, and proliferation of esophageal cancer cells, antisense RRIG1 increases RhoA activity and f-actin formation and thus induces the colony formation, invasion, and proliferation of these cells. Our findings therefore show a novel molecular pathway involving RAR-beta2 regulation of RRIG1 expression and RRIG1-RhoA interaction. An understanding of this pathway may translate into better control of human cancer.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Amino Acid Sequence
- Animals
- Base Sequence
- COS Cells
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Cell Growth Processes
- Cell Line, Tumor
- Chlorocebus aethiops
- Cloning, Molecular
- DNA, Complementary/genetics
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Molecular Sequence Data
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- rhoA GTP-Binding Protein/antagonists & inhibitors
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Zheng D Liang
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
4
|
Chang LC, Huang CH, Cheng CH, Chen BH, Chen HC. Differential Effect of the Focal Adhesion Kinase Y397F Mutant on v-Src-Stimulated Cell Invasion and Tumor Growth. J Biomed Sci 2005; 12:571-85. [PMID: 16132110 DOI: 10.1007/s11373-005-7212-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/10/2005] [Indexed: 01/01/2023] Open
Abstract
Upon cell adhesion to extracellular matrix proteins, focal adhesion kinase (FAK) rapidly undergoes autophosphorylation on its Tyr-397 which consequently serves as a binding site for the Src homology 2 domains of the Src family protein kinases and several other intracellular signaling molecules. In this study, we have attempted to examine the effect of the FAK Y397F mutant on v-Src-stimulated cell transformation by establishing an inducible expression of the Y397F mutant in v-Src-transformed FAK-null (FAK(-/-)) mouse embryo fibroblasts. We found that the FAK Y397F mutant had both positive and negative effects on v-Src-stimulated cell transformation; it promoted v-Src-stimulated invasion, but on the other hand it inhibited the v-Src-stimulated anchorage-independent cell growth in vitro and tumor formation in vivo . The positive effect of the Y397F mutant on v-Src-stimulated invasion was correlated with an increased expression of matrix metalloproteinase-2, both of which were inhibited by the specific phosphatidylinositol 3-kinase inhibitor wortmannin or a dominant negative mutant of AKT, suggesting a critical role for the phosphatidylinositol 3-kinase/AKT pathway in both events. However, the expression of the Y397F mutant rendered v-Src-transformed FAK(-/-) cells susceptible to anoikis, correlated with suppression on v-Src-stimulated activation of ERK and AKT. In addition, under anoikis stress, the induction of the Y397F mutant in v-Src-transformed FAK(-/-) cells selectively led to a decrease in the level of p130(Cas), but not other focal adhesion proteins such as talin, vinculin, and paxillin. These results suggest that FAK may increase the susceptibility of v-Src-transformed cells to anoikis by modulating the level of p130(Cas).
Collapse
Affiliation(s)
- Liang-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan
| | | | | | | | | |
Collapse
|