1
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
2
|
Arapov TD, Saldaña RC, Sebastian AL, Ray WK, Helm RF, Scharf BE. Cellular Stoichiometry of Chemotaxis Proteins in Sinorhizobium meliloti. J Bacteriol 2020; 202:e00141-20. [PMID: 32393521 PMCID: PMC7317046 DOI: 10.1128/jb.00141-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 11/20/2022] Open
Abstract
Chemotaxis systems enable microbes to sense their immediate environment, moving toward beneficial stimuli and away from those that are harmful. In an effort to better understand the chemotaxis system of Sinorhizobium meliloti, a symbiont of the legume alfalfa, the cellular stoichiometries of all ten chemotaxis proteins in S. meliloti were determined. A combination of quantitative immunoblot and mass spectrometry revealed that the protein stoichiometries in S. meliloti varied greatly from those in Escherichia coli and Bacillus subtilis To compare protein ratios to other systems, values were normalized to the central kinase CheA. All S. meliloti chemotaxis proteins exhibited increased ratios to various degrees. The 10-fold higher molar ratio of adaptor proteins CheW1 and CheW2 to CheA might result in the formation of rings in the chemotaxis array that consist of only CheW instead of CheA and CheW in a 1:1 ratio. We hypothesize that the higher ratio of CheA to the main response regulator CheY2 is a consequence of the speed-variable motor in S. meliloti, instead of a switch-type motor. Similarly, proteins involved in signal termination are far more abundant in S. meliloti, which utilizes a phosphate sink mechanism based on CheA retrophosphorylation to inactivate the motor response regulator versus CheZ-catalyzed dephosphorylation as in E. coli and B. subtilis Finally, the abundance of CheB and CheR, which regulate chemoreceptor methylation, was increased compared to CheA, indicative of variations in the adaptation system of S. meliloti Collectively, these results mark significant differences in the composition of bacterial chemotaxis systems.IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti contributes greatly to host-plant growth by fixing atmospheric nitrogen. The provision of nitrogen as ammonium by S. meliloti leads to increased biomass production of its legume host alfalfa and diminishes the use of environmentally harmful chemical fertilizers. To better understand the role of chemotaxis in host-microbe interaction, a comprehensive catalogue of the bacterial chemotaxis system is vital, including its composition, function, and regulation. The stoichiometry of chemotaxis proteins in S. meliloti has very few similarities to the systems in Escherichia coli and Bacillus subtilis In addition, total amounts of proteins are significantly lower. S. meliloti exhibits a chemotaxis system distinct from known models by incorporating new proteins as exemplified by the phosphate sink mechanism.
Collapse
Affiliation(s)
- Timofey D Arapov
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Amanda L Sebastian
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - W Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Birgit E Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Bioinspired reorientation strategies for application in micro/nanorobotic control. JOURNAL OF MICRO-BIO ROBOTICS 2020. [DOI: 10.1007/s12213-020-00130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractEngineers have recently been inspired by swimming methodologies of microorganisms in creating micro-/nanorobots for biomedical applications. Future medicine may be revolutionized by the application of these small machines in diagnosing, monitoring, and treating diseases. Studies over the past decade have often concentrated on propulsion generation. However, there are many other challenges to address before the practical use of robots at the micro-/nanoscale. The control and reorientation ability of such robots remain as some of these challenges. This paper reviews the strategies of swimming microorganisms for reorientation, including tumbling, reverse and flick, direction control of helical-path swimmers, by speed modulation, using complex flagella, and the help of mastigonemes. Then, inspired by direction change in microorganisms, methods for orientation control for microrobots and possible directions for future studies are discussed. Further, the effects of solid boundaries on the swimming trajectories of microorganisms and microrobots are examined. In addition to propulsion systems for artificial microswimmers, swimming microorganisms are promising sources of control methodologies at the micro-/nanoscale.
Collapse
|
4
|
Raina JB, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol 2019; 17:284-294. [DOI: 10.1038/s41579-019-0182-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Novel methods for analysing bacterial tracks reveal persistence in Rhodobacter sphaeroides. PLoS Comput Biol 2013; 9:e1003276. [PMID: 24204227 PMCID: PMC3812076 DOI: 10.1371/journal.pcbi.1003276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/20/2013] [Indexed: 11/20/2022] Open
Abstract
Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and similar species. Many species of planktonic bacteria are able to propel themselves through a liquid medium by the use of one or more helical flagella. Commonly, the observed motile behaviour consists of a series of approximately straight-line movements, interspersed with random, approximately stationary, reorientation events. This phenomenon is of current interest as it is known to be linked to important bacterial processes such as pathogenicity and biofilm formation. An accepted experimental approach for studying bacterial motility in approximately indigenous conditions is the tracking of cells using a microscope. However, there are currently no validated methods for the analysis of such tracking data. In particular, the identification of reorientation phases, which is complicated by various sources of noise in the data, remains an open challenge. In this paper we present novel methods for analysing large bacterial tracking datasets. We assess the performance of our new methods using computational simulations, and show that they are more reliable than a previously published method. We proceed to analyse previously unpublished tracks from the bacterial species Rhodobacter sphaeroides, an emerging model organism in the field of bacterial motility, and Escherichia coli, a well-studied model bacterium. The analysis demonstrates the novel result that R. sphaeroides exhibits directional persistence over the course of a reorientation event.
Collapse
|
6
|
Rosser G, Fletcher AG, Maini PK, Baker RE. The effect of sampling rate on observed statistics in a correlated random walk. J R Soc Interface 2013; 10:20130273. [PMID: 23740484 DOI: 10.1098/rsif.2013.0273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tracking the movement of individual cells or animals can provide important information about their motile behaviour, with key examples including migrating birds, foraging mammals and bacterial chemotaxis. In many experimental protocols, observations are recorded with a fixed sampling interval and the continuous underlying motion is approximated as a series of discrete steps. The size of the sampling interval significantly affects the tracking measurements, the statistics computed from observed trajectories, and the inferences drawn. Despite the widespread use of tracking data to investigate motile behaviour, many open questions remain about these effects. We use a correlated random walk model to study the variation with sampling interval of two key quantities of interest: apparent speed and angle change. Two variants of the model are considered, in which reorientations occur instantaneously and with a stationary pause, respectively. We employ stochastic simulations to study the effect of sampling on the distributions of apparent speeds and angle changes, and present novel mathematical analysis in the case of rapid sampling. Our investigation elucidates the complex nature of sampling effects for sampling intervals ranging over many orders of magnitude. Results show that inclusion of a stationary phase significantly alters the observed distributions of both quantities.
Collapse
Affiliation(s)
- G Rosser
- Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, UK
| | | | | | | |
Collapse
|
7
|
Bacterial tethering analysis reveals a "run-reverse-turn" mechanism for Pseudomonas species motility. Appl Environ Microbiol 2013; 79:4734-43. [PMID: 23728820 DOI: 10.1128/aem.01027-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a program that can accurately analyze the dynamic properties of tethered bacterial cells. The program works especially well with cells that tend to give rise to unstable rotations, such as polar-flagellated bacteria. The program has two novel components. The first dynamically adjusts the center of the cell's rotational trajectories. The second applies piecewise linear approximation to the accumulated rotation curve to reduce noise and separate the motion of bacteria into phases. Thus, it can separate counterclockwise (CCW) and clockwise (CW) rotations distinctly and measure rotational speed accurately. Using this program, we analyzed the properties of tethered Pseudomonas aeruginosa and Pseudomonas putida cells for the first time. We found that the Pseudomonas flagellar motor spends equal time in both CCW and CW phases and that it rotates with the same speed in both phases. In addition, we discovered that the cell body can remain stationary for short periods of time, leading to the existence of a third phase of the flagellar motor which we call "pause." In addition, P. aeruginosa cells adopt longer run lengths, fewer pause frequencies, and shorter pause durations as part of their chemotactic response. We propose that one purpose of the pause phase is to allow the cells to turn at a large angle, where we show that pause durations in free-swimming cells positively correlate with turn angle sizes. Taken together, our results suggest a new "run-reverse-turn" paradigm for polar-flagellated Pseudomonas motility that is different from the "run-and-tumble" paradigm established for peritrichous Escherichia coli.
Collapse
|
8
|
Pilizota T, Brown MT, Leake MC, Branch RW, Berry RM, Armitage JP. A molecular brake, not a clutch, stops the Rhodobacter sphaeroides flagellar motor. Proc Natl Acad Sci U S A 2009; 106:11582-7. [PMID: 19571004 PMCID: PMC2710667 DOI: 10.1073/pnas.0813164106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Indexed: 11/18/2022] Open
Abstract
Many bacterial species swim by employing ion-driven molecular motors that power the rotation of helical filaments. Signals are transmitted to the motor from the external environment via the chemotaxis pathway. In bidirectional motors, the binding of phosphorylated CheY (CheY-P) to the motor is presumed to instigate conformational changes that result in a different rotor-stator interface, resulting in rotation in the alternative direction. Controlling when this switch occurs enables bacteria to accumulate in areas favorable for their survival. Unlike most species that swim with bidirectional motors, Rhodobacter sphaeroides employs a single stop-start flagellar motor. Here, we asked, how does the binding of CheY-P stop the motor in R. sphaeroides--using a clutch or a brake? By applying external force with viscous flow or optical tweezers, we show that the R. sphaeroides motor is stopped using a brake. The motor stops at 27-28 discrete angles, locked in place by a relatively high torque, approximately 2-3 times its stall torque.
Collapse
Affiliation(s)
- Teuta Pilizota
- The Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Mostyn T. Brown
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; and
| | - Mark C. Leake
- The Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom
- Oxford Centre for Integrative Systems Biology (OCISB), Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Richard W. Branch
- The Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Richard M. Berry
- The Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Judith P. Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; and
- Oxford Centre for Integrative Systems Biology (OCISB), Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
9
|
Chernova AA, Armitage JP, Packer HL, Maini PK. Response kinetics of tethered bacteria to stepwise changes in nutrient concentration. Biosystems 2003; 71:51-9. [PMID: 14568206 DOI: 10.1016/s0303-2647(03)00109-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the changes in swimming behaviour of the bacterium Rhodobacter sphaeroides in response to stepwise changes in a nutrient (propionate), following the pre-stimulus motion, the initial response and the adaptation to the sustained concentration of the chemical. This was carried out by tethering motile cells by their flagella to glass slides and following the rotational behaviour of their cell bodies in response to the nutrient change. Computerised motion analysis was used to analyse the behaviour. Distributions of run and stop times were obtained from rotation data for tethered cells. Exponential and Weibull fits for these distributions, and variability in individual responses are discussed. In terms of parameters derived from the run and stop time distributions, we compare the responses to stepwise changes in the nutrient concentration and the long-term behaviour of 84 cells under 12 propionate concentration levels from 1 nM to 25 mM. We discuss traditional assumptions for the random walk approximation to bacterial swimming and compare them with the observed R. sphaeroides motile behaviour.
Collapse
Affiliation(s)
- Anna A Chernova
- Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St. Giles, Oxford OX1 3LB, UK.
| | | | | | | |
Collapse
|
10
|
Schmitt R. Sinorhizobial chemotaxis: a departure from the enterobacterial paradigm. MICROBIOLOGY (READING, ENGLAND) 2002; 148:627-631. [PMID: 11882696 DOI: 10.1099/00221287-148-3-627] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rüdiger Schmitt
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, D-93040 Regensburg, Germany1
| |
Collapse
|
11
|
Packer HL, Armitage JP. Behavioral responses of Rhodobacter sphaeroides to linear gradients of the nutrients succinate and acetate. Appl Environ Microbiol 2000; 66:5186-91. [PMID: 11097888 PMCID: PMC92442 DOI: 10.1128/aem.66.12.5186-5191.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter sphaeroides cells were tethered by their flagella and subjected to increasing and decreasing nutrient gradients. Using motion analysis, changes in flagellar motor rotation were measured and the responses of the cells to the chemotactic gradients were determined. The steepness and concentration ranges of increasing and decreasing gradients were varied, and the bacterial responses were measured. This allowed the limits of gradients that would invoke changes in flagellar behavior to be determined and thus predicts the nature of gradients that would evoke chemotaxis in the environment. The sensory threshold was measured at 30 nM, and the response showed saturation at 150 microM. The study determined that cells detected and responded to changing concentration rates as low as 1 nM/s for acetate and 5 nM/s for succinate. The complex sensory system of R. sphaeroides responded to both increasing and decreasing concentration gradients of attractant with different sensitivities. In addition, transition phases involving changes in the motor speed and the smoothness of motor rotation were found.
Collapse
Affiliation(s)
- H L Packer
- Microbiology Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | | |
Collapse
|
12
|
Packer HL, Armitage JP. Inverted behavioural responses in wild-type Rhodobacter sphaeroides to temporal stimuli. FEMS Microbiol Lett 2000; 189:299-304. [PMID: 10930755 DOI: 10.1111/j.1574-6968.2000.tb09247.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Both aerobically and photosynthetically grown wild-type Rhodobacter sphaeroides swarmed through soft nutrient agar. However, individual aerobically and photosynthetically grown tethered cells showed different responses to steps in concentrations of some attractants. Photosynthetically grown cells showed little response to a step-up in attractant, but large response to a step-down. Aerobically grown cells showed a large but opposite response to a step-up of chemoeffectors such as succinate and aspartate. The responses in che operon deletion mutants were also investigated and indicated that the aerobic response may depend on the protein products of che operon 1.
Collapse
Affiliation(s)
- H L Packer
- Microbiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU,
| | | |
Collapse
|
13
|
Armitage JP, Pitta TP, Vigeant MA, Packer HL, Ford RM. Transformations in flagellar structure of Rhodobacter sphaeroides and possible relationship to changes in swimming speed. J Bacteriol 1999; 181:4825-33. [PMID: 10438751 PMCID: PMC93968 DOI: 10.1128/jb.181.16.4825-4833.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/1999] [Accepted: 06/03/1999] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter sphaeroides is a photosynthetic bacterium which swims by rotating a single flagellum in one direction, periodically stopping, and reorienting during these stops. Free-swimming R. sphaeroides was examined by both differential interference contrast (DIC) microscopy, which allows the flagella of swimming cells to be seen in vivo, and tracking microscopy, which tracks swimming patterns in three dimensions. DIC microscopy showed that when rotation stopped, the helical flagellum relaxed into a high-amplitude, short-wavelength coiled form, confirming previous observations. However, DIC microscopy also revealed that the coiled filament could rotate slowly, reorienting the cell before a transition back to the functional helix. The time taken to reform a functional helix depended on the rate of rotation of the helix and the length of the filament. In addition to these coiled and helical forms, a third conformation was observed: a rapidly rotating, apparently straight form. This form took shape from the cell body out and was seen to form directly from flagella that were initially in either the coiled or the helical conformation. This form was always significantly longer than the coiled or helical form from which it was derived. The resolution of DIC microscopy made it impossible to identify whether this form was genuinely in a straight conformation or was a low-amplitude, long-wavelength helix. Examination of the three-dimensional swimming pattern showed that R. sphaeroides changed speed while swimming, sometimes doubling the swimming speed between stops. The rate of acceleration out of stops was also variable. The transformations in waveform are assumed to be torsionally driven and may be related to the changes in speed measured in free-swimming cells. The roles of and mechanisms that may be involved in the transformations of filament conformations and changes in swimming speed are discussed.
Collapse
Affiliation(s)
- J P Armitage
- Microbiology Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | | | | | | | | |
Collapse
|
14
|
6.5 Characterizing Flagella and Motile Behavior. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
15
|
Armitage JP, Schmitt R. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti--variations on a theme? MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 12):3671-3682. [PMID: 9421893 DOI: 10.1099/00221287-143-12-3671] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We are only beginning to understand the mechanisms involved in tactic sensing in the alpha-subgroup of bacteria. It is clear, however, from recent developments that although the central chemosensory pathways are related to those identified in enteric species, the primary signals and the effect on flagellar behaviour are very different. The expression of chemoreceptors is under environmental control, and the strength of a response depends on the metabolic state of the cell. This is very different from enteric species which always respond to MCP-dependent chemoeffectors, and in which the expression of the receptors is constitutive. Chemotaxis in R. sphaeroides and S. meliloti is therefore more directly linked to the environment in which a cell finds itself. The integration of chemosensory pathways dependent on growth state may be much more suited to the fluctuating environment of these soil and water bacteria. There is still a great deal that needs to be understood about the mechanisms involved in motor control. The presence of at least two CheY homologues and the finding that the swimming speed of these bacteria can vary, and, in the case of S. meliloti, vary with chemosensory stimulation, suggests a different control mechanism at the flagellar motor where speed can be altered, or the motor stopped, with a full delta p still present. Why R. sphaeroides should have at least two functional sets of genes encoding homologues of the enteric chemosensory pathway remains to be determined. The major differences in sensory behaviour between the two alpha-subgroup species so far studied in detail and the differences from the enteric species suggests that many more variations of the chemosensory pathways will be found as more species are studied.
Collapse
Affiliation(s)
- Judith P Armitage
- Microbiology Unit, Department of Biochemistry, University of Oxford, Oxford 0X1 3QU, UK
| | - Rudiger Schmitt
- Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, D 93040 Regensburg, Germany
| |
Collapse
|