1
|
Peng X, Liu X, Tan L. Interaction of ruthenium(Ⅱ) polypyridyl complexes [Ru(phen)2(L)]2+ (L = PIP, p-HPIP and m-HPIP) with RNA poly(A)•poly(U): each complex unexpectedly exhibiting a destabilizing effect on RNA. Bioorg Chem 2023; 135:106523. [PMID: 37027949 DOI: 10.1016/j.bioorg.2023.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
To further explore the binding properties of Ru(Ⅱ) polypyridine complexes with RNA, three Ru(Ⅱ) complexes [Ru(phen)2(PIP)]2+ (Ru1), [Ru(phen)2(p-HPIP)]2+ (Ru2), and [Ru(phen)2(m- HPIP)]2+ (Ru3) have been synthesized and characterized in this work. The binding properties of three Ru(Ⅱ) complexes with RNA duplex poly(A)•poly(U) have been investigated by spectral and viscosity experiments. These studies all support that these three Ru(Ⅱ) complexes bind to poly RNA duplex poly(A)•poly(U) by intercalation, and Ru1 without substituents has a stronger binding affinity for poly(A)•poly(U). Interestingly, the thermal melting experiments show that these three Ru(Ⅱ) complexes all destabilize RNA duplex poly(A)•poly(U), and the destabilizing effect can be explained by the conformational changes of duplex structure induced by intercalating agents. To the best of our knowledge, this work report for the first time a small molecule capable of destabilizing an RNA duplex, which reflects that the substitution effect of intercalated ligands has an important influence on the affinity of Ru(Ⅱ) complexes to RNA duplex, and that not all Ru(Ⅱ) complexes show thermal stability effects on an RNA duplex.
Collapse
Affiliation(s)
- Xing Peng
- College of Chemistry, Xiangtan University, Xiangtan 411105, Peoples Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan 411105, Peoples Republic of China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, XiangtanUniversity, Xiangtan 411105, Peoples Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, Peoples Republic of China.
| |
Collapse
|
2
|
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd - stabilisation, structure, and applications of DNA triplexes. Chem Sci 2022; 13:10193-10215. [PMID: 36277639 PMCID: PMC9473520 DOI: 10.1039/d2sc01793h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is a strikingly flexible molecule and can form a variety of secondary structures, including the triple helix, which is the subject of this review. The DNA triplex may be formed naturally, during homologous recombination, or can be formed by the introduction of a synthetic triplex forming oligonucleotide (TFO) to a DNA duplex. As the TFO will bind to the duplex with sequence specificity, there is significant interest in developing TFOs with potential therapeutic applications, including using TFOs as a delivery mechanism for compounds able to modify or damage DNA. However, to combine triplexes with functionalised compounds, a full understanding of triplex structure and chemical modification strategies, which may increase triplex stability or in vivo degradation, is essential - these areas will be discussed in this review. Ruthenium polypyridyl complexes, which are able to photooxidise DNA and act as luminescent DNA probes, may serve as a suitable photophysical payload for a TFO system and the developments in this area in the context of DNA triplexes will also be reviewed.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6AD UK
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| |
Collapse
|
3
|
del Mundo IMA, Cho EJ, Dalby KN, Vasquez KM. A tunable assay for modulators of genome-destabilizing DNA structures. Nucleic Acids Res 2019; 47:e73. [PMID: 30949695 PMCID: PMC6648359 DOI: 10.1093/nar/gkz237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 11/24/2022] Open
Abstract
Regions of genomic instability are not random and often co-localize with DNA sequences that can adopt alternative DNA structures (i.e. non-B DNA, such as H-DNA). Non-B DNA-forming sequences are highly enriched at translocation breakpoints in human cancer genomes, representing an endogenous source of genetic instability. However, a further understanding of the mechanisms involved in non-B DNA-induced genetic instability is needed. Small molecules that can modulate the formation/stability of non-B DNA structures, and therefore the subsequent mutagenic outcome, represent valuable tools to study DNA structure-induced genetic instability. To this end, we have developed a tunable Förster resonance energy transfer (FRET)-based assay to detect triplex/H-DNA-destabilizing and -stabilizing ligands. The assay was designed by incorporating a fluorophore-quencher pair in a naturally-occurring H-DNA-forming sequence from a chromosomal breakpoint hotspot in the human c-MYC oncogene. By tuning triplex stability via buffer composition, the assay functions as a dual-reporter that can identify stabilizers and destabilizers, simultaneously. The assay principle was demonstrated using known triplex stabilizers, BePI and coralyne, and a complementary oligonucleotide to mimic a destabilizer, MCRa2. The potential of the assay was validated in a 384-well plate with 320 custom-assembled compounds. The discovery of novel triplex stabilizers/destabilizers may allow the regulation of genetic instability in human genomes.
Collapse
Affiliation(s)
- Imee M A del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX, USA
| | - Eun Jeong Cho
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX, USA
| |
Collapse
|
4
|
Shchyolkina AK, Kaluzhny DN, Borisova OF, Arndt-Jovin DJ, Jovin TM, Zhurkin VB. Conformational variability of recombination R-triplex formed by the mammalian telomeric sequence. J Biomol Struct Dyn 2015; 34:1298-306. [PMID: 26308235 PMCID: PMC4867858 DOI: 10.1080/07391102.2015.1077344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alignment of three nucleic acids strands, in which the third strand is identical to one of the DNA duplex strands, occurs in various cellular systems. In the case of telomeric t-loops, recognition between the DNA duplex and the homologous single strand is likely to be mediated by proteins through formation of the transient recombination-type R-triplex. Earlier, using 2-aminopurine as a fluorescent reporting base, we evaluated the thermodynamic characteristics of intramolecular R-triplex formed by a mixed nucleotide sequence. Here, we used this approach to explore a propensity of the telomeric TTAGGG repeat to form the R-triplex. The circular dichroism spectral changes detected upon formation of the R-triplex suggest that this process is accompanied by specific conformational changes in DNA, including a local destabilization of the target duplex next to a GGG run revealed by the fluorescence of the reporting 2-aminopurine base. Surprisingly, stability of the R-triplex formed by telomeric sequence depends strikingly on the counter ion, being higher for Na+ than for Li+. Taken together these findings indicate a significant conformational variability of telomeric DNA in the context of recombination-type R-triplex, a phenomenon of possible biological relevance.
Collapse
Affiliation(s)
- Anna K Shchyolkina
- a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , 119991 Moscow , Russia
| | - Dmitry N Kaluzhny
- a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , 119991 Moscow , Russia
| | - Olga F Borisova
- a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , 119991 Moscow , Russia
| | - Donna J Arndt-Jovin
- b Department of Molecular Biology , Max Planck Institute for Biophysical Chemistry , D-37070 Goettingen , Germany
| | - Thomas M Jovin
- b Department of Molecular Biology , Max Planck Institute for Biophysical Chemistry , D-37070 Goettingen , Germany
| | - Victor B Zhurkin
- c Laboratory of Cell Biology , National Cancer Institute, NIH , 20892 Bethesda , MD , USA
| |
Collapse
|
5
|
Silvers R, Keller H, Schwalbe H, Hengesbach M. Differential Scanning Fluorimetry for Monitoring RNA Stability. Chembiochem 2015; 16:1109-14. [DOI: 10.1002/cbic.201500046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/05/2022]
|
6
|
Biver T, Boggioni A, García B, Leal JM, Ruiz R, Secco F, Venturini M. New aspects of the interaction of the antibiotic coralyne with RNA: coralyne induces triple helix formation in poly(rA)*poly(rU). Nucleic Acids Res 2009; 38:1697-710. [PMID: 20008509 PMCID: PMC2836573 DOI: 10.1093/nar/gkp1146] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The interaction of coralyne with poly(A)*poly(U), poly(A)*2poly(U), poly(A) and poly(A)*poly(A) is analysed using spectrophotometric, spectrofluorometric, circular dichroism (CD), viscometric, stopped-flow and temperature-jump techniques. It is shown for the first time that coralyne induces disproportionation of poly(A)*poly(U) to triplex poly(A)*2poly(U) and single-stranded poly(A) under suitable values of the [dye]/[polymer] ratio (C(D)/C(P)). Kinetic, CD and spectrofluorometric experiments reveal that this process requires that coralyne (D) binds to duplex. The resulting complex (AUD) reacts with free duplex giving triplex (UAUD) and free poly(A); moreover, ligand exchange between duplex and triplex occurs. A reaction mechanism is proposed and the reaction parameters are evaluated. For C(D)/C(P)> 0.8 poly(A)*poly(U) does not disproportionate at 25 degrees C and dye intercalation into AU to give AUD is the only observed process. Melting experiments as well show that coralyne induces the duplex disproportionation. Effects of temperature, ionic strength and ethanol content are investigated. One concludes that triplex formation requires coralyne be only partially intercalated into AUD. Under suitable concentration conditions, this feature favours the interaction of free AU with AUD to give the AUDAU intermediate which evolves into triplex UAUD and single-stranded poly(A). Duplex poly(A)*poly(A) undergoes aggregation as well, but only at much higher polymer concentrations compared to poly(A)*poly(U).
Collapse
Affiliation(s)
- Tarita Biver
- University of Pisa, Chemistry and Industrial Chemistry Department, 56126 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Recent developments in the chemistry of deoxyribonucleic acid (DNA) intercalators: principles, design, synthesis, applications and trends. Molecules 2009; 14:1725-46. [PMID: 19471193 PMCID: PMC6254398 DOI: 10.3390/molecules14051725] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 04/20/2009] [Accepted: 05/05/2009] [Indexed: 01/17/2023] Open
Abstract
In the present overview, we describe the bases of intercalation of small molecules (cationic and polar neutral compounds) in DNA. We briefly describe the importance of DNA structure and principles of intercalation. Selected syntheses, possibilities and applications are shown to exemplify the importance, drawbacks and challenges in this pertinent, new, and exciting research area. Additionally, some clinical applications (molecular processes, cancer therapy and others) and trends are described.
Collapse
|
8
|
Kaluzhny DN, Timoshin VV, Borisova OF, Zhurkin VB, Florentiev VL, Shchyolkina AK. Intramolecular recombination R-triplex in solution: stabilization by bis-intercalator YOYO. J Biomol Struct Dyn 2008; 26:301-6. [PMID: 18808196 PMCID: PMC4807166 DOI: 10.1080/07391102.2008.10507245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Recognition of double-stranded DNA with a mixed nucleotide sequence by oligonucleotide is a long-term challenge. This aim can be achieved via formation of the recombination R-triplex, accommodating two identical DNA strands in parallel orientation, and antiparallel complementary strand. In the absence of proteins the R-triplex stability is low, however, so that intermolecular R-triplex is not formed by three DNA strands in a ligand-free system. Recently, recognition of DNA with mixed base sequence by single-stranded oligonucleotide in the presence of bis-intercalator YOYO was reported. Here, we describe thermodynamic characteristics of YOYO complexes with the model oligonucleotides 5'-GT-2AP-GACTGAG TTTT CTCAGTCTACGC GAA GCGTAGACTGAG-3' (R(2AP)CW) bearing a single reporting 2-aminopurine (2AP) in place of adenine and 5'-CTCAGTCTACGC GAA GCGTAGACTGAG-3' (CW). We found that each oligonucleotide is able to bind two YOYO molecules via intercalation mode in 0.5 M LiCl. Fluorescence intensity of YOYO intercalated in triplex R(2AP)CW and in CW hairpin increased 40-fold compared to the free YOYO. Remarkably, the melting temperature of the triplex (determined using temperature dependence of the 2AP fluorescence) increased from 19 degrees C to 33 degrees C upon binding two YOYO molecules. Further increase in the YOYO concentration resulted in binding of up to five YOYO molecules to R(2AP)CW triplex and up to six YOYO molecules to CW hairpin.
Collapse
Affiliation(s)
- Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology RASc, Vavilova 32, 119991 Moscow, Russia
| | | | - Olga F. Borisova
- Engelhardt Institute of Molecular Biology RASc, Vavilova 32, 119991 Moscow, Russia
| | | | | | - Anna K. Shchyolkina
- Engelhardt Institute of Molecular Biology RASc, Vavilova 32, 119991 Moscow, Russia
| |
Collapse
|
9
|
García B, Leal JM, Paiotta V, Ruiz R, Secco F, Venturini M. Role of the third strand in the binding of proflavine and pt-proflavine to poly(rA).2poly(rU): a thermodynamic and kinetic study. J Phys Chem B 2008; 112:7132-9. [PMID: 18491933 DOI: 10.1021/jp800163n] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interactions of triple strands of poly(rA).2poly(rU) with proflavine (PR) and the proflavine cis-platinum derivative [{PtCl (tmen)} 2{NC 13H 7(NCH 2CH 2) 2}] (+) (PRPt) are examined at pH 7.0, T = 25 degrees C, and 0.2 M ionic strength by spectrophotometry, spectrofluorometry, circular dichroism, viscosimetry, stopped-flow, and T-jump relaxation techniques. The melting experiments demonstrate that both drugs tend to destabilize the triplex structure, although the PRPt effect is more relevant. By contrast, both drugs tend to slightly stabilize the duplex structure. The viscosity and circular dichroism measurements show that, at a low dye-to-polymer ratio ( C D/ C P), the binding is intercalative, whereas at high C D/ C P values, the external binding dominates. The binding kinetics and equilibria have been investigated over the C D/ C P region, where intercalation is operative. Both drugs bind to the RNA triplex according to the excluded site model. With PR, two kinetic effects have been observed, whereas with PRPt, only one has been observed. The results are interpreted according to the reaction schemes D + S right arrow over left arrow DS I, with PRPt, and D + S right arrow over left arrow DS I right arrow over left arrow DS II, with PR. The electrostatic contribution to the formation activation energy for DS I is similar (40%) for both systems. The results suggest that DS I is a partially intercalated species. Absence of the second step with PRPt is put down to groove interaction of the Pt-containing moiety, which prevents the PR residue from further penetration through the base pairs to form the fully intercalated complex, DS II. Comparison with the binding of the same drugs to the duplex reveals that the occupation of the major groove in poly(rA).2poly(rU) by the third strand plays a critical role in the kinetic behavior.
Collapse
Affiliation(s)
- Begoña García
- Departamento de Química, Universidad de Burgos, 09001 Burgos, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Piergentili R, Mencarelli C. Drosophila melanogaster kl-3 and kl-5 Y-loops harbor triple-stranded nucleic acids. J Cell Sci 2008; 121:1605-12. [PMID: 18430782 DOI: 10.1242/jcs.025320] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary spermatocyte nuclei of Drosophila melanogaster contain three prominent lampbrush-like loops. The development of these structures has been associated with the transcription of three fertility factors located on the Y chromosome, named kl-5, kl-3 and ks-1. These loci have huge physical dimensions and contain extremely long introns. In addition, kl-3 and kl-5 were shown to encode two putative dynein subunits required for the correct assembly of the sperm axoneme. Here, we show that both the kl-5 and kl-3 loops are intensely decorated by monoclonal antibodies recognizing triple-stranded nucleic acids, and that each loop presents a peculiar molecular organization of triplex structures. Moreover, immunostaining of Drosophila hydei primary spermatocytes revealed that also in this species - which diverged from D. melanogaster 58 million years ago - Y-loops are decorated by anti-triplex antibodies, strongly suggesting a conserved role of loop-associated triplexes. Finally, we showed that in D. melanogaster wild-type lines that are raised at the non-permissive temperature of 31+/-0.5 degrees C (which is known to induce male sterility in flies) both the triplex immunostaining and the axonemal dynein heavy chains encoded by kl-3 and kl-5 are no longer detectable, which suggests a functional correlation between loop-associated triplexes, the presence of axonemal proteins and male fertility in fly.
Collapse
Affiliation(s)
- Roberto Piergentili
- Department of Genetics and Molecular Biology - Sapienza Università di Roma, 00185 Rome, Italy.
| | | |
Collapse
|
11
|
Abstract
Time correlated Single Photon Counting study (TCSPC) was performed for the first time to evaluate the effect of resveratrol (RES) and genistein (GEN) at 10-100 microM and 10-150 microM respectively, in modulating the DNA conformation and the variation induced due to intercalation by the dyes, ethidium bromide (EtBr) and acridine orange (AO). It is demonstrated using UV-absorption and fluorescence spectroscopy that RES and GEN, at 50 microM and 100 microM respectively can bind to DNA resulting in significant de-intercalation of the dyes, preventing their further intercalation within DNA. Hyperchromicity with red/blue shifts in DNA when bound to dyes was reduced upon addition of RES and GEN. DNA-dependent fluorescence of EtBr and AO was quenched in the presence of RES by 87.97% and 79.13% respectively, while similar quenching effect was observed for these when interacted with GEN (85.52% and 83.85%). It is found from TCSPC analysis that the higher lifetime component or constituent of intercalated dyes (tau(2), A (2)) decreased with the subsequent increase in smaller component or constituent of free dye (tau(1), A (1)) after the interaction of drugs with the intercalated DNA. Thus these findings signify that RES and GEN can play an important role in modulating DNA intercalation, leading to the reduction in DNA-directed toxicity.
Collapse
Affiliation(s)
- Subbiah Usha
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, India
| | | | | |
Collapse
|
12
|
|
13
|
Vorobjev YN. Study of the Mechanism of Interaction of Oligonucleotides with the 3′-Terminal Region of tRNAPhe by Computer Modeling. Mol Biol 2005. [DOI: 10.1007/s11008-005-0093-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Vlcková M, Kubán V, Vicar J, Simánek V. Capillary zone electrophoretic studies of interactions of some quaternary isoquinoline alkaloids with DNA constituents and DNA. Electrophoresis 2005; 26:1673-9. [PMID: 15812846 DOI: 10.1002/elps.200410193] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Capillary zone electrophoresis was applied for the investigation of interactions of some quaternary isoquinoline alkaloids, namely sanguinarine, chelerythrine, berberine, and jatrorrhizine, with DNA constituents and with DNA. None of these alkaloids attach covalently to nucleotides or to the whole DNA under physiological conditions. The interaction with DNA constituents is a noncovalent complexation based on weak intermolecular forces. Electrostatic attraction participates in the interaction but other types of intermolecular forces are involved as well. Cations were identified as the most probable interacting forms of the alkaloids. The interaction with compounds derived from purine was always stronger than those derived from pyrimidine. All alkaloids behaved analogously and similarly to ethidium bromide, the classic DNA intercalator. Stability constants K (in l.mol(-1)) for sanguinarine and chelerythrine in phosphate buffer of pH 7.4 (I(S) = 30 mM) ranged from tens to hundreds.
Collapse
Affiliation(s)
- Markéta Vlcková
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemĕdĕlská 1, CZ-613 00 Brno, Czech Republic
| | | | | | | |
Collapse
|
15
|
Mariappan SVS, Cheng X, van Breemen RB, Silks LA, Gupta G. Analysis of GAA/TTC DNA triplexes using nuclear magnetic resonance and electrospray ionization mass spectrometry. Anal Biochem 2005; 334:216-26. [PMID: 15494127 DOI: 10.1016/j.ab.2004.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Indexed: 10/26/2022]
Abstract
The formation of a GAA/TTC DNA triplex has been implicated in Friedreich's ataxia. The destabilization of GAA/TTC DNA triplexes either by pH or by binding to appropriate ligands was analyzed by nuclear magnetic resonance (NMR) and positive-ion electrospray mass spectrometry. The triplexes and duplexes were identified by changes in the NMR chemical shifts of H8, H1, H4, 15N7, and 15N4. The lowest pH at which the duplex is detectable depends upon the overall stability and the relative number of Hoogsteen C composite function G to T composite function A basepairs. A melting pH (pHm) of 7.6 was observed for the destabilization of the (GAA)2T4(TTC)2T4(CTT)2 triplex to the corresponding Watson-Crick duplex and the T4(CTT)2 overhang. The mass spectrometric analyses of (TTC)6.(GAA)6 composite function(TTC)6 triplex detected ions due to both triplex and single-stranded oligonucleotides under acidic conditions. The triplex ions disappeared completely at alkaline pH. Duplex and single strands were detectable only at neutral and alkaline pH values. Mass spectrometric analyses also showed that minor groove-binding ligands berenil, netropsin, and distamycin and the intercalating ligand acridine orange destabilize the (TTC)6.(GAA)6 composite function (TTC)6 triplex. These NMR and mass spectrometric methods may function as screening assays for the discovery of agents that destabilize GAA/TTC triplexes and as general methods for the characterization of structure, dynamics, and stability of DNA and DNA-ligand complexes.
Collapse
Affiliation(s)
- S V Santhana Mariappan
- Department of Medicinal Chemistry and Pharmacognosy, MC 781, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
16
|
Shchyolkina AK, Kaluzhny DN, Borisova OF, Hawkins ME, Jernigan RL, Jovin TM, Arndt-Jovin DJ, Zhurkin VB. Formation of an intramolecular triple-stranded DNA structure monitored by fluorescence of 2-aminopurine or 6-methylisoxanthopterin. Nucleic Acids Res 2004; 32:432-40. [PMID: 14739235 PMCID: PMC373315 DOI: 10.1093/nar/gkh158] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The parallel (recombination) 'R-triplex' can accommodate any nucleotide sequence with the two identical DNA strands in parallel orientation. We have studied oligonucleotides able to fold back into such a recombination-like structure. We show that the fluorescent base analogs 2-aminopurine (2AP) and 6-methylisoxanthopterin (6MI) can be used as structural probes for monitoring the integrity of the triple-stranded conformation and for deriving the thermodynamic characteristics of these structures. A single adenine or guanine base in the third strand of the triplex-forming and the control oligonucleotides, as well as in the double-stranded (ds) and single-stranded (ss) reference molecules, was substituted with 2AP or 6MI. The 2AP*(T.A) and 6MI*(C.G) triplets were monitored by their fluorescence emission and the thermal denaturation curves were analyzed with a quasi-two-state model. The fluorescence of 2AP introduced into an oligonucleotide sequence unable to form a triplex served as a negative control. We observed a remarkable similarity between the thermodynamic parameters derived from melting of the secondary structures monitored through absorption of all bases at 260 nm or from fluorescence of the single base analog. The similarity suggests that fluorescence of the 2AP and 6MI base analogs may be used to monitor the structural disposition of the third strand. We consider the data in the light of alternative 'branch migration' and 'strand exchange' structures and discuss why these are less likely than the R-type triplex.
Collapse
Affiliation(s)
- Anna K Shchyolkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Beschetnova IA, Kaluzhny DN, Livshits MA, Shchyolkina AK, Borisova OF. Ethidium probing of the parallel double- and four-stranded structures formed by the telomeric DNA sequences dG(GT)4G and d(GT)5. J Biomol Struct Dyn 2003; 20:789-99. [PMID: 12744708 DOI: 10.1080/07391102.2003.10506895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Oligonucleotides 3'-d(GT)(5)-(CH(2)CH(2)O)(3)-d(GT)(5)-3' (parGT), containing GT repeats present in the telomeric DNA from Saccharomyces cerevisiae, had been demonstrated to form bimolecular structure, GT-quadruplex (qGT) [O. F. Borisova et al. FEBS Letters 306, 140-142 (1992)]. Four d(GT)(5) strands of the GT-quadruplex are parallel and form five G-quartets while thymines are bulged out. The four GT repeats when flanked by guanines, 3'-dG(TG)(4)G-(CH(2)CH(2)O)(3)-dG(GT)(4)G-3' (hp-GT), had been shown to form a novel parallel-stranded (ps) double helix with G.G and T.T base pairs (hp-GT ps-DNA) [A. K. Shchyolkina et al. J. Biomol. Struct. Dyn. 18, 493-503 (2001)]. In the present study the intercalator ethidium bromide (Et) was used for probing the two structures. The mode of Et binding and its effect on thermostability of qGT and hp-GT were compared. The quantum yield (q) and the fluorescence lifetime (tau) of Et:qGT (q = 0.15 +/- 0.01 and tau = 24 +/- 1 ns) and Et:hp-GT (q = 0.10 +/- 0.01 and tau = 16.5 +/- 1 ns) indicative of intercalation mode of Et binding were determined. Et binding to qGT was found to be cooperative with corresponding coefficient omega = 3.9 +/- 0.1 and the binding constant Kappa = (6.4 +/- 0.1).10(4) M(-1). The maximum number of Et molecules intercalating into GT-quadruplex is as high as twice the number of innerspaces between G-quartets (eight in our case). The data conform to the model of Et association with GT-quadruplex suggested earlier [O. F. Borisova et al. Mol. Biol. (Russ) 35, 732-739 (2001)]. The anticooperative type of Et binding was observed in case of hp-GT ps-DNA, with the maximum number of bound Et molecules, N = 4 / 5, and the association constant Kappa = (1.5 +/- 0.1).10(5) M(-1). Thermodynamic parameters of formation of Et:qGT and EtBr:hp-GT complexes were calculated from UV thermal denaturation profiles.
Collapse
Affiliation(s)
- Irina A Beschetnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
18
|
Walter A, Schütz H, Simon H, Birch-Hirschfeld E. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. J Mol Recognit 2001; 14:122-39. [PMID: 11301482 DOI: 10.1002/jmr.528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Data are presented on a triplex type with two parallel homologous strands for which triplex formation is almost as strong as duplex formation at least for some sequences and even at pH 7 and 0.2 M NaCl. The evidence mainly rests upon comparing thermodynamic properties of similar systems. A paperclip oligonucleotide d(A12C4T12C4A12) with two linkers C4 obviously can form a triplex with parallel back-folded adenine strand regions, because the single melting transition of this complex splits in two transitions by introducing mismatches only in the third strand region. Respectively, a hairpin duplex d(A12C4T12) and a single strand d(A12) form a triplex as a 1:1 complex in which the second adenine strand is parallel oriented to the homologous one in the Watson-Crick paired duplex. In this system the melting temperature T(m) of the triplex is practically the same as that of the duplex d(A12)-d(T12), at least within a complex concentration range of 0.2-4.0 microM. The melting behaviour of complexes between triplex stabilizing ligand BePI and the system hairpin duplex plus single strand supports the triplex model. Non-denaturing gel electrophoresis suggests the existence of a triplex for a system in which five of the twelve A-T*A base triads are substituted by C-G*C base triads. The recognition between any substituted Watson-Crick base pair (X-Y) in the hairpin duplex d(A4XA7C4T7YT4) and the correspondingly replaced base (Z) in the third strand d(A4ZA7) is mutually selective. All triplexes with matching base substitutions (Z = X) have nearly the same stability (T(m) values from 29 to 33.5 degrees C), whereas triplexes with non-matching substitutions (Z not equal X) show a clearly reduced stability (T(m) values from 15 to 22 degrees C) at 2microM equimolar oligonucleotide concentration. Most nucleic acid triple helices hitherto known are limited to homopurine-homopyrimidine sequences in the target duplex. A stable triplex formation is demonstrated for inhomogeneous sequences tolerating at least 50% pyrimidine content in the homologous strands. On the basis of the surprisingly similar thermodynamic parameters for duplex and triplex, and of the fact that this triplex type seems to be more stable than many other natural DNA triplexes known, and on the basis of semiempirical and molecule mechanical calculations, we postulate bridging interactions of the third strand with the two other strands in the triplex according to the recombination motif. This triplex, denoted by us 'recombination-like form', tolerates heterogeneous base sequences.
Collapse
Affiliation(s)
- A Walter
- Institute of Molecular Biology, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | | | |
Collapse
|
19
|
Shchyolkina AK, Timofeev EN, Lysov YP, Florentiev VL, Jovin TM, Arndt-Jovin DJ. Protein-free parallel triple-stranded DNA complex formation. Nucleic Acids Res 2001; 29:986-95. [PMID: 11160932 PMCID: PMC29604 DOI: 10.1093/nar/29.4.986] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A 14 nt DNA sequence 5'-AGAATGTGGCAAAG-3' from the zinc finger repeat of the human KRAB zinc finger protein gene ZNF91 bearing the intercalator 2-methoxy,6-chloro,9-amino acridine (Acr) attached to the sugar-phosphate backbone in various positions has been shown to form a specific triple helix (triplex) with a 16 bp hairpin (intramolecular) or a two-stranded (intermolecular) duplex having the identical sequence in the same (parallel) orientation. Intramolecular targets with the identical sequence in the antiparallel orientation and a non-specific target sequence were tested as controls. Apparent binding constants for formation of the triplex were determined by quantitating electrophoretic band shifts. Binding of the single-stranded oligonucleotide probe sequence to the target led to an increase in the fluorescence anisotropy of acridine. The parallel orientation of the two identical sequence segments was confirmed by measurement of fluorescence resonance energy transfer between the acridine on the 5'-end of the probe strand as donor and BODIPY-Texas Red on the 3'-amino group of either strand of the target duplex as acceptor. There was full protection from OsO(4)-bipyridine modification of thymines in the probe strand of the triplex, in accordance with the presumed triplex formation, which excluded displacement of the homologous duplex strand by the probe-intercalator conjugate. The implications of these results for the existence of protein-independent parallel triplexes are discussed.
Collapse
Affiliation(s)
- A K Shchyolkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 117984 Moscow, Russia.
| | | | | | | | | | | |
Collapse
|