1
|
Yahia Y, Pigeot A, El Aabidine AZ, Shah N, Karasu N, Forné I, Krebs S, Blum H, Esnault C, Sexton T, Imhof A, Eick D, Andrau J. RNA polymerase II CTD is dispensable for transcription and required for termination in human cells. EMBO Rep 2023; 24:e56150. [PMID: 37424514 PMCID: PMC10481650 DOI: 10.15252/embr.202256150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
The largest subunit of RNA polymerase (Pol) II harbors an evolutionarily conserved C-terminal domain (CTD), composed of heptapeptide repeats, central to the transcriptional process. Here, we analyze the transcriptional phenotypes of a CTD-Δ5 mutant that carries a large CTD truncation in human cells. Our data show that this mutant can transcribe genes in living cells but displays a pervasive phenotype with impaired termination, similar to but more severe than previously characterized mutations of CTD tyrosine residues. The CTD-Δ5 mutant does not interact with the Mediator and Integrator complexes involved in the activation of transcription and processing of RNAs. Examination of long-distance interactions and CTCF-binding patterns in CTD-Δ5 mutant cells reveals no changes in TAD domains or borders. Our data demonstrate that the CTD is largely dispensable for the act of transcription in living cells. We propose a model in which CTD-depleted Pol II has a lower entry rate onto DNA but becomes pervasive once engaged in transcription, resulting in a defect in termination.
Collapse
Affiliation(s)
- Yousra Yahia
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS‐UMR5535MontpellierFrance
| | - Alexia Pigeot
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS‐UMR5535MontpellierFrance
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS‐UMR5535MontpellierFrance
| | - Nilay Shah
- Department of Molecular Epigenetics, Helmholtz Center MunichCenter of Integrated Protein Science MunichMunichGermany
- Present address:
Neuberg Center for Genomic MedicineNeuberg Supratech Reference LaboratoryGujaratIndia
| | - Nezih Karasu
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS‐UMR5535MontpellierFrance
- Institute of Genetics and Molecular and Cellular Biology (IGBMC)IllkirchFrance
| | | | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene CenterLudwig‐Maximilians‐UniversitätMunichGermany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene CenterLudwig‐Maximilians‐UniversitätMunichGermany
| | - Cyril Esnault
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS‐UMR5535MontpellierFrance
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC)IllkirchFrance
| | - Axel Imhof
- Biomedical Center Munich, ZFPMartinsriedGermany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center MunichCenter of Integrated Protein Science MunichMunichGermany
| | | |
Collapse
|
2
|
Rambout X, Cho H, Blanc R, Lyu Q, Miano JM, Chakkalakal JV, Nelson GM, Yalamanchili HK, Adelman K, Maquat LE. PGC-1α senses the CBC of pre-mRNA to dictate the fate of promoter-proximally paused RNAPII. Mol Cell 2023; 83:186-202.e11. [PMID: 36669479 PMCID: PMC9951270 DOI: 10.1016/j.molcel.2022.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
PGC-1α is well established as a metazoan transcriptional coactivator of cellular adaptation in response to stress. However, the mechanisms by which PGC-1α activates gene transcription are incompletely understood. Here, we report that PGC-1α serves as a scaffold protein that physically and functionally connects the DNA-binding protein estrogen-related receptor α (ERRα), cap-binding protein 80 (CBP80), and Mediator to overcome promoter-proximal pausing of RNAPII and transcriptionally activate stress-response genes. We show that PGC-1α promotes pausing release in a two-arm mechanism (1) by recruiting the positive transcription elongation factor b (P-TEFb) and (2) by outcompeting the premature transcription termination complex Integrator. Using mice homozygous for five amino acid changes in the CBP80-binding motif (CBM) of PGC-1α that destroy CBM function, we show that efficient differentiation of primary myoblasts to myofibers and timely skeletal muscle regeneration after injury require PGC-1α binding to CBP80. Our findings reveal how PGC-1α activates stress-response gene transcription in a previously unanticipated pre-mRNA quality-control pathway.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| | - Hana Cho
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Roméo Blanc
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qing Lyu
- Department of Medicine, Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joseph M Miano
- Department of Medicine, Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hari K Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
3
|
Wissink EM, Vihervaara A, Tippens ND, Lis JT. Nascent RNA analyses: tracking transcription and its regulation. Nat Rev Genet 2019; 20:705-723. [PMID: 31399713 PMCID: PMC6858503 DOI: 10.1038/s41576-019-0159-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
The programmes that direct an organism's development and maintenance are encoded in its genome. Decoding of this information begins with regulated transcription of genomic DNA into RNA. Although transcription and its control can be tracked indirectly by measuring stable RNAs, it is only by directly measuring nascent RNAs that the immediate regulatory changes in response to developmental, environmental, disease and metabolic signals are revealed. Multiple complementary methods have been developed to quantitatively track nascent transcription genome-wide at nucleotide resolution, all of which have contributed novel insights into the mechanisms of gene regulation and transcription-coupled RNA processing. Here we critically evaluate the array of strategies used for investigating nascent transcription and discuss the recent conceptual advances they have provided.
Collapse
Affiliation(s)
- Erin M Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Anniina Vihervaara
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Nathaniel D Tippens
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
5
|
Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J 2012; 31:2784-97. [PMID: 22549466 DOI: 10.1038/emboj.2012.123] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/12/2012] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic RNA polymerase II (Pol II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of the large subunit (Rpb1). Differential phosphorylation of Ser2, Ser5, and Ser7 in the 5' and 3' regions of genes coordinates the binding of transcription and RNA processing factors to the initiating and elongating polymerase complexes. Here, we report phosphorylation of Thr4 by Polo-like kinase 3 in mammalian cells. ChIPseq analyses indicate an increase of Thr4-P levels in the 3' region of genes occurring subsequently to an increase of Ser2-P levels. A Thr4/Ala mutant of Pol II displays a lethal phenotype. This mutant reveals a global defect in RNA elongation, while initiation is largely unaffected. Since Thr4 replacement mutants are viable in yeast we conclude that this amino acid has evolved an essential function(s) in the CTD of Pol II for gene transcription in mammalian cells.
Collapse
|
6
|
Custódio N, Vivo M, Antoniou M, Carmo-Fonseca M. Splicing- and cleavage-independent requirement of RNA polymerase II CTD for mRNA release from the transcription site. ACTA ACUST UNITED AC 2007; 179:199-207. [PMID: 17938247 PMCID: PMC2064756 DOI: 10.1083/jcb.200612109] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Eukaryotic cells have a surveillance mechanism that identifies aberrantly processed pre-mRNAs and prevents their flow to the cytoplasm by tethering them near the site of transcription. Here we provide evidence that mRNA release from the transcription site requires the heptad repeat structure of the C-terminal domain (CTD) of RNA polymerase II. The mammalian CTD, which is essential for normal co-transcriptional maturation of mRNA precursors, comprises 52 heptad repeats. We show that a truncated CTD containing 31 repeats (heptads 1–23, 36–38, and 48–52) is sufficient to support transcription, splicing, cleavage, and polyadenylation. Yet, the resulting mRNAs are mostly retained in the vicinity of the gene after transcriptional shutoff. The retained mRNAs maintain the ability to recruit components of the exon junction complex and the nuclear exosome subunit Rrp6p, suggesting that binding of these proteins is not sufficient for RNA release. We propose that the missing heptads in the truncated CTD mutant are required for binding of proteins implicated in a final co-transcriptional maturation of spliced and 3′ end cleaved and polyadenylated mRNAs into export-competent ribonucleoprotein particles.
Collapse
Affiliation(s)
- Noélia Custódio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Trevor Williams
- Departmento de Producción Agraria, Universidad Pública de Navarra 31006 Pamplona, Spain
| | | | | |
Collapse
|
8
|
Rosonina E, Blencowe BJ. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3'-end cleavage. RNA (NEW YORK, N.Y.) 2004; 10:581-9. [PMID: 15037767 PMCID: PMC1370548 DOI: 10.1261/rna.5207204] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 12/18/2003] [Indexed: 05/17/2023]
Abstract
The carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) plays an important role in coupling transcription with precursor messenger RNA (pre-mRNA) processing. Efficient capping, splicing, and 3'-end cleavage of pre-mRNA depend on the CTD. Moreover, specific processing factors are known to associate with this structure. The CTD is therefore thought to act as a platform that facilitates the assembly of complexes required for the processing of nascent transcripts. The mammalian CTD contains 52 tandemly repeated heptapeptides with the consensus sequence YSPTSPS. The C-terminal half of the mammalian CTD contains mostly repeats that diverge from this consensus sequence, whereas the N-terminal half contains mostly repeats that match the consensus sequence. Here, we demonstrate that 22 tandem repeats, from either the conserved or divergent halves of the CTD, are sufficient for approximate wild-type levels of transcription, splicing, and 3'-end cleavage of two different pre-mRNAs, one containing a constitutively spliced intron, and the other containing an intron that depends on an exon enhancer for efficient splicing. In contrast, each block of 22 repeats is not sufficient for efficient inclusion of an alternatively spliced exon in another pre-mRNA. In this case, a longer CTD is important for counteracting the negative effect of a splicing silencer element located within the alternative exon. Our results indicate that the length, rather than the composition of CTD repeats, can be the major determinant in efficient processing of different pre-mRNA substrates. However, the extent of this length requirement depends on specific sequence features within the pre-mRNA substrate.
Collapse
Affiliation(s)
- Emanuel Rosonina
- Banting and Best Department of Medical Research, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | | |
Collapse
|
9
|
Pinhero R, Liaw P, Bertens K, Yankulov K. Three cyclin-dependent kinases preferentially phosphorylate different parts of the C-terminal domain of the large subunit of RNA polymerase II. ACTA ACUST UNITED AC 2004; 271:1004-14. [PMID: 15009212 DOI: 10.1111/j.1432-1033.2004.04002.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II plays critical roles in the initiation, elongation and processing of primary transcripts. These activities are at least partially regulated by the phosphorylation of the CTD by three cyclin-dependent protein kinases (CDKs), namely CDK7, CDK8 and CDK9. In this study, we systematically compared the phosphorylation of different recombinant CTD substrates by recombinant CDK7/CycH/MAT1, CDK8/CycC and CDK9/CycT1 kinases. We showed that CDK7, CDK8 and CDK9 produce different patterns of phosphorylation of the CTD. CDK7/CycH/MAT1 generates mostly hyperphosphorylated full-length and truncated CTD peptides, while CDK8/CycC and CDK9/CycT1 generate predominantly hypophosphorylated peptides. Total activity towards different parts of the CTD also differs between the three kinases; however, these differences did not correlate with their ability to hyperphosphorylate the substrates. The last 10 repeats of the CTD can act as a suppressor of the activity of the kinases in the context of longer peptides. Our results indicate that the three kinases possess different biochemical properties that could reflect their actions in vivo.
Collapse
Affiliation(s)
- Reena Pinhero
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Chapman RD, Palancade B, Lang A, Bensaude O, Eick D. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability. Nucleic Acids Res 2004; 32:35-44. [PMID: 14704341 PMCID: PMC373282 DOI: 10.1093/nar/gkh172] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The phosphorylation of the RNA polymerase II (Pol II) C-terminal domain (CTD) has been shown to affect the initiation, and transition to elongation of the Pol II complex. The differential phosphorylation of serines within this domain coincides with the recruitment of factors important for pre-mRNA processing and transcriptional elongation. A role for tyrosine and threonine phosphorylation has yet to be described. The discovery of kinases that express a preference for specific residues within this sequence suggests a mechanism for the controlled recruitment and displacement of CTD-interacting partners during the transcription cycle. The last CTD repeat (CTD52) contains unique interaction sites for the only known CTD tyrosine kinases, Abl1/c-Abl and Abl2/Arg, and the serine/threonine kinase casein kinase II (CKII). Here, we show that removal or severe disruption of the last CTD repeat, but not point mutation of its CKII sites, results in its proteolytic degradation to the Pol IIb form in vivo, but does not appear to affect the specific transcription of genes. These results suggest a possible mechanism of transcription control through the proteolytic removal of the Pol II CTD.
Collapse
Affiliation(s)
- Rob D Chapman
- Institute of Clinical Molecular Biology and Tumour Genetics, GSF Research Center for Environment and Health, Marchioninistr. 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
11
|
Meininghaus M, Chapman RD, Horndasch M, Eick D. Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription. J Biol Chem 2000; 275:24375-82. [PMID: 10825165 DOI: 10.1074/jbc.m001883200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carboxyl-terminal domain (CTD) of the large subunit of mammalian RNA polymerase II contains 52 repeats of a heptapeptide that is the target of a variety of kinases. The hyperphosphorylated CTD recruits important factors for mRNA capping, splicing, and 3'-processing. The role of the CTD for the transcription process in vivo, however, is not yet clear. We have conditionally expressed an alpha-amanitin-resistant large subunit with an almost entirely deleted CTD (LS*Delta5) in B-cells. These cells have a defect in global transcription of cellular genes in the presence of alpha-amanitin. Moreover, pol II harboring LS*Delta5 failed to transcribe up to the promoter-proximal pause sites in the hsp70A and c-fos gene promoters. The results indicate that the CTD is already required for steps that occur before promoter-proximal pausing and maturation of mRNA.
Collapse
Affiliation(s)
- M Meininghaus
- Institute for Clinical Molecular Biology and Tumor Genetics, GSF-Research Center for Environment and Health, Marchioninistrasse 25, D-81377 Munich, Germany
| | | | | | | |
Collapse
|