1
|
Lindquist JA, Bernhardt A, Reichardt C, Sauter E, Brandt S, Rana R, Lindenmeyer MT, Philipsen L, Isermann B, Zhu C, Mertens PR. Cold Shock Domain Protein DbpA Orchestrates Tubular Cell Damage and Interstitial Fibrosis in Inflammatory Kidney Disease. Cells 2023; 12:1426. [PMID: 37408260 DOI: 10.3390/cells12101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
DNA-binding protein A (DbpA) belongs to the Y-box family of cold shock domain proteins that exert transcriptional and translational activities in the cell via their ability to bind and regulate mRNA. To investigate the role of DbpA in kidney disease, we utilized the murine unilateral ureter obstruction (UUO) model, which recapitulates many features of obstructive nephropathy seen in humans. We observed that DbpA protein expression is induced within the renal interstitium following disease induction. Compared with wild-type animals, obstructed kidneys from Ybx3-deficient mice are protected from tissue injury, with a significant reduction in the number of infiltrating immune cells as well as in extracellular matrix deposition. RNAseq data from UUO kidneys show that Ybx3 is expressed by activated fibroblasts, which reside within the renal interstitium. Our data support a role for DbpA in orchestrating renal fibrosis and suggest that strategies targeting DbpA may be a therapeutic option to slow disease progression.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Anja Bernhardt
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Charlotte Reichardt
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Eva Sauter
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Sabine Brandt
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, 04103 Leipzig, Germany
| | - Maja T Lindenmeyer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, 04103 Leipzig, Germany
| | - Cheng Zhu
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou 310058, China
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
2
|
Tong C, Qu K, Wang G, Liu R, Duan B, Wang X, Liu C. Knockdown of DNA-binding protein A enhances the chemotherapy sensitivity of colorectal cancer via suppressing the Wnt/β-catenin/Chk1 pathway. Cell Biol Int 2020; 44:2075-2085. [PMID: 32652867 DOI: 10.1002/cbin.11416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 11/07/2022]
Abstract
DNA-binding protein A (dbpA) is reported to be upregulated in many cancers and associated with tumor progress. The present study aimed to investigate the role of dbpA in 5-fluorouracil (5-FU)-resistant and oxaliplatin (L-OHP)-resistant colorectal cancer (CRC) cells. We found that 5-FU and L-OPH treatment promoted the expression of dbpA. Enhanced dbpA promoted the drug resistance of SW620 cells to 5-FU and L-OHP. DbpA knockdown inhibited cell proliferation, induced cell apoptosis, and cell cycle arrested in SW620/5-FU and SW620/L-OHP cells. Besides, dbpA short hairpin RNA (shRNA) enhanced the cytotoxicity of 5-FU and L-OHP to SW620/5-FU and SW620/L-OHP cells. Meanwhile, dbpA shRNA inhibited the activation of the Wnt/β-catenin pathway that induced by 5-FU stimulation in SW620/5-FU cells. Activation of the Wnt/β-catenin pathway or overexpression of checkpoint kinase 1 (Chk1) abrogated the promoting effect of dbpA downregulation on 5-FU sensitivity of CRC cells. Importantly, downregulation of dbpA suppressed tumor growth and promoted CRC cells sensitivity to 5-FU in vivo. Our study indicated that the knockdown of dbpA enhanced the sensitivity of CRC cells to 5-FU via Wnt/β-catenin/Chk1 pathway, and DbpA may be a potential therapeutic target to sensitize drug resistance CRC to 5-FU and L-OHP.
Collapse
Affiliation(s)
- Cong Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,First Department of General Surgery, Shaanxi Provincial People's Hospital/The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guorong Wang
- First Department of General Surgery, Shaanxi Provincial People's Hospital/The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ruiting Liu
- First Department of General Surgery, Shaanxi Provincial People's Hospital/The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Baojun Duan
- Department of Oncology, Shaanxi Provincial People's Hospital/The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqiang Wang
- First Department of General Surgery, Shaanxi Provincial People's Hospital/The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Gonzalez-Mariscal L, Miranda J, Ortega-Olvera JM, Gallego-Gutierrez H, Raya-Sandino A, Vargas-Sierra O. Zonula Occludens Proteins in Cancer. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0109-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Zhu C, Sauter E, Schreiter A, van Roeyen CRC, Ostendorf T, Floege J, Gembardt F, Hugo CP, Isermann B, Lindquist JA, Mertens PR. Cold Shock Proteins Mediate GN with Mesangioproliferation. J Am Soc Nephrol 2016; 27:3678-3689. [PMID: 27151923 DOI: 10.1681/asn.2015121367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/09/2016] [Indexed: 11/03/2022] Open
Abstract
DNA binding protein A (DbpA) is a member of the human cold shock domain-containing protein superfamily, with known functions in cell proliferation, differentiation, and stress responses. DbpA mediates tight junction-associated activities in tubular epithelial cells, but the function of DbpA in mesangial cells is unknown. Here, we found DbpA protein expression restricted to vascular smooth muscle cells in healthy human kidney tissue but profound induction of DbpA protein expression within the glomerular mesangial compartment in mesangioproliferative nephritis. In vitro, depletion or overexpression of DbpA using lentiviral constructs led to inhibition or promotion, respectively, of mesangial cell proliferation. Because platelet-derived growth factor B (PDGF-B) signaling has a pivotal role in mesangial cell proliferation, we examined the regulatory effect of PDGF-B on DbpA. In vitro studies of human and rat mesangial cells confirmed a stimulatory effect of PDGF-B on DbpA transcript numbers and protein levels. Additional in vivo investigations showed DbpA upregulation in experimental rat anti-Thy1.1 nephritis and murine mesangioproliferative nephritis models. To interfere with PDGF-B signaling, we injected nephritic rats with PDGF-B neutralizing aptamers or the MEK/ERK inhibitor U0126. Both interventions markedly decreased DbpA protein expression. Conversely, continuous PDGF-B infusion in healthy rats induced DbpA expression predominantly within the mesangial compartment. Taken together, these results indicate that DbpA is a novel target of PDGF-B signaling and a key mediator of mesangial cell proliferation.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Nephrology, Hypertension, Diabetes and Endocrinology and
| | - Eva Sauter
- Department of Nephrology, Hypertension, Diabetes and Endocrinology and
| | - Anja Schreiter
- Department of Nephrology, Hypertension, Diabetes and Endocrinology and
| | - Claudia R C van Roeyen
- Department of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | - Tammo Ostendorf
- Department of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | - Jürgen Floege
- Department of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | - Florian Gembardt
- Division of Nephrology, Department of Internal Medicine III, Dresden University of Technology, Dresden, Germany
| | - Christian P Hugo
- Division of Nephrology, Department of Internal Medicine III, Dresden University of Technology, Dresden, Germany
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | - Peter R Mertens
- Department of Nephrology, Hypertension, Diabetes and Endocrinology and
| |
Collapse
|
5
|
Bernstein HG, Lindquist JA, Keilhoff G, Dobrowolny H, Brandt S, Steiner J, Bogerts B, Mertens PR. Differential distribution of Y-box-binding protein 1 and cold shock domain protein A in developing and adult human brain. Brain Struct Funct 2014; 220:2235-45. [PMID: 24817634 DOI: 10.1007/s00429-014-0786-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/23/2014] [Indexed: 11/24/2022]
Abstract
The two cold shock domain containing proteins, Y-box-binding protein-1 and cold shock domain protein A were immunolocalized in developing and adult human brain. With the exception of a small population of hypothalamic astrocytes, brain Y-box-binding protein-1 was predominantly found in multiple neurons in the mature human CNS, which might be related to its involvement in neurotransmission and other neuron-associated functions. Cold shock domain protein A was typically observed in astrocytes, oligodendrocytes, choroid plexus epithelia and nerve fibers. However, in circumscribed brain regions as hypothalamus, habenula, and cerebellum, this protein was also expressed in neurons. In the prenatal brain, both proteins were found to be abundantly expressed in radial glial cells, neuroblasts and neurons, which might be an anatomical correlate of the proposed roles of both proteins in cell proliferation and differentiation. In addition, Y-box-binding protein-1 was identified in cultured, lipopolysaccharide-stimulated microglial cells, which underscores its putative role as a mediator in immune and inflammatory processes.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Medical School, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Cyclin-dependent kinase 5 (cdk5) is a proline-directed serine/threonine kinase that is activated mostly by association with its activators, p35 and p39. Initially projected as a neuron-specific kinase, cdk5 is expressed ubiquitously and its kinase activity solely depends on the presence of its activators, which are also found in some non-neuronal tissues. As a multifunctional protein, cdk5 has been linked to axonogenesis, cell migration, exocytosis, neuronal differentiation and apoptosis. Cdk5 plays a critical role in functions other than normal physiology, especially in neurodegeneration. Its contribution to both normal physiological as well as pathological processes is mediated by its specific substrates. Cdk5-null mice are embryonically lethal, therefore making it difficult to study precisely what cdk5 does to the nervous system at early stages of development, be it neuron development or programmed cell death. Zebrafish model system bypasses the impediment, as it is amenable to reverse genetics studies. One of the functions that we have followed for the cdk5 ortholog in zebrafish in vivo is its effect on the Rohon-Beard (RB) neurons. RB neurons are the primary sensory spinal neurons that die during the first two days of zebrafish development eventually to be replaced by the dorsal root ganglia (DRG). Based on ours studies and others', here we discuss possible mechanisms that may be involved in cdk5's role in RB neuron development and survival.
Collapse
|
7
|
González-Mariscal L, Lechuga S, Garay E. Role of tight junctions in cell proliferation and cancer. ACTA ACUST UNITED AC 2007; 42:1-57. [PMID: 17502225 DOI: 10.1016/j.proghi.2007.01.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The acquisition of a cancerous phenotype by epithelial cells involves the disruption of intercellular adhesions. The reorganization of the E-cadherin/beta-catenin complex in adherens junctions during cell transformation is widely recognized. Instead the implication of tight junctions (TJs) in this process is starting to be unraveled. The aim of this article is to review the role of TJ proteins in cell proliferation and cancer.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave. Instituto Politécnico Nacional 2508, México, DF 07360, México.
| | | | | |
Collapse
|
8
|
Matsumoto K, Bay BH. Significance of the Y-box proteins in human cancers. J Mol Genet Med 2005; 1:11-7. [PMID: 19565008 PMCID: PMC2702063 DOI: 10.4172/1747-0862.1000005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 11/22/2022] Open
Abstract
Y-box proteins belong to the cold shock domain family of proteins that are known to be involved in both transcriptional and translational control. Here, we give a brief overview of the structure, regulation and physiological functions of the Y-box proteins. This is followed by examining the role of Y-box protein 1 (YB-1), the most extensively studied of the Y-box protein in tumorigenesis, and its clinicopathological significance. YB-1 has the potential to be a prognostic marker and predictor of chemoresistance in human cancers.
Collapse
Affiliation(s)
- Ken Matsumoto
- Laboratory of Cellular Biochemistry, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
9
|
|
10
|
Balda MS, Garrett MD, Matter K. The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 2003; 160:423-32. [PMID: 12566432 PMCID: PMC2172662 DOI: 10.1083/jcb.200210020] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial tight junctions regulate paracellular permeability, restrict apical/basolateral intramembrane diffusion of lipids, and have been proposed to participate in the control of epithelial cell proliferation and differentiation. Previously, we have identified ZO-1-associated nucleic acid binding proteins (ZONAB), a Y-box transcription factor whose nuclear localization and transcriptional activity is regulated by the tight junction-associated candidate tumor suppressor ZO-1. Now, we found that reduction of ZONAB expression using an antisense approach or by RNA interference strongly reduced proliferation of MDCK cells. Transfection of wild-type or ZONAB-binding fragments of ZO-1 reduced proliferation as well as nuclear ZONAB pools, indicating that promotion of proliferation by ZONAB requires its nuclear accumulation. Overexpression of ZONAB resulted in increased cell density in mature monolayers, and depletion of ZONAB or overexpression of ZO-1 reduced cell density. ZONAB was found to associate with cell division kinase (CDK) 4, and reduction of nuclear ZONAB levels resulted in reduced nuclear CDK4. Thus, our data indicate that tight junctions can regulate epithelial cell proliferation and cell density via a ZONAB/ZO-1-based pathway. Although this regulatory process may also involve regulation of transcription by ZONAB, our data suggest that one mechanism by which ZONAB and ZO-1 influence proliferation is by regulating the nuclear accumulation of CDK4.
Collapse
Affiliation(s)
- Maria S Balda
- Division of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | | | | |
Collapse
|
11
|
Abstract
We have examined the activity of cyclin-dependent kinase 3 (cdk3) during G1-phase of the cell cycle in Chinese Hamster Ovary (CHO) fibroblasts. Histone H1 kinase activity associated with anti-cdk3 immunoprecipitates peaked during a brief window of time, 2-3 h prior to the restriction point. In vitro cdk3 activity was sensitive to roscovitine, a drug previously shown to inhibit cdks 1, 2, and 5, but not cdk4 or 6. Early G1-phase activation of cdk3 was downregulated by treatment of cells with MG132, an inhibitor of the proteasome, and by the protein synthesis inhibitor cycloheximide. These results provide evidence for a pre-restriction point cdk3 activity that requires both the synthesis of a regulatory subunit and degradation of an inhibitor.
Collapse
Affiliation(s)
- Susan M Keezer
- Department of Biochemistry and Molecular Biology, S.U.N.Y. Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | | |
Collapse
|
12
|
Tkatchenko AV, Piétu G, Cros N, Gannoun-Zaki L, Auffray C, Léger JJ, Dechesne CA. Identification of altered gene expression in skeletal muscles from Duchenne muscular dystrophy patients. Neuromuscul Disord 2001; 11:269-77. [PMID: 11297942 DOI: 10.1016/s0960-8966(00)00198-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mutations in the dystrophin gene lead to dystrophin deficiency, which is the cause of Duchenne muscular dystrophy (DMD). This important discovery more than 10 years ago opened a new field for very productive investigations. However, the exact functions of dystrophin are still not fully understood and the complex process leading to subsequent muscle fiber necrosis has not been clearly described; hence there has not yet been any marked improvement in patient treatment. To decipher the molecular mechanisms induced by a lack of dystrophin, we started identifying genes whose expression is altered in DMD skeletal muscles. The approach was based on differential screening of a human muscle cDNA array. Nine genes were found to be up- or downregulated. Our results indicate expression alterations in mitochondrial genes, titin, a muscle transcription factor and three novel genes. First characterizations of these novel genes indicated that two of them have striated muscle tissue specificity.
Collapse
MESH Headings
- Adolescent
- Amino Acid Sequence
- Child
- Connectin
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Mitochondrial/genetics
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression Regulation/genetics
- Genes, Regulator/genetics
- Humans
- Male
- Microfilament Proteins
- Molecular Sequence Data
- Muscle Proteins/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Oligonucleotide Array Sequence Analysis
- Protein Kinases/genetics
- RNA, Messenger/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- A V Tkatchenko
- INSERM U 300, Faculté de Pharmacie, 15 avenue Charles Flahault, 34060 cedex 01, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Soni R, O'Reilly T, Furet P, Muller L, Stephan C, Zumstein-Mecker S, Fretz H, Fabbro D, Chaudhuri B. Selective in vivo and in vitro effects of a small molecule inhibitor of cyclin-dependent kinase 4. J Natl Cancer Inst 2001; 93:436-46. [PMID: 11259469 DOI: 10.1093/jnci/93.6.436] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4 (Cdk4) represents a prime target for the treatment of cancer because most human cancers are characterized by overexpression of its activating partner cyclin D1, loss of the natural Cdk4-specific inhibitor p16, or mutation(s) in Cdk4's catalytic subunit. All of these can cause deregulated cell growth, resulting in tumor formation. We sought to identify a small molecule that could inhibit the kinase activity of Cdk4 in vitro and to then ascertain the effects of that inhibitor on cell growth and tumor volume in vivo. METHODS A triaminopyrimidine derivative, CINK4 (a chemical inhibitor of Cdk4), was identified by screening for compounds that could inhibit Cdk4 enzyme activity in vitro. Kinase assays were performed on diverse human Cdks and on other kinases that were expressed in and purified from insect cells to determine the specificity of CINK4. Cell cycle effects of CINK4 on tumor and normal cells were studied by flow cytometry, and changes in phosphorylation of the retinoblastoma protein (pRb), a substrate of Cdk4, were determined by western blotting. The effect of the inhibitor on tumor growth in vivo was studied by use of tumors established through xenografts of HCT116 colon carcinoma cells in mice. Statistical tests were two-sided. RESULTS CINK4 specifically inhibited Cdk4/cyclin D1 in vitro. It caused growth arrest in tumor cells and in normal cells and prevented pRb phosphorylation. CINK4 treatment resulted in statistically significantly (P: =.031) smaller mean tumor volumes in a mouse xenograft model. CONCLUSIONS Like p16, the natural inhibitor of Cdk4, CINK4 inhibits Cdk4 activity in vitro and slows tumor growth in vivo. The specificity of CINK4 for Cdk4 raises the possibility that this small molecule or one with a similar structure could have therapeutic value.
Collapse
Affiliation(s)
- R Soni
- Oncology Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Diamond P, Shannon MF, Vadas MA, Coles LS. Cold shock domain factors activate the granulocyte-macrophage colony-stimulating factor promoter in stimulated Jurkat T cells. J Biol Chem 2001; 276:7943-51. [PMID: 11116154 DOI: 10.1074/jbc.m009836200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cold shock domain (CSD) family members have been shown to play roles in either transcriptional activation or repression of many genes in various cell types. We have previously shown that CSD proteins dbpAv and dbpB (also known as YB-1) act to repress granulocyte-macrophage colony-stimulating factor transcription in human embryonic lung (HEL) fibroblasts via binding to single-stranded DNA regions across the promoter. Here we show that the same CSD factors are involved in granulocyte-macrophage colony-stimulating factor transcriptional activation in Jurkat T cells. Unlike the mechanisms of CSD repression in HEL fibroblasts, CSD-mediated activation in Jurkat T cells is not mediated through DNA binding but presumably through protein-protein interactions via the C terminus of the CSD protein with transcription factors such as RelA/NF-kappaB p65. We demonstrate that Jurkat T cells lack truncated CSD factor subtypes present in HEL fibroblasts, which raises the possibility that the cellular content of CSD proteins may determine their final role as activators or repressors of transcription.
Collapse
Affiliation(s)
- P Diamond
- Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia, 5000, Australia.
| | | | | | | |
Collapse
|
15
|
Wang X, Ching YP, Lam WH, Qi Z, Zhang M, Wang JH. Identification of a common protein association region in the neuronal Cdk5 activator. J Biol Chem 2000; 275:31763-9. [PMID: 10915792 DOI: 10.1074/jbc.m004358200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cyclin-dependent protein kinase 5 (Cdk5) depends on the association with neuronal Cdk5 activator (Nck5a) for kinase activity. A variety of cellular proteins have been shown to undergo high affinity association with Nck5a, including three novel proteins, C42, C48, and C53 found by a yeast two-hybrid screen (Ching, Y. P., Qi, Z., and Wang, J. H. (2000) Gene 242, 285-294). The three proteins show competitive binding to Nck5a suggesting that they bind at a common site. The binding site has been mapped to a region of 26 amino acid residues (residues 145 to 170) at the N-terminal boundary of the kinase activation domain of Nck5a. This region of Nck5a contains an amphipathic alpha-helix whose hydrophobic face is involved in Cdk5 activation (Chin, K. T., Ohki, S, Tang, D., Cheng, H. C., Wang, J. H. , and Zhang, M. (1999) J. Biol. Chem. 274, 7120-7127). Several lines of evidence suggest that Nck5a interacts with the binding proteins at the hydrophilic face of the amphipathic alpha-helix. First, the Nck5a-(145-170) peptide can bind Cdk5 and Nck5a-binding proteins simultaneously. Second, the association of Nck5a-(145-170) to C48 can be markedly reduced by high ionic strength whereas the interaction between Nck5a and Cdk5 is not affected. Third, substitution of Glu(157) by glutamine in Nck5a-(145-170) abolishes the peptide's ability to bind to the three Nck5a-binding proteins without diminishing its Cdk5 binding activity.
Collapse
Affiliation(s)
- X Wang
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Soni R, Muller L, Furet P, Schoepfer J, Stephan C, Zumstein-Mecker S, Fretz H, Chaudhuri B. Inhibition of cyclin-dependent kinase 4 (Cdk4) by fascaplysin, a marine natural product. Biochem Biophys Res Commun 2000; 275:877-84. [PMID: 10973815 DOI: 10.1006/bbrc.2000.3349] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small chemical molecules that interfere with biological proteins could be useful for gaining insight into the complex biochemical processes in mammalian cells. Cdk4 is a key protein whose activity is required not only for emergence of cells from quiescence but also at the G1/S transition in the cell cycle and which is misregulated in 60-70% of human cancers. We set out to identify chemical inhibitors of Cdk4 and discovered that, in vitro, fascaplysin specifically inhibited Cdk4. Molecular modelling based on the crystal structure of Cdk2 suggests that fascaplysin inhibits Cdk4 by binding to the ATP pocket of the kinase. Treatment of tumour (p16(-), pRb(+)) and normal (p16(+), pRb(+)) cell lines with fascaplysin caused G1 arrest and prevented pRb phosphorylation at sites implicated as being specific for Cdk4 kinase. Fascaplysin will therefore prove to be a useful tool in studying the consequence of Cdk4 inhibition, especially in cells containing inactivated p16.
Collapse
Affiliation(s)
- R Soni
- Oncology Research, Novartis Pharma AG, Basel, CH 4002, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Soni R, Fretz H, Muller L, Schoepfer J, Chaudhuri B. Novel Cdk inhibitors restore TGF-beta sensitivity in cdk4 overexpressing epithelial cells. Biochem Biophys Res Commun 2000; 272:794-800. [PMID: 10860833 DOI: 10.1006/bbrc.2000.2849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a potent mitogen that effects a wide variety of cells by blocking cell growth. TGF-beta acts by interacting with components of cell cycle machinery to cause G1 arrest and in mink lung epithelial cells (Mv1Lu) it does so by inhibiting Cdk4 synthesis. Overexpression of Cdk4 in these cells (B7) renders them resistant to the effects of TGF-beta. Here we report that two novel Cdk inhibitors (pyridopyrimidines) that not only inhibit Cdk4 and Cdk2 in an in vitro kinase assay but also, in the absence of TGF-beta, block growth of Mv1Lu cells in G1 more efficiently than their B7 (overexpressing Cdk4) counterparts. Interestingly, these inhibitors restored sensitivity of B7 cells towards TGF-beta. This may have implications for the treatment of tumors that have lost TGF-beta responsiveness due to deregulated cellular growth in vivo. These Cdk inhibitors could therefore be used in conjunction with TGF-beta to understand the mechanism of growth arrest in normal versus tumour cells.
Collapse
Affiliation(s)
- R Soni
- Oncology Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | | |
Collapse
|