1
|
Li B, Gao W, Pan Y, Yao Y, Liu G. Progress in 1,3-propanediol biosynthesis. Front Bioeng Biotechnol 2024; 12:1507680. [PMID: 39677837 PMCID: PMC11637877 DOI: 10.3389/fbioe.2024.1507680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
1,3-Propanediol (1,3-PDO) is one of the important organic chemical materials and is widely used in polyester synthesis, and it also shows great potential in medicine, cosmetics, resins, and biodegradable plastics. So far, 1,3-PDO mainly comes from chemical synthesis. However, the by-products and the side effects during chemical synthesis of 1,3-PDO bring about serious damage to the environment. In recent years, the biosynthetic pathway of 1,3-PDO has been elucidated in microorganisms. Under the action of glycerol dehydratase (GDHt) and propanediol oxidoreductase (PDOR), glycerol can be catalyzed to form 1,3-PDO through the reduction pathway. Compared to the chemical synthesis, the biosynthesis of 1,3-PDO is environmentally friendly but would face the problem of low production. To improve the yield, the native 1,3-PDO producing strains have been modified by genetic engineering, and the biosynthetic pathway has been reconstructed in the model microorganism, Escherichia coli. In this review, we summarize the research progress of the 1,3-PDO biosynthesis in microorganisms, and hopefully, it will provide reference for the renewable production of 1,3-PDO in industry.
Collapse
Affiliation(s)
- Boran Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenyan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Catte A, K. Ramaswamy V, Vargiu AV, Malloci G, Bosin A, Ruggerone P. Common recognition topology of mex transporters of Pseudomonas aeruginosa revealed by molecular modelling. Front Pharmacol 2022; 13:1021916. [PMID: 36438787 PMCID: PMC9691783 DOI: 10.3389/fphar.2022.1021916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
The secondary transporters of the resistance-nodulation-cell division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria like Pseudomonas aeruginosa. Among these RND transporters, MexB, MexF, and MexY, with partly overlapping specificities, have been implicated in pathogenicity. Only the structure of the former has been resolved experimentally, which together with the lack of data about the functional dynamics of the full set of transporters, limited a systematic investigation of the molecular determinants defining their peculiar and shared features. In a previous work (Ramaswamy et al., Front. Microbiol., 2018, 9, 1144), we compared at an atomistic level the two main putative recognition sites (named access and deep binding pockets) of MexB and MexY. In this work, we expand the comparison by performing extended molecular dynamics (MD) simulations of these transporters and the pathologically relevant transporter MexF. We employed a more realistic model of the inner phospholipid membrane of P. aeruginosa and more accurate force-fields. To elucidate structure/dynamics-activity relationships we performed physico-chemical analyses and mapped the binding propensities of several organic probes on all transporters. Our data revealed the presence, also in MexF, of a few multifunctional sites at locations equivalent to the access and deep binding pockets detected in MexB. Furthermore, we report for the first time about the multidrug binding abilities of two out of five gates of the channels deputed to peripheral (early) recognition of substrates. Overall, our findings help to define a common “recognition topology” characterizing Mex transporters, which can be exploited to optimize transport and inhibition propensities of antimicrobial compounds.
Collapse
|
3
|
Emergence of Resistance to Novel Cephalosporin-β-Lactamase Inhibitor Combinations through the Modification of the Pseudomonas aeruginosa MexCD-OprJ Efflux Pump. Antimicrob Agents Chemother 2021; 65:e0008921. [PMID: 34060900 DOI: 10.1128/aac.00089-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A ceftolozane-tazobactam- and ceftazime-avibactam-resistant Pseudomonas aeruginosa isolate was recovered after treatment (including azithromycin, meropenem, and ceftolozane-tazobactam) from a patient that had developed ventilator-associated pneumonia after COVID-19 infection. Whole-genome sequencing revealed that the strain, belonging to ST274, had acquired a nonsense mutation leading to truncated carbapenem porin OprD (W277X), a 7-bp deletion (nt213Δ7) in NfxB (negative regulator of the efflux pump MexCD-OprJ), and two missense mutations (Q178R and S133G) located within the first large periplasmic loop of MexD. Through the construction of mexD mutants and complementation assays with wild-type nfxB, it was evidenced that resistance to the novel cephalosporin-β-lactamase inhibitor combinations was caused by the modification of MexD substrate specificity.
Collapse
|
4
|
Abstract
Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
5
|
Abstract
What makes a heavy metal resistant bacterium heavy metal resistant? The mechanisms of action, physiological functions, and distribution of metal-exporting proteins are outlined, namely: CBA efflux pumps driven by proteins of the resistance-nodulation-cell division superfamily, P-type ATPases, cation diffusion facilitator and chromate proteins, NreB- and CnrT-like resistance factors. The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans. This comparison shows that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions. Some of these systems are widespread and serve in the basic defense of the cell against superfluous heavy metals, but some are highly specialized and occur only in a few bacteria. Possession of the latter systems makes a bacterium heavy metal resistant.
Collapse
Affiliation(s)
- Dietrich H Nies
- Institute of Microbiology, Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06099 Halle/Saale, Germany.
| |
Collapse
|
6
|
|
7
|
Tauch A, Schlüter A, Bischoff N, Goesmann A, Meyer F, Pühler A. The 79,370-bp conjugative plasmid pB4 consists of an IncP-1beta backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla(NPS-1), and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Genet Genomics 2003; 268:570-84. [PMID: 12589432 DOI: 10.1007/s00438-002-0785-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Accepted: 11/07/2002] [Indexed: 10/25/2022]
Abstract
Plasmid pB4 is a conjugative antibiotic resistance plasmid, originally isolated from a microbial community growing in activated sludge, by means of an exogenous isolation method with Pseudomonas sp. B13 as recipient. We have determined the complete nucleotide sequence of pB4. The plasmid is 79,370 bp long and contains at least 81 complete coding regions. A suite of coding regions predicted to be involved in plasmid replication, plasmid maintenance, and conjugative transfer revealed significant similarity to the IncP-1beta backbone of R751. Four resistance gene regions comprising mobile genetic elements are inserted in the IncP-1beta backbone of pB4. The modular 'gene load' of pB4 includes (1) the novel transposon Tn 5719 containing genes characteristic of chromate resistance determinants, (2) the transposon Tn 5393c carrying the widespread streptomycin resistance gene pair strA-strB, (3) the beta-lactam antibiotic resistance gene bla(NPS-1) flanked by highly conserved sequences characteristic of integrons, and (4) a tripartite antibiotic resistance determinant comprising an efflux protein of the resistance-nodulation-division (RND) family, a periplasmic membrane fusion protein (MFP), and an outer membrane factor (OMF). The components of the RND-MFP-OMF efflux system showed the highest similarity to the products of the mexCD-oprJ determinant from the Pseudomonas aeruginosa chromosome. Functional analysis of the cloned resistance region from pB4 in Pseudomonas sp. B13 indicated that the RND-MFP-OMF efflux system conferred high-level resistance to erythromycin and roxithromycin resistance on the host strain. This is the first example of an RND-MFP-OMF-type antibiotic resistance determinant to be found in a plasmid genome. The global genetic organization of pB4 implies that its gene load might be disseminated between bacteria in different habitats by the combined action of the conjugation apparatus and the mobility of its component elements.
Collapse
Affiliation(s)
- A Tauch
- Zentrum für Genomforschung, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Eda S, Maseda H, Nakae T. An elegant means of self-protection in gram-negative bacteria by recognizing and extruding xenobiotics from the periplasmic space. J Biol Chem 2003; 278:2085-8. [PMID: 12460990 DOI: 10.1074/jbc.c200661200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infection of Pseudomonas aeruginosa in cystic fibrosis patients is a major cause of mortality. This organism shows wide ranging antibiotic resistance that is largely attributable to the expression of xenobiotic efflux pump(s). Here, we show a novel mechanism by which the resistance-nodulation-division-type xenobiotic transporter expels potential hazards and protects the interior of the cells. The xenobiotic transporters MexB and MexY preferentially export beta-lactam and aminoglycoside antibiotics, respectively. When two large extramembrane loops of MexY were replaced by the corresponding loops of MexB, the hybrid protein exhibited beta-lactam selectivity (MexB-type), but failed to recognize aminoglycoside. As the transmembrane segment of MexB was replaced with a corresponding transmembrane segment of MexY, one-by-one for all 12 segments, all the hybrid proteins showed MexB-type antibiotic selectivity. These results clearly demonstrated that the resistance-nodulation-division-type efflux pump in P. aeruginosa selects and transports substrates via the domains that largely protrude over the cytoplasmic membrane. The transmembrane segments were unlikely to have been involved in substrate selectivity. These observations led us to propose a novel mechanism by which the xenobiotic transporters in Gram-negative bacteria select and expel substrates from the periplasmic space before potential hazards penetrate into the cytoplasmic membrane.
Collapse
Affiliation(s)
- Shima Eda
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | | | | |
Collapse
|
9
|
Okamoto K, Gotoh N, Nishino T. Alterations of susceptibility of Pseudomonas aeruginosa by overproduction of multidrug efflux systems, MexAB-OprM, MexCD-OprJ, and MexXY/OprM to carbapenems: substrate specificities of the efflux systems. J Infect Chemother 2002; 8:371-3. [PMID: 12525903 DOI: 10.1007/s10156-002-0193-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Overproduction of multidrug efflux systems MexAB-OprM, MexCD-OprJ, and MexXY/OprM of Pseudomonas aeruginosa caused reduction of susceptibility of the mutant, which lacked AmpC and all three systems to panipenem, meropenem, S4661 and DU6681a; meropenem, S4661 and DU6681a; and BO2727, panipenem, meropenem, S4661 and DU6681a, respectively, but not reduction of the susceptibility to imipenem and biapenem. Thus, we determined substrate specificities of these efflux systems to carbapenems.
Collapse
Affiliation(s)
- Kiyomi Okamoto
- Department of Microbiology, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, kyoto 607-8414, Japan
| | | | | |
Collapse
|
10
|
Mao W, Warren MS, Black DS, Satou T, Murata T, Nishino T, Gotoh N, Lomovskaya O. On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition. Mol Microbiol 2002; 46:889-901. [PMID: 12410844 DOI: 10.1046/j.1365-2958.2002.03223.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tripartite efflux systems of Gram-negative bacteria that contain an inner membrane transporter belonging to the resistance nodulation division (RND) superfamily can extrude a large variety of structurally diverse compounds. To gain an insight into the molecular mechanisms of substrate recognition by these multidrug resistance (MDR) transporters, we isolated spontaneous mutations that altered the substrate specificity of the MexCD-OprJ pump from Pseudomonas aeruginosa. These mutations enabled the pump to extrude the normally non-transported beta-lactam antibiotic carbenicillin. All amino acid substitutions were mapped to the large periplasmic loops (LPLs) of the RND proper, MexD. Q34K, E89K, A292V and P328L were found in the first LPL, located between transmembrane domains (TMD) 1 and 2, whereas F608S and N673K were contained in the second LPL, located between TMD7 and TMD8. These mutations also had a substantial impact on the MexCD-OprJ-mediated transport of numerous other substrates. Subsequent replacement of amino acid residues identified above by cysteines rendered MexCD-OprJ susceptible to inhibition by a thiol-reactive agent, MIANS. Interestingly, MIANS inhibited the transport of some (pyronin, EtBr) but not other (ANS, Leu-Nap) substrates of the pump. Our results suggest that the precise structure of the periplasmic loops of MexD determines the rate of transport of individual substrates. These results are consistent with the hypothesis that, in the case of RND transporters, the LPLs are directly implicated in substrate recognition and contain multiple sites of interaction for various structurally diverse compounds.
Collapse
Affiliation(s)
- Weimin Mao
- Essential Therapeutics Inc., 850 Maude Ave., Mountain View, CA 94043, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Aires JR, Pechère JC, Van Delden C, Köhler T. Amino acid residues essential for function of the MexF efflux pump protein of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2002; 46:2169-73. [PMID: 12069970 PMCID: PMC127300 DOI: 10.1128/aac.46.7.2169-2173.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At least four broad-spectrum efflux pumps (Mex) are involved in elevated intrinsic antibiotic resistance as well as in acquired multidrug resistance in Pseudomonas aeruginosa. Substrate specificity of the Mex pumps has been shown to be determined by the cytoplasmic membrane component (MexB, MexD, MexF, and MexY) of the tripartite efflux pump system. Alignment of their amino acid sequences with those of the homologous AcrB and AcrD pump proteins of Escherichia coli showed conservation of five charged amino acid residues located in or next to transmembrane segments (TMS). These residues were mutated in the MexF gene by site-directed mutagenesis and replaced by residues of opposite or neutral charge. MexF proteins containing combined D410A and A411G substitutions located in TMS4 were completely inactive. Similarly, the substitutions E417K (next to TMS4) and K951E (TMS10) also caused loss of activity towards all tested antibiotics. The substitution E349K in TMS2 resulted in a MexF mutant protein which was unable to transport trimethoprim and quinolones but retained partial activity for the transport of chloramphenicol. All mutated MexF proteins were expressed at comparable levels when tested by Western blot analysis. It is concluded that charged residues located in or close to TMS are essential for proper function of MexF.
Collapse
Affiliation(s)
- Julio Ramos Aires
- Department of Genetics and Microbiology, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
12
|
Sadlish H, Williams FMR, Flintoff WF. Cytoplasmic domains of the reduced folate carrier are essential for trafficking, but not function. Biochem J 2002; 364:777-86. [PMID: 12049642 PMCID: PMC1222627 DOI: 10.1042/bj20011361] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The reduced folate carrier (RFC) protein has a secondary structure consistent with the predicted 12 transmembrane (TM) domains, intracellular N- and C-termini and a large cytoplasmic loop between TM6 and TM7. In the present study, the role of the cytoplasmic domains in substrate transport and protein biogenesis were examined using an array of hamster RFC deletion mutants fused to enhanced green fluorescent protein and expressed in Chinese hamster ovary cells. The N- and C-terminal tails were removed both individually and together, or the large cytoplasmic loop was modified such that the domain size and role of conserved sequences could be examined. The loss of the N- or C-terminal tails did not appear to significantly disrupt protein function, although both termini appeared to have a role in the efficiency with which molecules exited the endoplasmic reticulum to localize at the plasma membrane. There appeared to be both size and sequence requirements for the intracellular loop, which are able to drastically affect protein stability and function unless met. Furthermore, there might be an indirect role for the loop in substrate translocation, since even moderate changes significantly reduced the V(max) for methotrexate transport. Although these cytoplasmic domains do not appear to be absolutely essential for substrate transport, each one is important for biogenesis and localization.
Collapse
Affiliation(s)
- Heather Sadlish
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
13
|
Abstract
Niemann-Pick C1 (NPC1) disease is characterized by cholesterol accumulation in lysosomes and aberrant feedback regulation of cellular cholesterol homeostasis. We provide evidence that the NPC1 protein has homology with the resistance-nodulation-division (RND) family of prokaryotic permeases and may normally function as a transmembrane efflux pump. Studies of acriflavine loading in normal and NPC1 fibroblasts indicated that NPC1 uses a proton motive force to remove accumulated acriflavine from the endosomal/lysosomal system. Expression of NPC1 in Escherichia coli (i) facilitated the transport of acriflavine across the plasma membrane, causing cytosolic accumulation, and (ii) resulted in transport of oleic acid but not cholesterol or cholesterol-oleate across the plasma membrane. These studies establish NPC1 as a eukaryotic member of the RND permease family.
Collapse
Affiliation(s)
- J P Davies
- Department of Human Genetics, Box 1498, The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
14
|
Abstract
A set of multidrug efflux systems enables Gram-negative bacteria to survive in a hostile environment. This review focuses on the structural features and the mechanism of major efflux pumps of Gram-negative bacteria, which expel from the cells a remarkably broad range of antimicrobial compounds and produce the characteristic intrinsic resistance of these bacteria to antibiotics, detergents, dyes and organic solvents. Each efflux pump consists of three components: the inner membrane transporter, the outer membrane channel and the periplasmic lipoprotein. Similar to the multidrug transporters from eukaryotic cells and Gram-positive bacteria, the inner membrane transporters from Gram-negative bacteria recognize and expel their substrates often from within the phospholipid bilayer. This efflux occurs without drug accumulation in the periplasm, implying that substrates are pumped out across the two membranes directly into the medium. Recent data suggest that the molecular mechanism of the drug extrusion across a two-membrane envelope of Gram-negative bacteria may involve the formation of the membrane adhesion sites between the inner and the outer membranes. The periplasmic components of these pumps are proposed to cause a close membrane apposition as the complexes are assembled for the transport.
Collapse
Affiliation(s)
- H I Zgurskaya
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3206, USA
| | | |
Collapse
|