1
|
Dubovskii PV, Efremov RG. The role of hydrophobic /hydrophilic balance in the activity of structurally flexible vs. rigid cytolytic polypeptides and analogs developed on their basis. Expert Rev Proteomics 2018; 15:873-886. [PMID: 30328726 DOI: 10.1080/14789450.2018.1537786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Being important representatives of various proteomes, membrane-active cationic peptides (CPs) are attractive objects as lead compounds in the design of new antibacterial, anticancer, antifungal, and antiviral molecules. Numerous CPs are found in insect and snake venoms, where many of them reveal cytolytic properties. Due to advances in omics technologies, the number of such peptides is growing dramatically. Areas covered: To understand structure-function relationships for CPs in a living cell, detailed analysis of their hydrophobic/hydrophilic properties is indispensable. We consider two structural classes of membrane-active CPs: latarcins (Ltc) from spider and cardiotoxins (CTXs) from snake venoms. While the former are void off disulfide bonds and conformationally flexible, the latter are structurally rigid and cross-linked with disulfide bonds. In order to elucidate structure-activity relationships behind their antibacterial, anticancer, and hemolytic effects, the properties of these polypeptides are considered on a side-by-side basis. Expert commentary: An ever-increasing number of venom-derived membrane-active polypeptides require new methods for identification of their functional propensities and sequence-based design of novel pharmacological substances. We address these issues considering a number of the designed peptides, based either on Ltc or CTX sequences. Experimental and computer modeling techniques required for these purposes are delineated.
Collapse
Affiliation(s)
- Peter V Dubovskii
- a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , Russia
| | - Roman G Efremov
- a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , Russia.,b Moscow Institute of Physics and Technology , Dolgoprudnyi , Russian Federation.,c National Research University Higher School of Economics , Moscow , Russia
| |
Collapse
|
2
|
Improving therapeutic potential of antibacterial spider venom peptides: coarse-grain molecular dynamics guided approach. Future Med Chem 2018; 10:2309-2322. [DOI: 10.4155/fmc-2018-0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Spider venom is a rich source of antibacterial peptides, whose hemolytic activity is often excessive. Methodology: How to get rid of it? Using latarcins from Lachesana tarabaevi and oxyopinin Oxt 4a from Oxyopes takobius spider venoms we performed coarse-grained molecular dynamics simulations of these peptides in the presence of lipid bilayers, mimicking erythrocyte membranes. This identified hemolytically active fragments within Oxt 4a and latarcins. Then, we synthesized five 20-residue peptides, containing different parts of the Oxt 4a and latarcin-1 sequence, carrying mutations within the identified regions. Conclusion: The antibacterial and hemolytic tests suggested that the three of the synthesized peptides demonstrated substantial decrease in hemolytic activity, retaining, or even exceeding antibacterial potential of the parent peptides.
Collapse
|
3
|
Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci 2015; 72:4501-22. [PMID: 26286896 PMCID: PMC11113828 DOI: 10.1007/s00018-015-2016-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.
Collapse
Affiliation(s)
- Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Eugene V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Higher School of Economics, 20 Myasnitskaya, Moscow, 101000, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
| |
Collapse
|
4
|
Evans BC, Hocking KM, Kilchrist KV, Wise ES, Brophy CM, Duvall CL. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction. ACS NANO 2015; 9:5893-907. [PMID: 26004140 PMCID: PMC4482421 DOI: 10.1021/acsnano.5b00491] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/24/2015] [Indexed: 05/23/2023]
Abstract
A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.
Collapse
Affiliation(s)
- Brian C. Evans
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, Tennessee 37235, United States
| | - Kyle M. Hocking
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, Tennessee 37235, United States
| | - Kameron V. Kilchrist
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, Tennessee 37235, United States
| | - Eric S. Wise
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, D-5237 Medical Center North, 1161 22nd Avenue South, Nashville, Tennessee 37232, United States
| | - Colleen M. Brophy
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, D-5237 Medical Center North, 1161 22nd Avenue South, Nashville, Tennessee 37232, United States
- Veterans Affairs Medical Center, VA Tennessee Valley Healthcare System, 1310 24th Avenue South, Nashville, Tennessee 37212, United States
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Crowet JM, Parton DL, Hall BA, Steinhauer S, Brasseur R, Lins L, Sansom MSP. Multi-Scale Simulation of the Simian Immunodeficiency Virus Fusion Peptide. J Phys Chem B 2012; 116:13713-21. [DOI: 10.1021/jp3027385] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jean-Marc Crowet
- Centre de Biophysique Moléculaire
Numérique, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des déportés,
B-5030 Gembloux, Belgium
| | - Daniel L. Parton
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1
3QU, United Kingdom
| | - Benjamin A. Hall
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1
3QU, United Kingdom
| | - Sven Steinhauer
- Centre de Biophysique Moléculaire
Numérique, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des déportés,
B-5030 Gembloux, Belgium
| | - Robert Brasseur
- Centre de Biophysique Moléculaire
Numérique, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des déportés,
B-5030 Gembloux, Belgium
| | - Laurence Lins
- Centre de Biophysique Moléculaire
Numérique, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des déportés,
B-5030 Gembloux, Belgium
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1
3QU, United Kingdom
| |
Collapse
|
6
|
Dubovskii PV. Unusual titration of the membrane-bound artificial hemagglutinin fusion peptide. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:1077-84. [DOI: 10.1007/s00249-012-0867-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/25/2012] [Accepted: 10/04/2012] [Indexed: 11/28/2022]
|
7
|
Promsri S, Ullmann GM, Hannongbua S. Molecular dynamics simulation of HIV-1 fusion domain-membrane complexes: Insight into the N-terminal gp41 fusion mechanism. Biophys Chem 2012; 170:9-16. [DOI: 10.1016/j.bpc.2012.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 06/24/2012] [Accepted: 07/09/2012] [Indexed: 11/26/2022]
|
8
|
Li H, Nelson CE, Evans BC, Duvall CL. Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 2011; 17:293-319. [PMID: 21348831 DOI: 10.2174/138161211795049642] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 12/21/2022]
Abstract
The recent elucidation of molecular regulators of apoptosis and their roles in cellular oncogenesis has motivated the development of biomacromolecular anticancer therapeutics that can activate intracellular apoptotic signaling pathways. Pharmaceutical scientists have employed a variety of classes of biologics toward this goal, including antisense oligodeoxynucleotides, small interfering RNA, proteins, antibodies, and peptides. However, stability in the in vivo environment, tumor-specific biodistribution, cell internalization, and localization to the intracellular microenvironment where the targeted molecule is localized pose significant challenges that limit the ability to directly apply intracellular-acting, pro-apoptotic biologics for therapeutic use. Thus, approaches to improve the pharmaceutical properties of therapeutic biomacromolecules are of great significance and have included chemically modifying the bioactive molecule itself or formulation with auxiliary compounds. Recently, promising advances in delivery of pro-apoptotic biomacromolecular agents have been made using tools such as peptide "stapling", cell penetrating peptides, fusogenic peptides, liposomes, nanoparticles, smart polymers, and synergistic combinations of these components. This review will discuss the molecular mediators of cellular apoptosis, the respective mechanisms by which these mediators are dysregulated in cellular oncogenesis, the history and development of both nucleic-acid and amino-acid based drugs, and techniques to achieve intracellular delivery of these biologics. Finally, recent applications where pro-apoptotic functionality has been achieved through delivery of intracellular-acting biomacromolecular drugs will be highlighted.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
9
|
Volkov VV, Chelli R, Muniz-Miranda F, Righini R. Structural Properties of a Membrane Associated Anchor Dipeptide. J Phys Chem B 2011; 115:5294-303. [DOI: 10.1021/jp109284z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victor V. Volkov
- European Laboratory for Nonlinear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| | - Riccardo Chelli
- European Laboratory for Nonlinear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | - Francesco Muniz-Miranda
- European Laboratory for Nonlinear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| | - Roberto Righini
- European Laboratory for Nonlinear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Taylor A, Sansom MSP. Studies on viral fusion peptides: the distribution of lipophilic and electrostatic potential over the peptide determines the angle of insertion into a membrane. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2010; 39:1537-45. [PMID: 20499059 DOI: 10.1007/s00249-010-0611-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 11/30/2022]
Abstract
The oblique insertion of type 1 viral fusion peptides into the cell membrane of the host cell has been shown previously to be an essential element of viral fusion. The actual physical explanation of the cause of the oblique insertion has been the subject of speculation. In this study the physical properties of the fusion peptide surface have been determined computationally and compared to the tilt angles determined both experimentally and by the use of molecular dynamics. It has been shown that the relationship between the distribution of lipophilic potential over the peptide surface and the peptide geometry control the tilt angle of the peptide in a biomimetic DMPC bilayer whereas the depth of penetration into the bilayer appears to be determined by the electrostatic potential and hydrogen bonding at the C-terminus.
Collapse
Affiliation(s)
- A Taylor
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.
| | | |
Collapse
|
11
|
Li J, Das P, Zhou R. Single mutation effects on conformational change and membrane deformation of influenza hemagglutinin fusion peptides. J Phys Chem B 2010; 114:8799-806. [PMID: 20552971 DOI: 10.1021/jp1029163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The single mutation effect on the conformational change and membrane permeation of influenza hemagglutinin fusion peptides has been studied with molecular dynamics simulations. A total of seven peptides, including wild-type fusion peptide and its six single point mutants (G1E, G1S, G1V, G4V, E11A, and W14A, all with no fusion or hemifusion activity) are examined systematically, which covers a wide range of mutation sites as well as mutant residue types (both hydrophobic and hydrophilic). The wild-type shows a kink structure (inversed V-shape), which facilitates the interaction between the fusion peptide and the lipid bilayer, as well as the interaction between the two arms of the fusion peptide. All mutants show a strong tendency toward a linear alpha-helix conformation, with the initial kink structure in the wild-type broken. More interestingly, one of the key hydrophobic residues around the initial kink region, Phe-9, is found to flip away from the membrane surface in most of these mutants. This conformational change causes a loss of key interactions between the original two arms of the inversed V-shape of the wild-type, thus disabling the kink structure, which results in the stabilization of the linear alpha-helix structure. The fusion peptides also display significant impact on the membrane structure deformation. The thickness of the lipid bilayer surrounding the wild-type fusion peptide decreases significantly, which induces a positive curvature of lipid bilayer. All the single mutations examined here reduce this membrane structural deformation, supporting the fusion activity data from experiments.
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | | | | |
Collapse
|
12
|
Volynsky PE, Mineeva EA, Goncharuk MV, Ermolyuk YS, Arseniev AS, Efremov RG. Computer simulations and modeling-assisted ToxR screening in deciphering 3D structures of transmembrane alpha-helical dimers: ephrin receptor A1. Phys Biol 2010; 7:16014. [PMID: 20228445 DOI: 10.1088/1478-3975/7/1/016014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Membrane-spanning segments of numerous proteins (e.g. receptor tyrosine kinases) represent a novel class of pharmacologically important targets, whose activity can be modulated by specially designed artificial peptides, the so-called interceptors. Rational construction of such peptides requires understanding of the main factors driving peptide-peptide association in lipid membranes. Here we present a new method for rapid prediction of the spatial structure of transmembrane (TM) helix-helix complexes. It is based on computer simulations in membrane-like media and subsequent refinement/validation of the results using experimental studies of TM helix dimerization in a bacterial membrane by means of the ToxR system. The approach was applied to TM fragments of the ephrin receptor A1 (EphA1). A set of spatial structures of the dimer was proposed based on Monte Carlo simulations in an implicit membrane followed by molecular dynamics relaxation in an explicit lipid bilayer. The resulting models were employed for rational design of wild-type and mutant genetic constructions for ToxR assays. The computational and the experimental data are self-consistent and provide an unambiguous spatial model of the TM dimer of EphA1. The results of this work can be further used to develop new biologically active 'peptide interceptors' specifically targeting membrane domains of proteins.
Collapse
Affiliation(s)
- P E Volynsky
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Ul, Miklukho-Maklaya, 16/10, 117997 GSP, Moscow V-437, Russia.
| | | | | | | | | | | |
Collapse
|
13
|
Volkov VV, Righini R. Partitioning of an Anchor Dipeptide in a Phospholipid Membrane. J Phys Chem B 2009; 113:16246-50. [DOI: 10.1021/jp9082536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victor V. Volkov
- European Laboratory for Nonlinear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| | - Roberto Righini
- European Laboratory for Nonlinear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Jang H, Michaud-Agrawal N, Johnston JM, Woolf TB. How to lose a kink and gain a helix: pH independent conformational changes of the fusion domains from influenza hemagglutinin in heterogeneous lipid bilayers. Proteins 2008; 72:299-312. [PMID: 18214961 DOI: 10.1002/prot.21925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have simulated two conformations of the fusion domain of influenza hemagglutinin (HA) within explicit water, salt, and heterogeneous lipid bilayers composed of POPC:POPG (4:1). Each conformation has seven different starting points in which the initial peptide structure is the same for each conformation, but the location across the membrane normal and lipid arrangement around the peptide are varied, giving a combined total simulation time of 140 ns. For the HA5 conformation (primary structure from recent NMR spectroscopy at pH = 5), the peptide exhibits a stable and less kinked structure in the lipid bilayer compared to that from the NMR studies. The relative fusogenic behavior of the different conformations has been investigated by calculation of the relative free energy of insertion into the hydrophobic region of lipid bilayer as a function of the depth of immersion. For the HA7 conformations (primary structure from recent NMR spectroscopy at pH = 7.4), while the N-terminal helix preserves its initial structure, the flexible C-terminal chain produces a transient helical motif inside the lipid bilayer. This conformational change is pH-independent, and is closely related to the peptide insertion into the lipid bilayer.
Collapse
Affiliation(s)
- Hyunbum Jang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
15
|
Relationships between the orientation and the structural properties of peptides and their membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1537-44. [DOI: 10.1016/j.bbamem.2008.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 04/14/2008] [Accepted: 04/21/2008] [Indexed: 11/17/2022]
|
16
|
Fernández-Vidal M, Rojo N, Herrera E, Gómara MJ, Haro I. Liposome destabilization induced by synthetic lipopeptides corresponding to envelope and non-structural domains of GBV-C/HGV virus. Conformational requirements for leakage. Biophys Chem 2008; 132:55-63. [DOI: 10.1016/j.bpc.2007.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/16/2007] [Accepted: 10/16/2007] [Indexed: 11/26/2022]
|
17
|
Efremov RG, Volynsky PE, Nolde DE, Vergoten G, Arseniev AS. The Membrane-proximal Fusion Domain of HIV-1 GP41 Reveals Sequence-specific and Fine-tuning Mechanism of Membrane Binding. J Biomol Struct Dyn 2007; 25:195-205. [PMID: 17718599 DOI: 10.1080/07391102.2007.10507169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The membrane interface-partitioning region preceding the transmembrane anchor of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope protein is one of the sites responsible for virus binding to its host cell membrane and subsequent fusion events. Here, we used molecular modeling techniques to assess membrane interactions, structure, and hydrophobic properties of the fusion-active peptide representing this region, several of its homologs from different HIV-1 strains, as well as a peptide - defective gp41 phenotype - unable to mediate cell-cell fusion and virus entry. It is shown that the wild-type peptides bind to the water-membrane interface in alpha-helical conformation, while the mutant adopts partly destabilized helix-break-helix structure on the membrane surface. The wild-type peptides reveal specific "tilted oblique-oriented" pattern of hydrophobicity on their surfaces - the property specific for fusion regions of other viruses. Fusion peptides penetrate into the membrane with their N-termini and reveal "fine-tuning" interactions with membrane and water environments: the shift of this balance (e.g., due to point mutations) may dramatically change the mode of membrane binding, and therefore, may cause loss of fusion activity. The modeling results agree well with experimental data and provide a strategy to delineate fusogenic regions in amino acid sequences of viral proteins.
Collapse
Affiliation(s)
- Roman G Efremov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, Moscow V-437, 117997 GSP, Russia.
| | | | | | | | | |
Collapse
|
18
|
Mazzini S, Fernandez-Vidal M, Galbusera V, Castro-Roman F, Bellucci MC, Ragg E, Haro I. 3D-Structure of the interior fusion peptide of HGV/GBV-C by 1H NMR, CD and molecular dynamics studies. Arch Biochem Biophys 2007; 465:187-96. [PMID: 17603997 DOI: 10.1016/j.abb.2007.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/28/2007] [Accepted: 05/30/2007] [Indexed: 11/24/2022]
Abstract
In this work, we present a structural characterization of the putative fusion peptide E2(279-298) corresponding to the E2 envelope protein of the HGV/GBV-C virus by (1)H NMR, CD and MD studies performed in H(2)O/TFE and in lipid model membranes. The peptide is largely unstructured in water, whereas in H(2)O/TFE and in model membranes it adopts an helical structure (approximately 65-70%). The partitioning free energy DeltaG ranges from -6 to -7.5 kcal mol(-1). OCD measurements on peptide-containing hydrated and oriented lipid multilayers showed that the peptide adopts a predominantly surface orientation. The (1)H NMR data (observed NOEs, deuterium exchange rates, Halpha chemical shift index and vicinal coupling constants) and the molecular dynamics calculations support the conclusions that the peptide adopts a stable helix in the C-terminal 9-18 residues slightly inserted into the lipid bilayer and a major mobility in the amino terminus of the sequence (1-8 residues).
Collapse
Affiliation(s)
- S Mazzini
- Department of Agri-Food Molecular Sciences, Università degli Studi, via Celoria 2, 20133 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Sammalkorpi M, Lazaridis T. Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:30-8. [PMID: 16999933 DOI: 10.1016/j.bbamem.2006.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/01/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
The 20 N-terminal residues of the HA2 subunit of influenza hemagglutinin (HA), known as the fusion peptide, play a crucial role in membrane fusion. Molecular dynamics simulations with implicit solvation are employed here to study the structure and orientation of the fusion peptide in membranes. As a monomer the alpha-helical peptide adopts a shallow, slightly tilted orientation along the lipid tail-head group interface. The average angle of the peptide with respect to membrane plane is 12.4 degrees . We find that the kinked structure proposed on the basis of NMR data is not stable in our model because of the high energy cost related to the membrane insertion of polar groups. Because hemagglutinin-mediated membrane fusion is promoted by low pH, we examined the effect of protonation of the Glu and Asp residues. The configurations of the protonated peptides were slightly deeper in the membrane but at similar angles. Finally, because HA is a trimer, we modeled helical fusion peptide trimers. We find that oligomerization affects the insertion depth of the peptide and its orientation with respect to the membrane: a trimer exhibits equally favorable configurations in which some or all of the helices in the bundle insert obliquely deep into the membrane.
Collapse
Affiliation(s)
- M Sammalkorpi
- Department of Chemistry, City College of the City University of New York, NY 10031, USA
| | | |
Collapse
|
20
|
Sammalkorpi M, Lazaridis T. Modeling a spin-labeled fusion peptide in a membrane: implications for the interpretation of EPR experiments. Biophys J 2006; 92:10-22. [PMID: 17040984 PMCID: PMC1697865 DOI: 10.1529/biophysj.106.092809] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-directed spin-labeling and electron paramagnetic resonance are powerful tools for studying structure and conformational dynamics of proteins, especially in membranes. The position of the spin label is used as an indicator of the position of the site to which it is attached. The interpretation of these experiments is based on the assumptions that the spin label does not affect the peptide configuration and that it has a fixed orientation and distance with respect to the protein backbone. Here, the validity of these assumptions is examined through implicit membrane molecular dynamics simulations of the influenza hemagglutinin fusion peptide that has been labeled with methanethiosulfonate spin label. We find that the methanethiosulfonate spin label can occasionally induce peptide orientations that differ from those adopted by the wild-type peptide. Furthermore, the spin-label resides, on average, several Angstroms deeper in the membrane than the corresponding backbone C(alpha)-atom even at sites pointing toward the solvent. The nitroxide spin label exhibits flexibility and adopts various configurations depending on the surrounding residues.
Collapse
Affiliation(s)
- Maria Sammalkorpi
- Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
21
|
Dubovskii PV, Volynsky PE, Polyansky AA, Chupin VV, Efremov RG, Arseniev AS. Spatial Structure and Activity Mechanism of a Novel Spider Antimicrobial Peptide,. Biochemistry 2006; 45:10759-67. [PMID: 16939228 DOI: 10.1021/bi060635w] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Latarcins (Ltc), linear peptides (ca. 25 amino acid long) isolated from the venom of the Lachesana tarabaevi spider, exhibit a broad-spectrum antibacterial activity, most likely acting on the bacterial plasmatic membrane. We study the structure-activity relationships in the series of these compounds. At the first stage, we investigated the spatial structure of one of the peptides, Ltc2a, and its mode of membrane perturbation. This was done by a combination of experimental and theoretical methods. The approach includes (i) structural study of the peptide by CD spectroscopy in phospholipid liposomes and by (1)H NMR in detergent micelles, (ii) determination of the effect on the liposomes by a dye leakage fluorescent assay and (31)P NMR spectroscopy, (iii) refinement of the NMR-derived spatial structure via Monte Carlo simulations in an implicit water-octanol slab, and (iv) calculation of the molecular hydrophobicity potential. The molecule of Ltc2a was found to consist of two helical regions (residues 3-9 and 13-21) connected via a poorly ordered fragment. The effect of the peptide on the liposomes suggests the carpet mechanism of the membrane deterioration. This is also supported by the analysis of hydrophobic/hydrophilic characteristics of Ltc2a and homologous antimicrobial peptides. These peptides exhibiting a helix-hinge-helix structural motif are characterized by a distinct and feebly marked amphiphilicity of their N- and C-terminal helices, respectively, and by a hydrophobicity gradient along the peptide chain. The approach we suggested may be useful in studying not only other latarcins but also a wider class of membrane-active peptides.
Collapse
Affiliation(s)
- Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho Maklaya str., Moscow, 117997 Russia
| | | | | | | | | | | |
Collapse
|
22
|
Choi HS, Huh J, Jo WH. Electrostatic energy calculation on the pH-induced conformational change of influenza virus hemagglutinin. Biophys J 2006; 91:55-60. [PMID: 16603498 PMCID: PMC1479073 DOI: 10.1529/biophysj.105.070565] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pH-induced conformational change of influenza virus hemagglutinin (HA) has been investigated by calculating the change of electrostatic energy of the fragment of HA2 upon pH change. The average charge and electrostatic free energy are calculated as a function of pH for the fusion peptide (residues 1-20 of HA2) and the polypeptide of residues 54-77 of HA2 by using the finite difference Poisson-Boltzmann method. It is found that as pH decreases from 8 to 5, the electrostatic free energy of the fusogenic state is lowered by approximately 2 kcal/mol and the fusogenic state is less ionized compared to that of the native state for both polypeptides. For the fusion peptide at the fusogenic state, most of ionizable residues are neutral at acidic pH except Glu-11. For the polypeptide of residues 54-77 at the fusogenic state, most of residues except Glu-74 and His-64 are fully charged between pH 5 and pH 8.
Collapse
Affiliation(s)
- Ho Sup Choi
- Hyperstructured Organic Materials Research Center, School of Material Science and Engineering, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
23
|
Huang Q, Chen CL, Herrmann A. Bilayer conformation of fusion peptide of influenza virus hemagglutinin: a molecular dynamics simulation study. Biophys J 2005; 87:14-22. [PMID: 15240440 PMCID: PMC1304337 DOI: 10.1529/biophysj.103.024562] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unraveling the conformation of membrane-bound viral fusion peptides is essential for understanding how those peptides destabilize the bilayer topology of lipids that is important for virus-cell membrane fusion. Here, molecular dynamics (MD) simulations were performed to investigate the conformation of the 20 amino acids long fusion peptide of influenza hemagglutinin of strain X31 bound to a dimyristoyl phosphatidylcholine (DMPC) bilayer. The simulations revealed that the peptide adopts a kinked conformation, in agreement with the NMR structures of a related peptide in detergent micelles. The peptide is located at the amphipathic interface between the headgroups and hydrocarbon chains of the lipid by an energetically favorable arrangement: The hydrophobic side chains of the peptides are embedded into the hydrophobic region and the hydrophilic side chains are in the headgroup region. The N-terminus of the peptide is localized close to the amphipathic interface. The molecular dynamics simulations also revealed that the peptide affects the surrounding bilayer structure. The average hydrophobic thickness of the lipid phase close to the N-terminus is reduced in comparison with the average hydrophobic thickness of a pure dimyristoyl phosphatidylcholine bilayer.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| | | | | |
Collapse
|
24
|
Vaccaro L, Cross KJ, Kleinjung J, Straus SK, Thomas DJ, Wharton SA, Skehel JJ, Fraternali F. Plasticity of influenza haemagglutinin fusion peptides and their interaction with lipid bilayers. Biophys J 2004; 88:25-36. [PMID: 15475582 PMCID: PMC1305003 DOI: 10.1529/biophysj.104.044537] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A detailed molecular dynamics study of the haemagglutinin fusion peptide (N-terminal 20 residues of the HA2 subunits) in a model bilayer has yielded useful information about the molecular interactions leading to insertion into the lipids. Simulations were performed on the native sequence, as well as a number of mutant sequences, which are either fusogenic or nonfusogenic. For the native sequence and fusogenic mutants, the N-terminal 11 residues of the fusion peptides are helical and insert with a tilt angle of approximately 30 degrees with respect to the membrane normal, in very good agreement with experimental data. The tilted insertion of the native sequence peptide leads to membrane bilayer thinning and the calculated order parameters show larger disorder of the alkyl chains. These results indicate that the lipid packing is perturbed by the fusion peptide and could be used to explain membrane fusion. For the nonfusogenic sequences investigated, it was found that most of them equilibrate parallel to the interface plane and do not adopt a tilted conformation. The presence of a charged residue at the beginning of the sequence (G1E mutant) resulted in a more difficult case, and the outcomes do not fall straightforwardly into the general picture. Sequence searches have revealed similarities of the fusion peptide of influenza haemagglutinin with peptide sequences such as segments of porin, amyloid alpha eta peptide, and a peptide from the prion sequence. These results confirm that the sequence can adopt different folds in different environments. The plasticity and the conformational dependence on the local environment could be used to better understand the function of fusion peptides.
Collapse
Affiliation(s)
- Loredana Vaccaro
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Karen J. Cross
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Jens Kleinjung
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Suzana K. Straus
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - David J. Thomas
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Stephen A. Wharton
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - John J. Skehel
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Franca Fraternali
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
25
|
Kantchev EAB, Cheng SF, Wu CW, Huang HJ, Chang DK. Secondary structure, phospholipid membrane interactions, and fusion activity of two glutamate-rich analogs of influenza hemagglutinin fusion peptide. Arch Biochem Biophys 2004; 425:173-83. [PMID: 15111125 DOI: 10.1016/j.abb.2004.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 01/18/2004] [Indexed: 10/26/2022]
Abstract
Two synthetic mutants of influenza HA2 fusion peptide (residues 1-25), containing Glu on the polar (residues 4,8-E5(4,8)) or the hydrophobic (residues 3,7-E5(3,7)) face of the amphipathic helix, were synthesized and labeled with NBD at the N-terminus. Introduction of Glu residues into the fusion peptide leads to increased sensitivity of various biochemical properties to pH compared to the wild type. The E5 peptides showed a decrease of alpha-helix content and increase of beta-sheet structure. Lipid binding was diminished, but not abolished even at high pH. The E5 analogs penetrate the lipid bilayer less deeply than the wild type, especially at high pH. The N-terminal half of the peptide showed significant variation of the depth of the penetration into the lipid bilayer. Both E5 peptides were fusion active. The properties of E5(3,7) were more affected by the Glu substitution and showed greater variation with pH than E5(4,8).
Collapse
|
26
|
Nomura F, Inaba T, Ishikawa S, Nagata M, Takahashi S, Hotani H, Takiguchi K. Microscopic observations reveal that fusogenic peptides induce liposome shrinkage prior to membrane fusion. Proc Natl Acad Sci U S A 2004; 101:3420-5. [PMID: 14988507 PMCID: PMC373477 DOI: 10.1073/pnas.0304660101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the mechanisms involved in membrane fusion, we visualized the fusion process of giant liposomes in real time by optical dark-field microscopy. To induce membrane fusion, we used (i) influenza hemagglutinin peptide (HA), a 20-aa peptide derived from the N-terminal fusion peptide region of the HA2 subunit, and (ii) two synthetic analogue peptides of HA, a negatively (E5) and positively (K5) charged analogue. We were able to visualize membrane fusion caused by E5 or by K5 alone, as well as by the mixture of these two peptides. The HA peptide however, did not induce membrane fusion, even at an acidic pH, which has been described as the optimal condition for the fusion of large unilamellar vesicles. Surprisingly, before membrane fusion, the shrinkage of liposomes was always observed. Our results suggest that a perturbation of lipid bilayers, which probably resulted from alterations in the bending folds of membranes, is a critical factor in fusion efficiency.
Collapse
Affiliation(s)
- Fumimasa Nomura
- Department of Molecular Biology, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
A simple extension of the EEF1 energy function to heterogeneous membrane-aqueous media is proposed. The extension consists of (a) development of solvation parameters for a nonpolar phase using experimental data for the transfer of amino acid side-chains from water to cyclohexane, (b) introduction of a heterogeneous membrane-aqueous system by making the reference solvation free energy of each atom dependent on the vertical coordinate, (c) a modification of the distance-dependent dielectric model to account for reduced screening of electrostatic interactions in the membrane, and (d) an adjustment of the EEF1 aqueous model in light of recent calculations of the potential of mean force between amino acid side-chains in water. The electrostatic model is adjusted to match experimental observations for polyalanine, polyleucine, and the glycophorin A dimer. The resulting energy function (IMM1) reproduces the preference of Trp and Tyr for the membrane interface, gives reasonable energies of insertion into or adsorption onto a membrane, and allows stable 1-ns MD simulations of the glycophorin A dimer. We find that the lowest-energy orientation of melittin in bilayers varies, depending on the thickness of the hydrocarbon layer.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of the City University of New York, New York 10031, USA.
| |
Collapse
|
28
|
Bertocco A, Formaggio F, Toniolo C, Broxterman QB, Epand RF, Epand RM. Design and function of a conformationally restricted analog of the influenza virus fusion peptide. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2003; 62:19-26. [PMID: 12787447 DOI: 10.1034/j.1399-3011.2003.00063.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A conformationally restricted analog of the N-terminal 12-residue peptide segment of the HA2 subunit of the PPV/34, PR/8/34, and Jap/57 strains of influenza virus hemagglutinin was synthesized containing three residues of Calpha-methyl-valine. This peptide has a higher content of helical structure in the presence of 50% trifluoroethanol or when interacting with liposomes of egg phosphatidylcholine compared with the conformationally more flexible control peptide with the native sequence. The control and analog peptides had opposite effects on membrane curvature as measured by shifts in the bilayer-to-hexagonal phase transition temperature of a synthetic phosphatidylethanolamine derivative. The control peptide promoted more negative curvature, particularly at acidic pH and was also more potent than the analog in promoting lipid mixing. The results indicate that the ability of the peptide to sample a broader range of conformations is required for the influenza fusion peptide to destabilize membranes and that a rigid helical structure is less fusogenic. The difference between the two peptides and between pH 7.4 and pH 5.0 show a correlation between the ability to promote negative curvature and to accelerate lipid mixing.
Collapse
Affiliation(s)
- A Bertocco
- Institute of Biomolecular Chemistry, CNR, Department of Organic Chemistry, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Wong TC. Membrane structure of the human immunodeficiency virus gp41 fusion peptide by molecular dynamics simulation. II. The glycine mutants. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:45-54. [PMID: 12507757 DOI: 10.1016/s0005-2736(02)00652-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this work, molecular dynamics (MD) simulation of the interaction of three mutants, G3V, G5V and G10V, of the human immunodeficiency virus (HIV) gp41 16-residue fusion peptide (FP) with an explicit palmitoyloleoylphosphatidyl-ethanolamine (POPE) lipid bilayer was performed. The goals of this work are to study the correlation of the fusogenic activity of the FPs with the mode of their interaction with the bilayer and to examine the roles of the many glycine residues in the FP in the fusion process. The results of this work corroborate the main conclusion of our earlier MD work of the WT FP and several mutants with polar substitution. These two studies provide correlation between the mode of insertion and the fusogenic activity of these peptides and support the hypothesis that an oblique insertion of the fusion domain of the viral protein is required for fusogenic activity. Inactive mutants interact with the bilayer by a surface-binding mode. The results of this work, combined with the results of our earlier work, show that, while the secondary structures of the wild-type FP and its mutants do not affect the fusogenic activities, the conformational flexibility appears to be an important factor. The active WT FP and its partially active mutants, G3V and G5V, all have significant conformational transitions at one of the glycine sites. They occur at Gly(5) in FP-wt, at Gly(10) in FP-G5V and at Gly(13) in FP-G3V. Thus, a glycine site in each of these active (or partially active) FPs provides conformational flexibility. On the other hand, the inactive mutants FP-G10V, FP-L9R and FP-V2E do not have any conformational transitions except at either terminus and thus possess no conformational flexibility. Thus, the results of this work support the suggestion that the role of glycine residues in the fusion domain is to provide the necessary conformational flexibility for fusion activity. The glycines also form a "glycine strip" in the FP that locates on one (the less hydrophobic) face of the helix (the "sided helix"). However, whether this "glycine strip" is disrupted or not does not seem to correlate with the retention of fusogenic activities. Finally, although the FLGFL (8-12) motif is absolutely conserved in the HIV fusion domain, a well-structured motif stabilized by hydrogen bonding does not appear to be required for activity. In fact, hydrogen bonding in this motif was found to be missing in FP-G3V and FP-G5V. Both of these mutants are partially active.
Collapse
Affiliation(s)
- Tuck C Wong
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
30
|
Kamath S, Wong TC. Membrane structure of the human immunodeficiency virus gp41 fusion domain by molecular dynamics simulation. Biophys J 2002; 83:135-43. [PMID: 12080106 PMCID: PMC1302133 DOI: 10.1016/s0006-3495(02)75155-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The structures of the 16-residue fusion domain (or fusion peptide, FP) of the human immunodeficiency virus gp41 fusion protein, two of its mutants, and a shortened peptide (5-16) were studied by molecular dynamics simulation in an explicit palmitoyloleoylphosphoethanolamine bilayer. The simulations showed that the active wild-type FP inserts into the bilayer approximately 44 degrees +/- 6 degrees with respect to the bilayer normal, whereas the inactive V2E and L9R mutants and the inactive 5 to 16 fragment lie on the bilayer surface. This is the first demonstration by explicit molecular dynamics of the oblique insertion of the fusion domain into lipid bilayers, and provides correlation between the mode of insertion and the fusogenic activity of these peptides. The membrane structure of the wild-type FP is remarkably similar to that of the influenza HA(2) FP as determined by nuclear magnetic resonance and electron spin resistance power saturation. The secondary structures of the wild-type FP and the two inactive mutants are quite similar, indicating that the secondary structure of this fusion domain plays little or no role in affecting the fusogenic activity of the fusion peptide. The insertion of the wild-type FP increases the thickness of the interfacial area of the bilayer by disrupting the hydrocarbon chains and extending the interfacial area toward the head group region, an effect that was not observed in the inactive FPs.
Collapse
Affiliation(s)
- Shantaram Kamath
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
31
|
Efremov RG, Volynsky PE, Nolde DE, Dubovskii PV, Arseniev AS. Interaction of cardiotoxins with membranes: a molecular modeling study. Biophys J 2002; 83:144-53. [PMID: 12080107 PMCID: PMC1302134 DOI: 10.1016/s0006-3495(02)75156-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Incorporation of beta-sheet proteins into membrane is studied theoretically for the first time, and the results are validated by the direct experimental data. Using Monte Carlo simulations with implicit membrane, we explore spatial structure, energetics, polarity, and mode of insertion of two cardiotoxins with different membrane-destabilizing activity. Both proteins, classified as P- and S-type cardiotoxins, are found to retain the overall "three-finger" fold interacting with membrane core and lipid/water interface by the tips of the "fingers" (loops). The insertion critically depends upon the structure, hydrophobicity, and electrostatics of certain regions. The simulations reveal apparently distinct binding modes for S- and P-type cardiotoxins via the first loop or through all three loops, respectively. This rationalizes an earlier empirical classification of cardiotoxins into S- and P-type, and provides a basis for the analysis of experimental data on their membrane affinities. Accomplished with our previous simulations of membrane alpha-helices, the computational method may be used to study partitioning of proteins with diverse folds into lipid bilayers.
Collapse
Affiliation(s)
- Roman G Efremov
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow V-437, 117997 GSP, Russia.
| | | | | | | | | |
Collapse
|
32
|
Kessel A, Ben-Tal N. Free energy determinants of peptide association with lipid bilayers. PEPTIDE-LIPID INTERACTIONS 2002. [DOI: 10.1016/s1063-5823(02)52010-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Epand RM, Epand RF, Martin I, Ruysschaert JM. Membrane interactions of mutated forms of the influenza fusion peptide. Biochemistry 2001; 40:8800-7. [PMID: 11467940 DOI: 10.1021/bi0107187] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied a group of fusion peptides of influenza hemagglutinin in which the N-terminal amino acid, Gly (found in the wild-type peptide), has been systematically substituted with Ala, Ser, Val, or Glu. The activity of the intact hemagglutinin protein with these same substitutions has already been reported. As a measure of the extent of modulation of intrinsic membrane curvature by these peptides, we determined their effects on the polymorphic phase transition of dipalmitoleoylphosphatidylethanolamine. The wild-type peptide is the only one that, at pH 5, can substantially decrease the temperature of this transition. This is also the only form in which the intact protein promotes contents mixing in cells. The Ala and Ser mutant hemagglutinins exhibit a hemifusion phenotype, and their fusion peptides have little effect on lipid polymorphism at low pH. The two mutant proteins that are completely fusion inactive are the Val and Glu mutant hemagglutinins. The fusion peptides from these forms significantly increase the polymorphic phase transition temperature at low pH. We find that the effect of the fusion peptides on membrane curvature, as monitored by a shift in the temperature of this polymorphic phase transition, correlates better with the fusogenic activities of the corresponding protein than do measurements of the isotropic (31)P NMR signals or the ability to induce the fusion of liposomes. The inactivity of the hemagglutinin protein with the hydrophobic Val mutation can be explained by the change in the angle of membrane insertion of the helical fusion peptide as measured by polarized FTIR. Thus, the nature of the interactions of the fusion peptides with membranes can, in large part, explain the differences in the fusogenic activity of the intact protein.
Collapse
Affiliation(s)
- R M Epand
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada L8N 3Z5.
| | | | | | | |
Collapse
|
34
|
Bechor D, Ben-Tal N. Implicit solvent model studies of the interactions of the influenza hemagglutinin fusion peptide with lipid bilayers. Biophys J 2001; 80:643-55. [PMID: 11159433 PMCID: PMC1301264 DOI: 10.1016/s0006-3495(01)76045-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The "fusion peptide," a segment of approximately 20 residues of the influenza hemagglutinin (HA), is necessary and sufficient for HA-induced membrane fusion. We used mean-field calculations of the free energy of peptide-membrane association (DeltaG(tot)) to deduce the most probable orientation of the fusion peptide in the membrane. The main contributions to DeltaG(tot) are probably from the electrostatic (DeltaG(el)) and nonpolar (DeltaG(np)) components of the solvation free energy; these were calculated using continuum solvent models. The peptide was described in atomic detail and was modeled as an alpha-helix based on spectroscopic data. The membrane's hydrocarbon region was described as a structureless slab of nonpolar medium embedded in water. All the helix-membrane configurations, which were lower in DeltaG(tot) than the isolated helix in the aqueous phase, were in the same (wide) basin in configurational space. In each, the helix was horizontally adsorbed at the water-bilayer interface with its principal axis parallel to the membrane plane, its hydrophobic face dissolved in the bilayer, and its polar face in the water. The associated DeltaG(tot) value was approximately -8 to -10 kcal/mol (depending on the rotameric state of one of the phenylalanine residues). In contrast, the DeltaG(tot) values associated with experimentally observed oblique orientations were found to be near zero, suggesting they are marginally stable at best. The theoretical model did not take into account the interactions of the polar headgroups with the peptide and peptide-induced membrane deformation effects. Either or both may overcompensate for the DeltaG(tot) difference between the horizontal and oblique orientations.
Collapse
Affiliation(s)
- D Bechor
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
35
|
Dubovskii PV, Li H, Takahashi S, Arseniev AS, Akasaka K. Structure of an analog of fusion peptide from hemagglutinin. Protein Sci 2000; 9:786-98. [PMID: 10794422 PMCID: PMC2144621 DOI: 10.1110/ps.9.4.786] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A 20-residue peptide E5 containing five glutamates, an analog of the fusion peptide of influenza virus hemagglutinin (HA) exhibiting fusion activity at acidic pH lower than 6.0-6.5 was studied by circular dichroism (CD), Fourier transform infrared, and 1H-NMR spectroscopy in water, water/trifluoroethanol (TFE) mixtures, dodecylphosphocholine (DPC) micelles, and phospholipid vesicles. E5 became structurally ordered at pH < or = 6 and the helical content in the peptide increased in the row: water < water/TFE < DPC approximately = phospholipid vesicle while the amount of beta-structure was approximately reverse. 1H-NMR data and line-broadening effect of 5-, 16-doxylstearates on proton resonances of DPC bound peptide showed E5 forms amphiphilic alpha-helix in residues 2-18, which is flexible in 11-18 part. The analysis of the proton chemical shifts of DPC bound and CD intensity at 220 nm of phospholipid bound E5 showed that the pH dependence of helical content is characterized by the same pKa approximately 5.6. Only Glu11 and Glu15 in DPC bound peptide showed such elevated pKas, presumably due to transient hydrogen bond(s) Glu11 (Glu15) deltaCOO- (H+)...HN Glu15 that dispose(s) the side chain of Glu11 (Glu15) residue(s) close to the micelle/water interface. These glutamates are present in the HA-fusion peptide and the experimental half-maximal pH of fusion for HA and E5 peptides is approximately 5.6. Therefore, a specific anchorage of these peptides onto membrane necessary for fusion is likely driven by the protonation of the carboxylate group of Glu11 (Glu15) residue(s) participating in transient hydrogen bond(s).
Collapse
Affiliation(s)
- P V Dubovskii
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | |
Collapse
|