1
|
Jiang CL, Lin FJ. Insights into the roles of Apolipoprotein E in adipocyte biology and obesity. Int J Obes (Lond) 2024; 48:1205-1215. [PMID: 38839985 DOI: 10.1038/s41366-024-01549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Apolipoprotein E (APOE) is a multifunctional protein expressed by various cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, astrocytes, etc. Initially, APOE was discovered as an arginine-rich peptide within very-low-density lipoprotein, but it was subsequently found in triglyceride-rich lipoproteins in humans and other animals, where its presence facilitates the clearance of these lipoproteins from circulation. Recent epidemiolocal studies and experimental research in mice suggest a link between ApoE and obesity. The latest findings highlight the role of endogenous adipocyte ApoE in regulating browning of white adipose tissue, beige adipocyte differentiation, thermogenesis and energy homeostasis. This review focuses on the emerging evidence showing the involvement of ApoE in the regulation of obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
- Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Miller I, Serchi T, Cambier S, Diepenbroek C, Renaut J, Van der Berg JHJ, Kwadijk C, Gutleb AC, Rijntjes E, Murk AJ. Hexabromocyclododecane (HBCD) induced changes in the liver proteome of eu- and hypothyroid female rats. Toxicol Lett 2016; 245:40-51. [PMID: 26795019 DOI: 10.1016/j.toxlet.2016.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/24/2015] [Accepted: 01/08/2016] [Indexed: 01/06/2023]
Abstract
Hexabromocyclododecane (HBCD) is a brominated flame retardant known for its low acute toxicity as observed in animal experiments. However, HBCD exposure can affect liver functioning and thyroid hormone (TH) status. As exact mechanisms are unknown and only limited toxicological data exists, a gel-based proteomic approach was undertaken. In a eu- and hypothyroid female rat model, rats were exposed to 3 and 30 mg/kg bw/day HBCD for 7 days via their diet, and exposure was related to a range of canonical endpoints (hormone status, body weight) available for these animals. Alterations in the liver proteome under HBCD exposure were determined in comparison with patterns of control animals, for both thyroid states. This revealed significantly changed abundance of proteins involved in metabolic processes (gluconeogenesis/glycolysis, amino acid metabolism, lipid metabolism), but also in oxidative stress responses, in both euthyroid and hypothyroid rats. The results provide a more detailed picture on the mechanisms involved in these alterations, e.g. at the protein level changes of the proposed influence of HBCD on the lipid metabolism. Present results show that proteomic approaches can provide further mechanistic insights in toxicological studies.
Collapse
Affiliation(s)
- I Miller
- Institute for Medical Biochemistry, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210 Vienna, Austria.
| | - T Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - S Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - C Diepenbroek
- Wageningen University, Human and Animal Physiology Group, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - J Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - J H J Van der Berg
- Wageningen University, Division of Toxicology, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | - C Kwadijk
- Wageningen Institute for Marine Resources & Ecosystem Studies, IMARES, IJmuiden, The Netherlands.
| | - A C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Forneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - E Rijntjes
- Wageningen University, Human and Animal Physiology Group, P.O. Box 338, 6700 AH Wageningen, The Netherlands; Charité-Universitätsmedizin Berlin, Institute for Experimental Endocrinology, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - A J Murk
- Wageningen University, Division of Toxicology, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| |
Collapse
|
3
|
Li X, Wang L, Li Y, Ho Y, Yang D, Chen Y, Hu X, Xue M. Polysorbates as novel lipid-modulating candidates for reducing serum total cholesterol and low-density lipoprotein levels in hyperlipidemic C57BL/6J mice and rats. Eur J Pharmacol 2011; 660:468-75. [DOI: 10.1016/j.ejphar.2011.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 02/25/2011] [Accepted: 03/21/2011] [Indexed: 11/27/2022]
|
4
|
Kim JY, Jang MK, Lee SS, Choi MS, Bok SH, Oh GT, Park YB. Rab7 gene is up-regulated by cholesterol-rich diet in the liver and artery. Biochem Biophys Res Commun 2002; 293:375-82. [PMID: 12054610 DOI: 10.1016/s0006-291x(02)00173-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To identify genes responding to the cholesterol-rich diet, differentially expressed hepatic genes have been searched from a diet-induced hypercholesterolemic rabbit by differential display reverse transcription-polymerase chain reaction (DDRT-PCR). Among the many screened genes, Rab7 gene was shown to be distinctively up-regulated in response to the cholesterol-loading into the rabbit. To visualize the location of elevated Rab7 expression in tissues, patterns of the gene expression were monitored within hepatic and aortic tissues by in situ hybridization and immunohistochemistry. The expression of Rab7 was obviously increased in the hepatic tissues, especially in the endothelial cells and hepatocytes around central veins of the high cholesterol-fed rabbit, compared to the tissues from rabbit fed a normal diet. To find out a potential relationship between the Rab7 and the atherogenesis, the same experiments were conducted with the atherosclerotic plaques obtained from rabbit and human. The elevated expression of Rab7 gene was clearly evident in both tissues, suggesting that the Rab7 may be involved in the process of atherogenesis.
Collapse
Affiliation(s)
- Ji Yong Kim
- Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|