1
|
Fernández-Olivares A, Orellana VP, Llanquinao J, Nuñez G, Pérez-Moreno P, Contreras-Riquelme S, Martin AJ, Mammano F, Alfaro IE, Calderón JF, Stehberg J, Sáez MA, Retamal MA. Connexin46 in the nucleus of cancer cells: a possible role as transcription modulator. Cell Commun Signal 2025; 23:153. [PMID: 40148950 PMCID: PMC11948717 DOI: 10.1186/s12964-025-02151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Oncogenes drive cancer progression, but few are active exclusively in tumor cells. Connexins (Cxs), traditionally recognized as ion channel proteins, can localize to the nucleus and regulate gene expression, playing key roles in both physiological and pathological processes. Cx46, once thought to be restricted to the eye lens, has been implicated in tumor growth, though its underlying mechanisms remain unclear. This study investigates the nuclear presence of Cx46 in cancer cells and its potential role as a transcriptional modulator. METHODS We employed ChIP-Seq, confocal immunofluorescence, and nuclear protein purification to assess Cx46 localization and DNA interactions. Functional assays were conducted to evaluate its effects on invasion, division, spheroid formation, and mesenchymal marker expression. Single-point mutations and molecular dynamics simulations were used to explore potential Cx46-DNA interactions. RESULTS Cx46 mRNA upregulation was found in a variety of tumors compared to adjacent healthy tissue. In HeLa cells, which do not express Cx46, its transfection promoted proliferation, invasion and self-renewal capacity, cancer stem cell traits and mesenchymal features. Consistently, in Sk-Mel-2, which naturally express Cx46, reduced Cx46 expression led to a decrease in the similar parameters. In HeLa cells, nuclear Cx46 was detected in two forms, full length 46 kDa and a 30 kDa fragment (GJA3-30 k), ChIP-Seq experiments revealed that Cx46 binds to the DNA at intergenic and promoter regions, leading to the activation of oncogenic pathways. Molecular dynamics simulations suggest that GJA3-30 k dimerizes in a RAD50-like structure, forming stable DNA complexes. Cx46 and in some cases GJA3-30 k were detected in the nuclei of multiple cancer cell lines, including prostate, breast and skin cancers. CONCLUSIONS Our findings reveal a novel nuclear role for Cx46 in cancer, demonstrating its function as a transcriptional regulator and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ainoa Fernández-Olivares
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Viviana P Orellana
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Jesús Llanquinao
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Translational Medicine Laboratory, Instituto Oncológico Fundación Arturo López Pérez, Santiago 7500691, Chile
| | - Gonzalo Nuñez
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Pablo Pérez-Moreno
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Sebastián Contreras-Riquelme
- Plant Genome Regulation Lab, Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alberto Jm Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Fabio Mammano
- Department of Physics and Astronomy "G. Galilei", University of Padova, Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Padova, 35131, Italy
| | - Ivan E Alfaro
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida. Nuñoa, Santiago, Chile
| | - Juan F Calderón
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago, 8370146, Chile
| | - Mauricio A Sáez
- Departamento de Procesos Diagnósticos y Evaluación, Laboratorio de Investigación en Salud de Precisión, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile.
| | - Mauricio A Retamal
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
2
|
Fournier S, Clarhaut J, Cronier L, Monvoisin A. GJA1-20k, a Short Isoform of Connexin43, from Its Discovery to Its Potential Implication in Cancer Progression. Cells 2025; 14:180. [PMID: 39936974 PMCID: PMC11817742 DOI: 10.3390/cells14030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
The Connexin43 transmembrane protein (Cx43), encoded by the GJA1 gene, is a member of a multigenic family of proteins that oligomerize to form hemichannels and intercellular channels, allowing gap junctional intercellular communication between adjacent cells or communication between the intracellular and extracellular compartments. Cx43 has long been shown to play a significant but complex role in cancer development, acting as a tumor suppressor and/or tumor promoter. The effects of Cx43 are associated with both channel-dependent and -independent functionalities and differ depending on the expression level, subcellular location and the considered stage of cancer progression. Recently, six isoforms of Cx43 have been described and one of them, called GJA1-20k, has also been found to be expressed in cancer cells. This isoform is generated by alternative translation and corresponds to the end part of the fourth transmembrane domain and the entire carboxyl-terminal (CT) domain. Initial studies in the cardiac model implicated GJA1-20k in the trafficking of full-length Cx43 to the plasma membrane, in cytoskeletal dynamics and in mitochondrial fission and subcellular distribution. As these processes are associated with cancer progression, a potential link between Cx43 functions, mitochondrial activity and GJA1-20k expression can be postulated in this context. This review synthetizes the current knowledge on GJA1-20k and its potential involvement in processes related to epithelial-to-mesenchymal transition (EMT) and the proliferation, dissemination and quiescence of cancer cells. Particular emphasis is placed on the putative roles of GJA1-20k in full-length Cx43 exportation to the plasma membrane, mitochondrial activity and functions originally attributed to the CT domain.
Collapse
Affiliation(s)
- Sarah Fournier
- Laboratory Channels and Connexins in Cancer and Cell Stemness (4CS), UR 22751, University of Poitiers, 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
| | - Jonathan Clarhaut
- Pharmacology of Antimicrobial Agents and Antibioresistance (PHAR2), INSERM U1070, University of Poitiers; 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
- University Hospital Center of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France
| | - Laurent Cronier
- Laboratory Channels and Connexins in Cancer and Cell Stemness (4CS), UR 22751, University of Poitiers, 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
| | - Arnaud Monvoisin
- Laboratory Channels and Connexins in Cancer and Cell Stemness (4CS), UR 22751, University of Poitiers, 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
| |
Collapse
|
3
|
Rodríguez-Candela Mateos M, Carpintero-Fernández P, Freijanes PS, Mosquera J, Nebril BA, Mayán MD. Insights into the role of connexins and specialized intercellular communication pathways in breast cancer: Mechanisms and applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189173. [PMID: 39154967 DOI: 10.1016/j.bbcan.2024.189173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Gap junctions, membrane-based channels comprised of connexin proteins (Cxs), facilitate direct communication among neighbouring cells and between cells and the extracellular space through their hemichannels. The normal human breast expresses various Cxs family proteins, such as Cx43, Cx30, Cx32, Cx46, and Cx26, crucial for proper tissue development and function. These proteins play a significant role in breast cancer development, progression, and therapy response. In primary tumours, there is often a reduction and cytoplasmic mislocalization of Cx43 and Cx26, while metastatic lesions show an upregulation of these and other Cxs. Although existing research predominantly supports the tumour-suppressing role of Cxs in primary carcinomas through channel-dependent and independent functions, controversies persist regarding their involvement in the metastatic process. This review aims to provide an updated perspective on Cxs in human breast cancer, with a specific focus on intrinsic subtypes due to the heterogeneous nature of this disease. Additionally, the manuscript will explore the role of Cxs in immune interactions and novel forms of intercellular communication, such as tunneling nanotubes and extracellular vesicles, within the breast tumour context and tumour microenvironment. Recent findings suggest that Cxs hold potential as therapeutic targets for mitigating metastasis and drug resistance. Furthermore, they may serve as novel biomarkers for cancer prognosis, offering promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Marina Rodríguez-Candela Mateos
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernández
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain
| | - Paz Santiago Freijanes
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Anatomic Pathology Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Joaquin Mosquera
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Benigno Acea Nebril
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - María D Mayán
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain.
| |
Collapse
|
4
|
Lucaciu SA, Leighton SE, Hauser A, Yee R, Laird DW. Diversity in connexin biology. J Biol Chem 2023; 299:105263. [PMID: 37734551 PMCID: PMC10598745 DOI: 10.1016/j.jbc.2023.105263] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Over 35 years ago the cell biology community was introduced to connexins as the subunit employed to assemble semicrystalline clusters of intercellular channels that had been well described morphologically as gap junctions. The decade that followed would see knowledge of the unexpectedly large 21-member human connexin family grow to reflect unique and overlapping expression patterns in all organ systems. While connexin biology initially focused on their role in constructing highly regulated intercellular channels, this was destined to change as discoveries revealed that connexin hemichannels at the cell surface had novel roles in many cell types, especially when considering connexin pathologies. Acceptance of connexins as having bifunctional channel properties was initially met with some resistance, which has given way in recent years to the premise that connexins have multifunctional properties. Depending on the connexin isoform and cell of origin, connexins have wide-ranging half-lives that vary from a couple of hours to the life expectancy of the cell. Diversity in connexin channel characteristics and molecular properties were further revealed by X-ray crystallography and single-particle cryo-EM. New avenues have seen connexins or connexin fragments playing roles in cell adhesion, tunneling nanotubes, extracellular vesicles, mitochondrial membranes, transcription regulation, and in other emerging cellular functions. These discoveries were largely linked to Cx43, which is prominent in most human organs. Here, we will review the evolution of knowledge on connexin expression in human adults and more recent evidence linking connexins to a highly diverse array of cellular functions.
Collapse
Affiliation(s)
- Sergiu A Lucaciu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephanie E Leighton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Alexandra Hauser
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Ryan Yee
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
5
|
Abstract
Gap junctions, comprising connexin proteins, create conduits directly coupling the cytoplasms of adjacent cells. Expressed in essentially all tissues, dynamic gap junction structures enable the exchange of small molecules including ions and second messengers, and are central to maintenance of homeostasis and synchronized excitability. With such diverse and critical roles throughout the body, it is unsurprising that alterations to gap junction and/or connexin expression and function underlie a broad array of age-related pathologies. From neurological dysfunction to cardiac arrhythmia and bone loss, it is hard to identify a human disease state that does not involve reduced, or in some cases inappropriate, intercellular communication to affect organ function. With a complex life cycle encompassing several key regulatory steps, pathological gap junction remodeling during ageing can arise from alterations in gene expression, translation, intracellular trafficking, and posttranslational modification of connexins. Connexin proteins are now known to "moonlight" and perform a variety of non-junctional functions in the cell, independent of gap junctions. Furthermore, connexin "hemichannels" on the cell surface can communicate with the extracellular space without ever coupling to an adjacent cell to form a gap junction channel. This chapter will focus primarily on gap junctions in ageing, but such non-junctional connexin functions will be referred to where appropriate and the full spectrum of connexin biology should be noted as potentially causative/contributing to some findings in connexin knockout animals, for example.
Collapse
Affiliation(s)
- Michael J Zeitz
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA. .,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA. .,Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA. .,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
6
|
Gap Junction-Dependent and -Independent Functions of Connexin43 in Biology. BIOLOGY 2022; 11:biology11020283. [PMID: 35205149 PMCID: PMC8869330 DOI: 10.3390/biology11020283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
Abstract
For the first time in animal evolution, the emergence of gap junctions allowed direct exchanges of cellular substances for communication between two cells. Innexin proteins constituted primordial gap junctions until the connexin protein emerged in deuterostomes and took over the gap junction function. After hundreds of millions of years of gene duplication, the connexin gene family now comprises 21 members in the human genome. Notably, GJA1, which encodes the Connexin43 protein, is one of the most widely expressed and commonly studied connexin genes. The loss of Gja1 in mice leads to swelling and a blockage of the right ventricular outflow tract and death of the embryos at birth, suggesting a vital role of Connexin43 gap junction in heart development. Since then, the importance of Connexin43-mediated gap junction function has been constantly expanded to other types of cells. Other than forming gap junctions, Connexin43 can also form hemichannels to release or uptake small molecules from the environment or even mediate many physiological processes in a gap junction-independent manner on plasma membranes. Surprisingly, Connexin43 also localizes to mitochondria in the cell, playing important roles in mitochondrial potassium import and respiration. At the molecular level, Connexin43 mRNA and protein are processed with very distinct mechanisms to yield carboxyl-terminal fragments with different sizes, which have their unique subcellular localization and distinct biological activities. Due to many exciting advancements in Connexin43 research, this review aims to start with a brief introduction of Connexin43 and then focuses on updating our knowledge of its gap junction-independent functions.
Collapse
|
7
|
Grosz BR, Svaren J, Perez-Siles G, Nicholson GA, Kennerson ML. Revisiting the pathogenic mechanism of the GJB1 5' UTR c.-103C > T mutation causing CMTX1. Neurogenetics 2021; 22:149-160. [PMID: 34089394 PMCID: PMC8241655 DOI: 10.1007/s10048-021-00650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022]
Abstract
The second most common form of Charcot-Marie-Tooth neuropathy (CMT), X-linked CMT type X1 (CMTX1), is caused by coding and non-coding mutations in the gap junction beta 1 (GJB1) gene. The non-coding GJB1 c.-103C > T mutation (NM_000166.5) has been reported to cause CMTX1 in multiple families. This study assessed the internal ribosomal entry site (IRES) activity previously reported for the rat Gjb1 P2 5' untranslated region (UTR). Using a bicistronic assay and transfecting RT4 Schwann cells, IRES activity of the human GJB1 P2 5' UTR was compared to the GJB1 P2 5' UTR containing either the c.-103C > T mutation or the non-pathogenic c.-102G > A variant. No differences in GJB1 P2 5' UTR IRES activity were observed between the negative control, the wild-type P2 5' UTR, the c.-103C > T 5' UTR or the c.-102G > A 5' UTR, irrespective of the GJB1 intron being present (p = .429 with intron, and p = .865 without). A theoretical c.-131A > G variant was predicted to result in the same RNA secondary structure as the GJB1 c.-103C > T P2 5' UTR. However, no significant difference was observed between expression from the wild-type GJB1 P2 5' UTR and the GJB1 c.-131A > G variant (p = .688). Deletion of the conserved region surrounding the c.-103C > T mutation (c.-108_-103del) resulted in significantly higher expression than the c.-103C > T mutation alone (p = .019), suggesting that the conserved c.-108_-103 region was not essential for translation. The reporter assays in this study do not recapitulate the previously reported GJB1 IRES activity and suggest an alternate pathogenic mechanism for the c.-103C > T CMTX1 non-coding mutation.
Collapse
Affiliation(s)
- Bianca R Grosz
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW, Australia.
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.
| | - John Svaren
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Gonzalo Perez-Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Garth A Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
| |
Collapse
|
8
|
van den Akker GGH, Zacchini F, Housmans BAC, van der Vloet L, Caron MMJ, Montanaro L, Welting TJM. Current Practice in Bicistronic IRES Reporter Use: A Systematic Review. Int J Mol Sci 2021; 22:5193. [PMID: 34068921 PMCID: PMC8156625 DOI: 10.3390/ijms22105193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bicistronic reporter assays have been instrumental for transgene expression, understanding of internal ribosomal entry site (IRES) translation, and identification of novel cap-independent translational elements (CITE). We observed a large methodological variability in the use of bicistronic reporter assays and data presentation or normalization procedures. Therefore, we systematically searched the literature for bicistronic IRES reporter studies and analyzed methodological details, data visualization, and normalization procedures. Two hundred fifty-seven publications were identified using our search strategy (published 1994-2020). Experimental studies on eukaryotic adherent cell systems and the cell-free translation assay were included for further analysis. We evaluated the following methodological details for 176 full text articles: the bicistronic reporter design, the cell line or type, transfection methods, and time point of analyses post-transfection. For the cell-free translation assay, we focused on methods of in vitro transcription, type of translation lysate, and incubation times and assay temperature. Data can be presented in multiple ways: raw data from individual cistrons, a ratio of the two, or fold changes thereof. In addition, many different control experiments have been suggested when studying IRES-mediated translation. In addition, many different normalization and control experiments have been suggested when studying IRES-mediated translation. Therefore, we also categorized and summarized their use. Our unbiased analyses provide a representative overview of bicistronic IRES reporter use. We identified parameters that were reported inconsistently or incompletely, which could hamper data reproduction and interpretation. On the basis of our analyses, we encourage adhering to a number of practices that should improve transparency of bicistronic reporter data presentation and improve methodological descriptions to facilitate data replication.
Collapse
Affiliation(s)
- Guus Gijsbertus Hubert van den Akker
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Federico Zacchini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
| | - Bas Adrianus Catharina Housmans
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Laura van der Vloet
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Marjolein Maria Johanna Caron
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
- Programma Dipartimentale in Medicina di Laboratorio, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
| | - Tim Johannes Maria Welting
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| |
Collapse
|
9
|
Dynamic UTR Usage Regulates Alternative Translation to Modulate Gap Junction Formation during Stress and Aging. Cell Rep 2020; 27:2737-2747.e5. [PMID: 31141695 PMCID: PMC6857847 DOI: 10.1016/j.celrep.2019.04.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 11/22/2022] Open
Abstract
Connexin43 (Cx43; gene name GJA1) is the most ubiquitously expressed gap junction protein, and understanding of its regulation largely falls under transcription and post-translational modification. In addition to Cx43, Gja1 mRNA encodes internally translated isoforms regulating gap junction formation, whose expression is modulated by TGF-β. Here, using RLM-RACE, we identify distinct Gja1 transcripts differing only in 5′ UTR length, of which two are upregulated during TGF-β exposure and hypoxia. Introduction of these transcripts into Gja1−/− cells phenocopies the response of Gja1 to TGF-β with reduced internal translation initiation. Inhibiting pathways downstream of TGF-β selectively regulates levels of Gja1 transcript isoforms and translation products. Reporter assays reveal enhanced translation of full-length Cx43 from shorter Gja1 5′ UTR isoforms. We also observe a correlation among UTR selection, translation, and reduced gap junction formation in aged heart tissue. These data elucidate a relationship between transcript isoform expression and translation initiation regulating intercellular communication. Connexin43 gap junctions enable direct intercellular communication facilitating action potential propagation. Internal translation of connexin43 mRNA generates the truncated isoform GJA1–20k, which promotes gap junction formation. During aging, Zeitz et al. find that activation of stress-response pathways shortens connexin43 mRNA UTRs to limit GJA1–20k translation coincident with gap junction loss.
Collapse
|
10
|
López C, Aguilar R, Nardocci G, Cereceda K, Vander Stelt K, Slebe JC, Montecino M, Concha II. Wnt/β-catenin signaling enhances transcription of the CX43 gene in murine Sertoli cells. J Cell Biochem 2018; 120:6753-6762. [PMID: 30417410 DOI: 10.1002/jcb.27973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/02/2018] [Indexed: 01/12/2023]
Abstract
Sertoli cells provide the nutritional and metabolic support for germ cells. Wnt/β-catenin signaling is important for the development of the seminiferous epithelium during embryonic age, although after birth this pathway is downregulated. Cx43 gene codes for a protein that is critical during testicular development. The Cx43 promoter contains TCF/β-catenin binding elements (TBEs) that contribute CX43 expression in different cell types and which may also be regulating the expression of this gene in Sertoli cells. In this study, we demonstrate that 42GPA9 Sertoli cells respond to treatments that result in accumulation of β-catenin within the nucleus and in upregulation of CX43 gene transcription. β-Catenin binds to TBEs located both upstream and downstream of the transcriptional start site (TSS). Luciferase reporter experiments revealed that TBEs located upstream of the TSS are necessary for β-catenin-mediated upregulation. Our results also indicate that the Wnt/β-catenin-dependent upregulation of the Cx43 gene in Sertoli cells is accompanied by changes in epigenetic parameters that may be directly contributing to generating a chromatin environment that facilitates the establishment of the transcriptional machinery at this promoter.
Collapse
Affiliation(s)
- Camila López
- Instituto de Bioquimíca y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Aguilar
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Gino Nardocci
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Karina Cereceda
- Instituto de Bioquimíca y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Karen Vander Stelt
- Instituto de Bioquimíca y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Carlos Slebe
- Instituto de Bioquimíca y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Ilona I Concha
- Instituto de Bioquimíca y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
11
|
James CC, Smyth JW. Alternative mechanisms of translation initiation: An emerging dynamic regulator of the proteome in health and disease. Life Sci 2018; 212:138-144. [PMID: 30290184 DOI: 10.1016/j.lfs.2018.09.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
Eukaryotic mRNAs were historically thought to rely exclusively on recognition and binding of their 5' cap by initiation factors to effect protein translation. While internal ribosome entry sites (IRESs) are well accepted as necessary for the cap-independent translation of many viral genomes, there is now recognition that eukaryotic mRNAs also undergo non-canonical modes of translation initiation. Recently, high-throughput assays have identified thousands of mammalian transcripts with translation initiation occurring at non-canonical start codons, upstream of and within protein coding regions. In addition to IRES-mediated events, regulatory mechanisms of translation initiation have been described involving alternate 5' cap recognition, mRNA sequence elements, and ribosome selection. These mechanisms ensure translation of specific mRNAs under conditions where cap-dependent translation is shut down and contribute to pathological states including cardiac hypertrophy and cancer. Such global and gene-specific dynamic regulation of translation presents us with an increasing number of novel therapeutic targets. While these newly discovered modes of translation initiation have been largely studied in isolation, it is likely that several act on the same mRNA and exquisite coordination is necessary to maintain 'normal' translation. In this short review, we summarize the current state of knowledge of these alternative mechanisms of eukaryotic protein translation, their contribution to normal and pathological cell biology, and the potential of targeting translation initiation therapeutically in human disease.
Collapse
Affiliation(s)
- Carissa C James
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - James W Smyth
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA, USA; Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA.
| |
Collapse
|
12
|
Aasen T, Johnstone S, Vidal-Brime L, Lynn KS, Koval M. Connexins: Synthesis, Post-Translational Modifications, and Trafficking in Health and Disease. Int J Mol Sci 2018; 19:ijms19051296. [PMID: 29701678 PMCID: PMC5983588 DOI: 10.3390/ijms19051296] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VI 22908, USA.
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK.
| | - Laia Vidal-Brime
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
James CC, Zeitz MJ, Calhoun PJ, Lamouille S, Smyth JW. Altered translation initiation of Gja1 limits gap junction formation during epithelial-mesenchymal transition. Mol Biol Cell 2018; 29:797-808. [PMID: 29467255 PMCID: PMC5905293 DOI: 10.1091/mbc.e17-06-0406] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is activated during development, wound healing, and pathologies including fibrosis and cancer metastasis. Hallmarks of EMT are remodeling of intercellular junctions and adhesion proteins, including gap junctions. The GJA1 mRNA transcript encoding the gap junction protein connexin43 (Cx43) has been demonstrated to undergo internal translation initiation, yielding truncated isoforms that modulate gap junctions. The PI3K/Akt/mTOR pathway is central to translation regulation and is activated during EMT, leading us to hypothesize that altered translation initiation would contribute to gap junction loss. Using TGF-β-induced EMT as a model, we find reductions in Cx43 gap junctions despite increased transcription and stabilization of Cx43 protein. Biochemical experiments reveal suppression of the internally translated Cx43 isoform, GJA1-20k in a Smad3 and ERK-dependent manner. Ectopic expression of GJA1-20k does not halt EMT, but is sufficient to rescue gap junction formation. GJA1-20k localizes to the Golgi apparatus, and using superresolution localization microscopy we find retention of GJA1-43k at the Golgi in mesenchymal cells lacking GJA1-20k. NativePAGE demonstrates that levels of GJA1-20k regulate GJA1-43k hexamer oligomerization, a limiting step in Cx43 trafficking. These findings reveal alterations in translation initiation as an unexplored mechanism by which the cell regulates Cx43 gap junction formation during EMT.
Collapse
Affiliation(s)
- Carissa C James
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA 24016.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Michael J Zeitz
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA 24016
| | - Patrick J Calhoun
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA 24016.,Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Samy Lamouille
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA 24016
| | - James W Smyth
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA 24016.,Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| |
Collapse
|
14
|
Vaklavas C, Zinn KR, Samuel SL, Meng Z, Grizzle WE, Choi H, Blume SW. Translational control of the undifferentiated phenotype in ER‑positive breast tumor cells: Cytoplasmic localization of ERα and impact of IRES inhibition. Oncol Rep 2018; 39:2482-2498. [PMID: 29620220 PMCID: PMC5983923 DOI: 10.3892/or.2018.6332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/12/2018] [Indexed: 01/07/2023] Open
Abstract
Using a series of potential biomarkers relevant to mechanisms of protein synthesis, we observed that estrogen receptor (ER)-positive breast tumor cells exist in two distinct yet interconvertible phenotypic states (of roughly equal proportion) which differ in the degree of differentiation and use of IRES-mediated translation. Nascently translated IGF1R in the cytoplasm positively correlated with IRES activity and the undifferentiated phenotype, while epitope accessibility of RACK1, an integral component of the 40S ribosomal subunit, aligned with the more differentiated IRES-off state. When deprived of soluble growth factors, the entire tumor cell population shifted to the undifferentiated phenotype in which IRES-mediated translation was active, facilitating survival under these adverse microenvironmental conditions. However, if IRES-mediated translation was inhibited, the cells instead were forced to transition uniformly to the more differentiated state. Notably, cytoplasmic localization of estrogen receptor α (ERα/ESR1) precisely mirrored the pattern observed with nascent IGF1R, correlating with the undifferentiated IRES-active phenotype. Inhibition of IRES-mediated translation resulted in both a shift in ERα to the nucleus (consistent with differentiation) and a marked decrease in ERα abundance (consistent with the inhibition of ERα synthesis via its IRES). Although breast tumor cells tolerated forced differentiation without extensive loss of their viability, their reproductive capacity was severely compromised. In addition, CDK1 was decreased, connexin 43 eliminated and Myc translation altered as a consequence of IRES inhibition. Isolated or low-density ER-positive breast tumor cells were particularly vulnerable to IRES inhibition, losing the ability to generate viable cohesive colonies, or undergoing massive cell death. Collectively, these results provide further evidence for the integral relationship between IRES-mediated translation and the undifferentiated phenotype and demonstrate how therapeutic manipulation of this specialized mode of protein synthesis may be used to limit the phenotypic plasticity and incapacitate or eliminate these otherwise highly resilient breast tumor cells.
Collapse
Affiliation(s)
- Christos Vaklavas
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kurt R Zinn
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sharon L Samuel
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zheng Meng
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William E Grizzle
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hyoungsoo Choi
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott W Blume
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Vaklavas C, Grizzle WE, Choi H, Meng Z, Zinn KR, Shrestha K, Blume SW. IRES inhibition induces terminal differentiation and synchronized death in triple-negative breast cancer and glioblastoma cells. Tumour Biol 2016; 37:13247-13264. [PMID: 27460074 PMCID: PMC5097113 DOI: 10.1007/s13277-016-5161-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/12/2016] [Indexed: 01/07/2023] Open
Abstract
Internal ribosome entry site (IRES)-mediated translation is a specialized mode of protein synthesis which malignant cells depend on to survive adverse microenvironmental conditions. Our lab recently reported the identification of a group of compounds which selectively interfere with IRES-mediated translation, completely blocking de novo IGF1R synthesis, and differentially modulating synthesis of the two c-Myc isoforms. Here, we examine the phenotypic consequences of sustained IRES inhibition in human triple-negative breast carcinoma and glioblastoma cells. A sudden loss of viability affects the entire tumor cell population after ∼72-h continuous exposure to the lead compound. The extraordinarily steep dose-response relationship (Hill-Slope coefficients −15 to −35) and extensive physical connections established between the cells indicate that the cells respond to IRES inhibition collectively as a population rather than as individual cells. Prior to death, the treated cells exhibit prominent features of terminal differentiation, with marked gains in cytoskeletal organization, planar polarity, and formation of tight junctions or neuronal processes. In addition to IGF1R and Myc, specific changes in connexin 43, BiP, CHOP, p21, and p27 also correlate with phenotypic outcome. This unusual mode of tumor cell death is absolutely dependent on exceeding a critical threshold in cell density, suggesting that a quorum-sensing mechanism may be operative. Death of putative tumor stem cells visualized in situ helps to explain the inability of tumor cells to recover and repopulate once the compound is removed. Together, these findings support the concept that IRES-mediated translation is of fundamental importance to maintenance of the undifferentiated phenotype and survival of undifferentiated malignant cells.
Collapse
Affiliation(s)
- Christos Vaklavas
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - William E Grizzle
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hyoungsoo Choi
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, 463-707, South Korea
| | - Zheng Meng
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Bevill Biomedical Research Bldg Room 765, 845 19th Street S, Birmingham, AL, 35294, USA.,Analytical Development Division, Novavax Inc., Rockville, MD, 20850, USA
| | - Kurt R Zinn
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kedar Shrestha
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Scott W Blume
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Bevill Biomedical Research Bldg Room 765, 845 19th Street S, Birmingham, AL, 35294, USA.
| |
Collapse
|
16
|
Basheer W, Shaw R. The "tail" of Connexin43: An unexpected journey from alternative translation to trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1848-56. [PMID: 26526689 DOI: 10.1016/j.bbamcr.2015.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022]
Abstract
With each heartbeat, Connexin43 (Cx43) cell-cell communication gap junctions are needed to rapidly spread and coordinate excitation signals for an effective heart contraction. The correct formation and delivery of channels to their respective membrane subdomain is referred to as protein trafficking. Altered Cx43 trafficking is a dangerous complication of diseased myocardium which contributes to the arrhythmias of sudden cardiac death. Cx43 has also been found to regulate many other cellular processes that cannot be explained by cell-cell communication. We recently identified the existence of up to six endogenous internally translated Cx43 N-terminal truncated isoforms from the same full-length mRNA molecule. This is the first evidence that alternative translation is possible for human ion channels and in human heart. Interestingly, we found that these internally translated isoforms, more specifically the 20 kDa isoform (GJA1-20k), is important for delivery of Cx43 to its respective membrane subdomain. This review covers recent advances in Cx43 trafficking and potential importance of alternatively translated Cx43 truncated isoforms. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Wassim Basheer
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robin Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Abstract
Gap junctions allow intercellular communication. Their structural subunits are four-transmembrane proteins named connexins (Cxs), which can be post-transcriptionally regulated by developmental and cellular signalling cues. Cx translation and mRNA stability is regulated by miRNAs and RNA-binding proteins (RBPs) such as human antigen R (HuR). In addition, several Cxs have also been suggested to contain 5′ internal ribosome entry site (IRES) elements that are thought to allow cap-independent translation in situations such as mitosis, stress and senescence. Furthermore, several recent reports have documented internal translation of Cx mRNAs that result in N-terminally truncated protein isoforms that may have unique gap junction-independent functions [Ul-Hussain et al. (2008) BMC Mol. Biol. 9, 52; Smyth and Shaw (2013) Cell Rep. 5, 611–618; Salat-Canela et al. (2014) Cell Commun. Signal. 12, 31; Ul-Hussain et al. (2014) J. Biol. Chem. 289, 20979–20990]. This review covers the emerging field of the post-transcriptional regulation of Cxs, with particular focus on the translational control of Cx 43 and its possible functional consequences.
Collapse
|
18
|
Ul-Hussain M, Olk S, Schoenebeck B, Wasielewski B, Meier C, Prochnow N, May C, Galozzi S, Marcus K, Zoidl G, Dermietzel R. Internal ribosomal entry site (IRES) activity generates endogenous carboxyl-terminal domains of Cx43 and is responsive to hypoxic conditions. J Biol Chem 2015; 289:20979-90. [PMID: 24872408 DOI: 10.1074/jbc.m113.540187] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Connexin43 (Cx43) is the most abundant gap junction protein in higher vertebrate organisms and has been shown to be involved in junctional and non-junctional functions. In addition to the expression of full-length Cx43, endogenously produced carboxyl-terminal segments of Cx43 have been described and have been suggested to be involved in manifold biological functions, such as hypoxic preconditioning and neuronal migration. Molecular aspects, however, behind the separate generation of carboxyl-terminal segments of Cx43 have remained elusive. Here we report on a mechanism that may play a key role in the separate production of these domains. First, stringent evidence derived from siRNA treatment and specific knockouts revealed significant loss of the low molecular weight fragments of Cx43. By applying a dicistronic vector strategy on transfected cell lines, we were able to identify putative IRES activity (nucleotides 442–637) in the coding region of Cx43, which resides upstream from the nucleotide sequence encoding the carboxyl terminus (nucleotides 637–1149). Functional responsiveness of the endogenous expression of Cx43 fragments to hypoxic/ischemic treatment was evaluated in in vitro and in vivo models, which led to a significant increase of the fastest migrating form (20 kDa) under conditions of metabolic deprivation. By nano-MS spectrometry, we achieved stringent evidence of the identity of the 20-kDa segment as part of the carboxyl-terminal domain of full-length Cx43. Our data prove the existence of endogenously expressed carboxyl-terminal domains, which may serve as valuable tools for further translational application in ischemic disorders.
Collapse
|
19
|
Connexins in migration during development and cancer. Dev Biol 2014; 401:143-51. [PMID: 25553982 DOI: 10.1016/j.ydbio.2014.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Connexins, the gap junction proteins, through their multitude of actions are implicated in a variety of cell processes during animal development and cancer. They allow direct or paracrine/autocrine cell communication through their channel and hemi-channel functions. They enable adhesion and interact with a plethora of signalling molecules. Here, we review the common themes in developmental and pathological processes and we focus in their involvement in cell migration in four different systems: neurons, astrocytes, neural crest and cancer.
Collapse
|
20
|
Zhang SS, Shaw RM. Trafficking highways to the intercalated disc: new insights unlocking the specificity of connexin 43 localization. ACTA ACUST UNITED AC 2014; 21:43-54. [PMID: 24460200 DOI: 10.3109/15419061.2013.876014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With each heartbeat, billions of cardiomyocytes work in concert to propagate the electrical excitation needed to effectively circulate blood. Regulated expression and timely delivery of connexin proteins to form gap junctions at the specialized cell-cell contact region, known as the intercalated disc, is essential to ventricular cardiomyocyte coupling. We focus this review on several regulatory mechanisms that have been recently found to govern the lifecycle of connexin 43 (Cx43), the short-lived and most abundantly expressed connexin in cardiac ventricular muscle. The Cx43 lifecycle begins with gene expression, followed by oligomerization into hexameric channels, and then cytoskeletal-based transport toward the disc region. Once delivered, hemichannels interact with resident disc proteins and are organized to effect intercellular coupling. We highlight recent studies exploring regulation of Cx43 localization to the intercalated disc, with emphasis on alternatively translated Cx43 isoforms and cytoskeletal transport machinery that together regulate Cx43 gap junction coupling between cardiomyocytes.
Collapse
|
21
|
Salat-Canela C, Sesé M, Peula C, Ramón y Cajal S, Aasen T. Internal translation of the connexin 43 transcript. Cell Commun Signal 2014; 12:31. [PMID: 24884945 PMCID: PMC4108066 DOI: 10.1186/1478-811x-12-31] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/28/2014] [Indexed: 11/12/2022] Open
Abstract
Background Connexin 43 (Cx43), the most widely expressed gap junction protein, is associated with a number of physiological and pathological conditions. Many functions of Cx43 have been shown to be independent of gap junction formation and only require the expression of Cx43 C-terminal fragments. Recent evidence demonstrated that naturally occurring C-terminal isoforms can be generated via internal translation. Findings Here, we confirm that C-terminal domains of Cx43, particularly the major 20-kDa isoform, can be independently generated and regulated by internal translation of the same single GJA1 gene transcript that encodes full-length Cx43. Through direct RNA transfection experiments, we provide evidence that internal translation is not due to a bona fide cap-independent IRES-mediated mechanism, as upstream ribosomal scanning or translation is required. In addition to the mTOR pathway, we show for the first time, using both inhibitors and cells from knockout mice, that the Mnk1/2 pathway regulates the translation of the main 20-kDa isoform. Conclusions Internal translation of the Cx43 transcript occurs but is not cap-independent and requires translation upstream of the internal start codon. In addition to the PI3K/AKT/mTOR pathway, the major 20-kDa isoform is regulated by the Mnk1/2 pathway. Our results have major implications for past and future studies describing gap junction-independent functions of Cx43 in cancer and other pathological conditions. This study provides further clues to the signalling pathways that regulate internal mRNA translation, an emerging mechanism that allows for increased protein diversity and functional complexity from a single mRNA transcript.
Collapse
Affiliation(s)
| | | | | | | | - Trond Aasen
- Molecular Pathology, Hospital Universitari Vall d'Hebron - Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain.
| |
Collapse
|
22
|
Smyth JW, Shaw RM. Autoregulation of connexin43 gap junction formation by internally translated isoforms. Cell Rep 2013; 5:611-8. [PMID: 24210816 DOI: 10.1016/j.celrep.2013.10.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/22/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022] Open
Abstract
During each heartbeat, intercellular electrical coupling via connexin43 (Cx43) gap junctions enables synchronous cardiac contraction. In failing hearts, impaired Cx43 trafficking reduces gap junction coupling, resulting in arrhythmias. Here we report that internal translation within Cx43 (GJA1) mRNA occurs, resulting in truncated isoforms that autoregulate Cx43 trafficking. We find that at least four truncated Cx43 isoforms occur in the human heart, with a 20 kDa isoform predominating. In-frame AUG codons within GJA1 mRNA are the translation initiation sites and their ablation arrests trafficking of full-length Cx43. The 20 kDa isoform is sufficient to rescue this trafficking defect in trans, suggesting it as a trafficking chaperone for Cx43. Limiting cap-dependent translation through inhibition of mTOR enhances truncated isoform expression, increasing Cx43 gap junction size. The results suggest that internal translation is a mechanism of membrane protein autoregulation and a potent target for therapies aimed at restoring normal electrical coupling in diseased hearts.
Collapse
Affiliation(s)
- James W Smyth
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94148, USA
| | | |
Collapse
|
23
|
Pannexin 1 involvement in bladder dysfunction in a multiple sclerosis model. Sci Rep 2013; 3:2152. [PMID: 23827947 PMCID: PMC3701900 DOI: 10.1038/srep02152] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/20/2013] [Indexed: 11/22/2022] Open
Abstract
Bladder dysfunction is common in Multiple Sclerosis (MS) but little is known of its pathophysiology. We show that mice with experimental autoimmune encephalomyelitis (EAE), a MS model, have micturition dysfunction and altered expression of genes associated with bladder mechanosensory, transduction and signaling systems including pannexin 1 (Panx1) and Gja1 (encoding connexin43, referred to here as Cx43). EAE mice with Panx1 depletion (Panx1−/−) displayed similar neurological deficits but lesser micturition dysfunction compared to Panx1+/+ EAE. Cx43 and IL-1β upregulation in Panx1+/+ EAE bladder mucosa was not observed in Panx1−/− EAE. In urothelial cells, IL-1β stimulation increased Cx43 expression, dye-coupling, and p38 MAPK phosphorylation but not ERK1/2 phosphorylation. SB203580 (p38 MAPK inhibitor) prevented IL-1β-induced Cx43 upregulation. IL-1β also increased IL-1β, IL-1R-1, PANX1 and CASP1 expression. Mefloquine (Panx1 blocker) reduced these IL-1β responses. We propose that Panx1 signaling provides a positive feedback loop for inflammatory responses involved in bladder dysfunction in MS.
Collapse
|
24
|
Post-transcriptional regulation of connexin43 in H-Ras-transformed cells. PLoS One 2013; 8:e58500. [PMID: 23505521 PMCID: PMC3594296 DOI: 10.1371/journal.pone.0058500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/05/2013] [Indexed: 01/05/2023] Open
Abstract
Connexin43 (Cx43) expression is lost in cancer cells and many studies have reported that Cx43 is a tumor suppressor gene. Paradoxically, in a cellular NIH3T3 model, we have previously shown that Ha-Ras-mediated oncogenic transformation results in increased Cx43 expression. Although the examination of transcriptional regulation revealed essential regulatory elements, it could not solve this paradox. Here we studied post-transcriptional regulation of Cx43 expression in cancer using the same model in search of novel gene regulatory elements. Upon Ras transformation, both Cx43 mRNA stability and translation efficiency were increased. We investigated the role of Cx43 mRNA 3′ and 5′Untranslated regions (UTRs) and found an opposing effect; a 5′UTR-driven positive regulation is observed in Ras-transformed cells (NIH-3T3Ras), while the 3′UTR is active only in normal NIH-3T3Neo cells and completely silenced in NIH-3T3Ras cells. Most importantly, we identified a previously unknown regulatory element within the 3′UTR, named S1516, which accounts for this 3′UTR-mediated regulation. We also examined the effect of other oncogenes and found that Ras- and Src-transformed cells show a different Cx43 UTRs post-transcriptional regulation than ErbB2-transformed cells, suggesting distinct regulatory pathways. Next, we detected different patterns of S1516 RNA-protein complexes in NIH-3T3Neo compared to NIH-3T3Ras cells. A proteomic approach identified most of the S1516-binding proteins as factors involved in post-transcriptional regulation. Building on our new findings, we propose a model to explain the discrepancy between the Cx43 expression in Ras-transformed NIH3T3 cells and the data in clinical specimens.
Collapse
|
25
|
Ul-Hussain M, Dermietzel R, Zoidl G. Connexins and Cap-independent translation: role of internal ribosome entry sites. Brain Res 2012; 1487:99-106. [PMID: 22771397 DOI: 10.1016/j.brainres.2012.05.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/18/2012] [Indexed: 02/05/2023]
Abstract
Cap-independent translation using an internal ribosome entry site instead of the 5'-Cap structure has been discovered in positive-sense RNA viruses and eukaryotic genomes including a subset of gap junction forming connexins genes. With a growing number of mutations found in human connexin genes and studies on genetically modified mouse models mechanisms highlighting the important role of gap junctional communication in multicellular organism it is obvious that mechanism need to be in place to preserve this critical property even under conditions when Cap-mediated translation is scrutinized. To ensure sustained gap junctional communication, rapid initiation of translation of preexisting connexin mRNAs is one possibility, and the presence of internal ribosome entry sites in gap junction genes comply with such a requirement. In this review, we will summarize past and recent findings to build a case for IRES mediated translation as an alternative regulatory pathway facilitating gap junctional communication. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Mahboob Ul-Hussain
- Biotechnology, University of Kashmir, India; Neuroanatomy, Ruhr-University, Bochum, Germany
| | | | | |
Collapse
|
26
|
Wan CK, Shaikh SB, Green CR, Nicholson LFB. Comparison of bidirectional and bicistronic inducible systems for coexpression of connexin genes and fluorescent reporters. Anal Biochem 2012; 431:90-5. [PMID: 22929700 DOI: 10.1016/j.ab.2012.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 11/18/2022]
Abstract
Gene expression studies often require inducible coexpression of both a gene of interest and a reporter gene. Fusion of fluorescent reporters can, however, modify protein structure and function. We have generated inducible expression systems for two connexin genes: Cx30 and Cx43. It has been reported recently that reporter fusion to connexins can modify their function. Therefore, we compared two methods of independent reporter coexpression and examined colocalization with induced connexin expression. Identical levels of connexin expression were observed for both the bidirectional and bicistronic expression systems. In contrast, however, reporter gene expression by the bidirectional promoter provided brighter average fluorescent pixel intensity than expression of a reporter gene in a bicistronic transcript. Moreover, as a result of this difference in reporter expression, bidirectional expression systems provided equal or better colocalization between the connexins and reporter gene fluorescence. The results of our study indicate that bidirectional reporter expression provides a robust indicator of transfection and gene expression and, therefore, may favor the use of bidirectional over bicistronic reporters in the design of expression systems where the gene of interest, such as a connexin gene, contains translational motifs or long intronic regions.
Collapse
Affiliation(s)
- Carthur K Wan
- Department of Anatomy with Radiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 92-019, New Zealand.
| | | | | | | |
Collapse
|
27
|
Pan P, van Breukelen F. Preference of IRES-mediated initiation of translation during hibernation in golden-mantled ground squirrels, Spermophilus lateralis. Am J Physiol Regul Integr Comp Physiol 2011; 301:R370-7. [PMID: 21613577 DOI: 10.1152/ajpregu.00748.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian hibernation involves virtual cessation of energetically consumptive processes normally vital to homeostasis, including gene transcription and protein synthesis. As animals enter torpor, the bulk of initiation of translation is blocked at a body temperature of 18°C in golden-mantled ground squirrels [Spermophilus (Callospermophilus) lateralis]. Previous data demonstrated regulation of cap-dependent initiation of translation during torpor. We asked what happens to cap-independent, specifically, internal ribosome entry site (IRES)-mediated initiation of translation during hibernation. We analyzed polysome fractions for mRNAs that are known to contain or not to contain IRES elements. Here, we show that mRNAs harboring IRES elements preferentially associate with ribosomes as a torpor bout progresses. Squirrels allowed to naturally complete a torpor cycle have a higher IRES preference index than those animals that are prematurely aroused from torpor. Data indicate that this change in preference is not associated with gene expression, i.e., change is due to change in mRNA association with ribosomes as opposed to mRNA abundance. Thus, although processes like transcription and translation are virtually arrested during torpor, ribosomes are preferentially loaded with IRES-containing transcripts when squirrels arouse from torpor and translation resumes. Differential translation of preexisting mRNAs may allow for the preferential production of key stress proteins critical for survival of physiological insults that are lethal to other mammals.
Collapse
Affiliation(s)
- Peipei Pan
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | | |
Collapse
|
28
|
Abstract
Gap junctions, composed of connexin protein subunits, allow direct communication through conduits between neighboring cells. Twenty and twenty-one members of the connexin gene family are likely to be expressed in the mouse and human genome, respectively, 19 of which can be grouped into sequence-orthologous pairs. Their gene structure appears to be relatively simple. In most cases, an untranslated exon1 is separated by an intron of different lengh from exon2 that includes the uninterrupted coding region and the 3'-untranslated region. However, there are several exceptions to this scheme, since some mouse connexin genes contain different 5'-untranslated regions spliced either in an alternative and/or consecutive manner. Additionally, in at least 3 mouse and human connexin genes (mCx36, mCx39, mCx57 and hCx31.3, hCx36, as well as hCx40.1) the reading frame is spliced together from 2 different exons. So far, there are two nomenclatures to classify the known connexin genes: The "Gja/Gjb" nomenclature, as it is currently adopted by the NCBI data base, contains some inconsistencies compared to the "Cx" nomenclature. Here we suggest some minor corrections to co-ordinate the "Gja/Gjb" nomenclature with the "Cx" nomenclature. Furthermore, this short review contains an update on phenotypic correlations between connexin deficient mice and patients bearing mutations in their orthologous connexin genes.
Collapse
Affiliation(s)
- Goran Söhl
- Institut für Genetik, Universität Bonn, Germany.
| | | |
Collapse
|
29
|
Mahboob-Ul-Hussain, Kremer M, Zoidl G, Dermietzel R. Transcriptional and Translational Regulation of Zebrafish Connexin 55.5 (zf.Cx.55.5) and Connexin 52.6 (zf.Cx52.6). ACTA ACUST UNITED AC 2009. [DOI: 10.1080/cac.10.4-6.227.231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Ul-Hussain M, Dermietzel R, Zoidl G. Characterization of the internal IRES element of the zebrafish connexin55.5 reveals functional implication of the polypyrimidine tract binding protein. BMC Mol Biol 2008; 9:92. [PMID: 18947383 PMCID: PMC2579433 DOI: 10.1186/1471-2199-9-92] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/23/2008] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Connexin55.5 (Cx55.5) is a gap junction protein with horizontal cell-restricted expression in zebrafish accumulating at dendritic sites within the receptor-horizontal cell complex in form of hemichannels where light-dependent plasticity occurs. This connexin is the first example of a gap junction protein processed to form two protein isoforms from a monocistronic message by an IRES mediated process. The nuclear occurrence of a carboxy-terminal fragment of this protein provides evidence that this gap junction protein may participate in a putative cytoplasmic to nuclear signal transfer. RESULTS We characterized the IRES element of Cx55.5 in terms of sequence elements necessary for its activity and protein factor(s), which may play a role for its function. Two stretches of polypyrimidine tracts designated PPT1 and PPT2 which influence the IRES activity of this neuronal gap junction protein were identified. Selective deletion of PPT1 results in an appreciable decrease of the IRES activity, while the deletion of PPT2 results in a complete loss. RNA-EMSA and UV-cross linking experiments showed that protein complexes bind to this IRES element, of which the polypyrimidine tract binding protein (PTB) was identified as one of the interacting partners with influence on IRES activity. These results indicate that PTB conveys a role in the regulation of the IRES activity of Cx55.5. CONCLUSION Our findings indicate that the activity of the IRES element of the neuronal gap junction protein Cx55.5 is subject of regulation through flanking polypyrimidine tracts, and that the non-canonical trans-activation factor PTB plays an essential role in this process. This observation is of considerable importance and may provide initial insight into molecular-functional relationships of electrical coupling in horizontal cells.
Collapse
Affiliation(s)
- Mahboob Ul-Hussain
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany.
| | | | | |
Collapse
|
31
|
Vazquez-Padron RI, Pham SM, Mateu D, Khan S, Aitouche A. An internal ribosome entry site mediates the initiation of soluble guanylyl cyclase beta2 mRNA translation. FEBS J 2008; 275:3598-607. [PMID: 18565106 DOI: 10.1111/j.1742-4658.2008.06505.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The soluble guanylyl cyclases (sGC), the receptor for nitric oxide, are heterodimers consisting of an alpha- and beta-subunit. This study aimed to investigate the translational mechanism of the sGC beta2-subunit. Two mRNA species for sGC beta2 were isolated from human kidney. These transcripts had dissimilar 5'-untranslated regions (5'-UTRs). The most abundant sGC beta2 mRNA showed numerous upstream open reading frames (ORFs) and stable secondary structures that inhibited in vivo and in vitro translation. To evaluate whether these 5'-UTRs harbored an internal ribosome entry site (IRES) that allows translation by an alternative mechanism, we inserted these regions between the two luciferase genes of a bicistronic vector. Transfection of those genetic constructs into HeLa cells demonstrated that both sGC beta2 leaders had IRES activity in a cell-type dependent manner. Finally, the secondary structural model of the sGC beta2 5'-UTR predicts a Y-type pseudoknot that characterizes the IRES of cellular mRNAs. In conclusion, our findings suggest that sGC beta2 5'-UTRs have IRES activity that may permit sGC beta2 expression under conditions that are not optimal for scanning-dependent translation.
Collapse
|
32
|
Ul-Hussain M, Zoidl G, Klooster J, Kamermans M, Dermietzel R. IRES-mediated translation of the carboxy-terminal domain of the horizontal cell specific connexin Cx55.5 in vivo and in vitro. BMC Mol Biol 2008; 9:52. [PMID: 18505575 PMCID: PMC2435236 DOI: 10.1186/1471-2199-9-52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 05/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Changes of the interneuronal coupling mediated by electrical synapse proteins in response to light adaptation and receptive field shaping are a paramount feature in the photoreceptor/horizontal cell/bipolar cell (PRC/HC/BPC) complex of the outer retina. The regulation of these processes is not fully understood at the molecular level but they may require information transfer to the nucleus by locally generated messengers. Electrical synapse proteins may comprise a feasible molecular determinant in such an information-laden signalling pathway. RESULTS Connexin55.5 (Cx55.5) is a connexin with horizontal cell-restricted expression in zebrafish accumulating at dendritic sites within the PRC/HC/BPC complex in form of hemichannels where light-dependent plasticity occurs. Here we provide evidence for the generation of a carboxy-terminal domain of Cx55.5. The protein product is translated from the Cx55.5 mRNA by internal translation initiation from an in-frame ATG codon involving a putative internal ribosome entry site (IRES) element localized in the coding region of Cx55.5. This protein product resembling an 11 kDa domain of Cx55.5 is partially located in the nucleus in vivo and in vitro. CONCLUSION Our results demonstrate the generation of a second protein from the coding region of Cx55.5 by an IRES mediated process. The nuclear occurrence of a fraction of this protein provides first evidence that this electrical synapse protein may participate in a putative cytoplasmic to nuclear signal transfer. This suggests that Cx55.5 could be involved in gene regulation making structural plasticity at the PRC/HC/BPC complex feasible.
Collapse
Affiliation(s)
- Mahboob Ul-Hussain
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, University Street 150, D-44801 Bochum, Germany.
| | | | | | | | | |
Collapse
|
33
|
Concomitant transitory up-regulation of X-linked inhibitor of apoptosis protein (XIAP) and the heterogeneous nuclear ribonucleoprotein C1-C2 in surviving cells during neuronal apoptosis. Neurochem Res 2008; 33:1859-68. [PMID: 18363099 DOI: 10.1007/s11064-008-9658-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
Although cap-dependent translation initiation is the prevalent mode of ribosome binding to mRNAs in eukaryotes, some mRNAs exhibit the ability to bypass the requirement for the cap structure. The translation of X-chromosome-linked inhibitor of apoptosis protein (XIAP) mRNA is controlled by an internal ribosome entry site (IRES) element, which requires the interaction of the heterogeneous nuclear ribonucleoprotein C1-C2 (hnRNP-C1/C2). We analyze, at the protein level, the time course and distribution of XIAP and hnRNP-C1/C2 upon ischemia in mice or staurosporine (STP)-induced apoptosis in HT22 cells. Both ischemia and STP induced a parallel upregulation of XIAP and hnRNP-C1/C2 protein levels in the penumbra and in HT22 cells. These results suggest that the increased levels of hnRNP C1/C2 may modulate XIAP translation, probably by interacting with the XIAP-IRES. The up-regulation of hnRNP-C1/C2 may foster the synthesis of XIAP as a protective pathway by which neurons try to counteract the initial deleterious effects of apoptosis.
Collapse
|
34
|
Tumor Stem Cells: How to Define Them and How to Find Them? Stem Cells 2008. [DOI: 10.1007/978-1-4020-8274-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Johnson TL, Nerem RM. Endothelial connexin 37, connexin 40, and connexin 43 respond uniquely to substrate and shear stress. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2007; 14:215-26. [PMID: 17922338 DOI: 10.1080/10623320701617233] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Endothelial connexins have been linked to atherosclerosis and hypertension; however, little is know about their sensitivity to stimuli and individual functions. This study investigates the responses of endothelial connexin 37, connexin 40, and connexin 43 (Cx37, Cx40, and Cx43) to shear stress and substrate. Human endothelial cells were seeded on adsorbed collagen or a collagen gel containing smooth muscle cells and exposed to static or laminar shear stress. Connexin mRNA, protein, and gap junction communication were examined. Endothelial monolayers were treated with connexin-specific short interfering RNA (siRNA) and evaluated for communication, proliferation, and morphology under static and shear stress. Results show differential responses of Cx37, Cx40, and Cx43 to substrate and shear stress with reduced communication after shear exposure. RNA interference of individual connexins resulted in expression change of nontarget connexins, which suggests linked expression. Gap junction communication under static conditions is reduced following Cx43 siRNA treatment. Endothelial cells are more elongated with RNA interference (RNAi) targeting Cx40. In conclusion, endothelial connexins demonstrated novel sensitivity to mechanical environment and substrate. Individual isotypes show differential responses and RNAi knockdown provides new insight into connexin function and potential roles in the vasculature.
Collapse
Affiliation(s)
- Tiffany L Johnson
- Georgia Tech/Emory Center for the Engineering of Living Tissues, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | |
Collapse
|
36
|
Abstract
The cell has many ways to regulate the production of proteins. One mechanism is through the changes to the machinery of translation initiation. These alterations favor the translation of one subset of mRNAs over another. It was first shown that internal ribosome entry sites (IRESes) within viral RNA genomes allowed the production of viral proteins more efficiently than most of the host proteins. The RNA secondary structure of viral IRESes has sometimes been conserved between viral species even though the primary sequences differ. These structures are important for IRES function, but no similar structure conservation has yet to be shown in cellular IRES. With the advances in mathematical modeling and computational approaches to complex biological problems, is there a way to predict an IRES in a data set of unknown sequences? This review examines what is known about cellular IRES structures, as well as the data sets and tools available to examine this question. We find that the lengths, number of upstream AUGs, and %GC content of 5'-UTRs of the human transcriptome have a similar distribution to those of published IRES-containing UTRs. Although the UTRs containing IRESes are on the average longer, almost half of all 5'-UTRs are long enough to contain an IRES. Examination of the available RNA structure prediction software and RNA motif searching programs indicates that while these programs are useful tools to fine tune the empirically determined RNA secondary structure, the accuracy of de novo secondary structure prediction of large RNA molecules and subsequent identification of new IRES elements by computational approaches, is still not possible.
Collapse
Affiliation(s)
- Stephen D Baird
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
37
|
Hernandez M, Shao Q, Yang XJ, Luh SP, Kandouz M, Batist G, Laird DW, Alaoui-Jamali MA. A histone deacetylation-dependent mechanism for transcriptional repression of the gap junction gene cx43 in prostate cancer cells. Prostate 2006; 66:1151-61. [PMID: 16652385 DOI: 10.1002/pros.20451] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The connexin 43 gene (cx43, GJA1) mediates gap junctional intercellular communication (GJIC), which regulates tissue homeostasis. cx43 is frequently downregulated in prostate cancer. We investigated the role of a histone deacetylase (HDAC)-dependent mechanism in the transcriptional repression of cx43 in a panel of prostate cancer cells. METHODS The impact of Trichostatin A (TSA), an inhibitor of HDAC, on exogenous and endogenous cx43 gene transcription was examined by the luciferase assay, Northern blot, nuclear run-on, Western blot, and chromatin immunoprecipitation assays. RESULTS Trichostatin A induces transcription of cx43 gene and GJIC. The co-activator p300/CBP synergizes with TSA for cx43 promoter activation. We identified a promoter region where cooperation between Ap1 and Sp1 elements was essential for TSA-induced cx43 transcription. TSA increased the level of hyperacetylated histones bound to cx43 promoter. CONCLUSION Our results highlight the potential utility of inhibitors of HDAC to restore cx43 gene expression in prostate cancer.
Collapse
Affiliation(s)
- Maite Hernandez
- Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, 3755 Chemin de la Cote Ste-Catherine, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kihara AH, de Castro LM, Moriscot AS, Hamassaki DE. Prolonged dark adaptation changes connexin expression in the mouse retina. J Neurosci Res 2006; 83:1331-41. [PMID: 16496335 DOI: 10.1002/jnr.20815] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the retina, ambient light levels influence the cell coupling provided by gap junction (GJ) channels, to compensate the visual function for various lighting conditions. However, the effects of ambient light levels on expression of connexins (Cx), the proteins that form the GJ channels, are poorly understood. In the present study, we first determined whether gene expression of specific Cx (Cx26, Cx31.1, Cx36, Cx37, Cx40, Cx43, Cx45, Cx50, and Cx57) was affected by prolonged dark adaptation. Cx mRNA relative levels were determined in mouse retinas dark adapted for 3 hr, 1 day, and 7 days by using quantitative real-time PCR. Transcript levels of some Cx were repressed after 3 hr (Cx57), 1 day (Cx45), or 7 days (Cx36 and Cx43) of dark adaptation; others were increased after 1 day (Cx50) or 7 days (Cx31.1 and Cx37); and two of them (Cx26 and Cx40) were not significantly altered. The second aim was to determine whether prolonged dark adaptation affects protein expression of two important Cx in retina: neuronal Cx36 and glial Cx43. We were able to demonstrate that important changes in protein distribution and expression also took place in retina during long-term dark adaptation. Given their localization, the specific alterations in Cx expression may reflect their distinct response to ambient light levels.
Collapse
Affiliation(s)
- Alexandre Hiroaki Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences,University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- T Hilton Grayson
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| |
Collapse
|
40
|
Mesnil M, Crespin S, Avanzo JL, Zaidan-Dagli ML. Defective gap junctional intercellular communication in the carcinogenic process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:125-45. [PMID: 16359943 DOI: 10.1016/j.bbamem.2005.11.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/07/2005] [Accepted: 11/10/2005] [Indexed: 01/07/2023]
Abstract
Gap junctions are membrane structures made of intercellular channels which permit the diffusion from cytoplasm to cytoplasm of small hydrophilic molecules. Nearly 40 years ago, the loss of functional gap junctions has been described in cancer cells and led to the hypothesis that such type of intercellular communication is involved in the carcinogenesis process. From this time, a lot of data has been accumulated confirming that gap junctions are frequently decreased or absent in cancer cells whatever their tissue and species origins. Here, we review such data by insisting on the possible links existing between altered gap-junctional intercellular communication capacity (or the altered expression of their constitutive proteins, the connexins) and the stages of cancer progression in various cancer models. Then, we analyse particular aspects of the disturbance of connexin-mediated communication in cancer such as the cytoplasmic localization of connexins, the lack of heterologous communication between cancer cells and normal cells, the role of connexin gene mutations in cancer. In a separate part of the review, we also analyse the disturbance of gap-junctional intercellular communication during the late stages of cancer (invasion and metastasis processes).
Collapse
Affiliation(s)
- Marc Mesnil
- Equipe Interactions et Communications Cellulaires, Institut de Physiologie et Biologie Cellulaires, CNRS-UMR 6187, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers cedex, France.
| | | | | | | |
Collapse
|
41
|
Oyamada M, Oyamada Y, Takamatsu T. Regulation of connexin expression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:6-23. [PMID: 16359940 DOI: 10.1016/j.bbamem.2005.11.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/29/2005] [Accepted: 11/02/2005] [Indexed: 01/22/2023]
Abstract
Gap junctions contain cell-cell communicating channels that consist of multimeric proteins called connexins and mediate the exchange of low-molecular-weight metabolites and ions between contacting cells. Gap junctional communication has long been hypothesized to play a crucial role in the maintenance of homeostasis, morphogenesis, cell differentiation, and growth control in multicellular organisms. The recent discovery that human genetic disorders are associated with mutations in connexin genes and experimental data on connexin knockout mice have provided direct evidence that gap junctional communication is essential for tissue functions and organ development. Thus far, 21 human genes and 20 mouse genes for connexins have been identified. Each connexin shows tissue- or cell-type-specific expression, and most organs and many cell types express more than one connexin. Cell coupling via gap junctions is dependent on the specific pattern of connexin gene expression. This pattern of gene expression is altered during development and in several pathological conditions resulting in changes of cell coupling. Connexin expression can be regulated at many of the steps in the pathway from DNA to RNA to protein. However, transcriptional control is one of the most important points. In this review, we summarize recent knowledge on transcriptional regulation of connexin genes by describing the structure of connexin genes and transcriptional factors that regulate connexin expression.
Collapse
Affiliation(s)
- Masahito Oyamada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | | | | |
Collapse
|
42
|
Lahlou H, Fanjul M, Pradayrol L, Susini C, Pyronnet S. Restoration of functional gap junctions through internal ribosome entry site-dependent synthesis of endogenous connexins in density-inhibited cancer cells. Mol Cell Biol 2005; 25:4034-45. [PMID: 15870276 PMCID: PMC1087721 DOI: 10.1128/mcb.25.10.4034-4045.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gap junctions are composed of connexins and are critical for the maintenance of the differentiated state. Consistently, connexin expression is impaired in most cancer cells, and forced expression of connexins following cDNA transfection reverses the tumor phenotype. We have found that the restoration of density inhibition of human pancreatic cancer cells by the antiproliferative somatostatin receptor 2 (sst2) is due to overexpression of endogenous connexins Cx26 and Cx43 and consequent formation of functional gap junctions. Immunoblotting along with protein metabolic labeling and mRNA monitoring revealed that connexin expression is enhanced at the level of translation but is not sensitive to the inhibition of cap-dependent translation initiation. Furthermore, we identified a new internal ribosome entry site (IRES) in the Cx26 mRNA. The activity of Cx26 IRES and that of the previously described Cx43 IRES are enhanced in density-inhibited cells. These data indicate that the restoration of functional gap junctions is likely a critical event in the antiproliferative action of the sst2 receptor. We further suggest that the existence of IRESes in connexin mRNAs permits connexin expression in density-inhibited or differentiated cells, where cap-dependent translation is generally reduced.
Collapse
Affiliation(s)
- Hicham Lahlou
- INSERM U531, Institut Louis Bugnard, CHU Rangueil, TSA 50032, 31059 Toulouse cedex 9, France
| | | | | | | | | |
Collapse
|
43
|
Chanson M, Derouette JP, Roth I, Foglia B, Scerri I, Dudez T, Kwak BR. Gap junctional communication in tissue inflammation and repair. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1711:197-207. [PMID: 15955304 DOI: 10.1016/j.bbamem.2004.10.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 10/12/2004] [Accepted: 10/14/2004] [Indexed: 11/18/2022]
Abstract
Local injury induces a complex orchestrated response to stimulate healing of injured tissues, cellular regeneration and phagocytosis. Practically, inflammation is defined as a defense process whereby fluid and white blood cells accumulate at a site of injury. The balance of cytokines, chemokines, and growth factors is likely to play a key role in regulating important cell functions such as migration, proliferation, and matrix synthesis during the process of inflammation. Hence, the initiation, maintenance, and resolution of innate responses depend upon cellular communication. A process similar to tissue repair and subsequent scarring is found in a variety of fibrotic diseases. This may occur in a single organ such as liver, kidneys, pancreas, lung, skin, and heart, but fibrosis may also have a more generalized distribution such as in atherosclerosis. The purpose of this review is to summarize recent advances on the contribution of gap junction-mediated intercellular communication in the modulation of the inflammatory response and tissue repair.
Collapse
Affiliation(s)
- Marc Chanson
- Laboratory of Clinical Investigation III, Department of Pediatrics, HUG-P.O. BOX 14, Micheli-du-Crest, 24, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Vine AL, Leung YM, Bertram JS. Transcriptional regulation of connexin 43 expression by retinoids and carotenoids: similarities and differences. Mol Carcinog 2005; 43:75-85. [PMID: 15754312 DOI: 10.1002/mc.20080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gap junctions, connexons, are formed by assembly of trans-membrane connexin proteins and have multiple functions including the coordination of cell responses. Most human tumors are deficient in gap junctional communication (GJC) and restoration of GJC by forced expression of connexins reduces indices of neoplasia. Expression of connexin 43 (Cx43), the most widely-expressed connexin family member, is upregulated by cancer-preventive retinoids and carotenoids in normal and preneoplastic cells; an action considered of mechanistic significance. However, the molecular mechanism for upregulated expression is poorly understood. The retinoic acid receptor antagonist Ro 41-5253 was capable of suppressing retinoid-induction Cx43 luciferase reporter construct in F9 cells, but did not suppress reporter activity induced by the non-pro-vitamin A carotenoids astaxanthin or lycopene, indicating that retinoids have separate mechanisms of gene activation than non-pro-vitamin A carotenoids. Neither class of compound required protein synthesis for induction of Cx43 mRNA, nor was the 5.0 h half-life of Cx43 mRNA altered, indicating direct transcriptional activation. The responsive region was found within -158 bp and +209 bp of the transcription start site; this contains a Sp1/Sp3 GC-box to which Sp1 and Sp3 were bound, as revealed by electrophoretic mobility shift assays (EMSA), but no retinoic acid response element (RARE). Site directed mutagenesis of this GC-box resulted in increased basal levels of transcription and loss of responsiveness to a synthetic retinoid. In this construct astaxanthin and lycopene produced marginally, but not significantly higher, reporter activity than the control.
Collapse
Affiliation(s)
- Alex L Vine
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | | | | |
Collapse
|
45
|
Anderson CL, Zundel MA, Werner R. Variable promoter usage and alternative splicing in five mouse connexin genes. Genomics 2005; 85:238-44. [PMID: 15676282 DOI: 10.1016/j.ygeno.2004.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 11/10/2004] [Indexed: 10/26/2022]
Abstract
Recent work from our lab has demonstrated the importance of alternative promoters and variable 5' UTRs in the regulation of two connexin genes. To see whether other connexins also utilize multiple promoters to produce different mRNA isoforms, we screened the mouse EST database for variations in the 5' ends of each connexin EST in UniGene. 5'-RACE analysis of mouse embryo cDNA targeting five candidate genes, Cx31, Cx40, Cx45, Cx46, and Cx47 (approved gene symbols Gjb3, Gja5, Gja7, Gja3, and Gja12, respectively), revealed the existence of multiple previously unknown exons upstream of the coding region that result in variations in the 5' UTR of the mRNA. RT-PCR from 17 different mouse tissues revealed that many isoforms are expressed in a tissue-specific manner, with some being the predominant exons found in the tissues tested. Many of the novel 5' UTRs include upstream open reading frames, suggesting varying translational efficiencies. The expression of alternative 5' UTRs suggests that connexins, like many genes involved in development, require complex regulation at both transcriptional and translational levels.
Collapse
Affiliation(s)
- Curtis L Anderson
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, P.O. Box 016129, Miami, FL 33136, USA
| | | | | |
Collapse
|
46
|
Pickering BM, Willis AE. The implications of structured 5' untranslated regions on translation and disease. Semin Cell Dev Biol 2004; 16:39-47. [PMID: 15659338 DOI: 10.1016/j.semcdb.2004.11.006] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Translational control is a key step in eukaryotic gene expression. The majority of translational control occurs at the level of initiation, thus implicating the 5' untranslated region as a major site of translational regulation. Many growth-related mRNAs have atypical 5' UTRs, which are often long and GC-rich. Such features promote formation of stable secondary structure, and many mRNAs encoding proteins involved in cell growth, proliferation and apoptosis have structured 5' UTRs, which in many cases harbour internal ribosome entry sites (IRESs) and upstream open-reading frames (uORFs). In this review we discuss how secondary structural elements in the 5' UTR can regulate translation and how mutations that perturb these secondary structural elements can have implications for disease and tumourigenesis.
Collapse
Affiliation(s)
- Becky M Pickering
- Department of Biochemistry, University of Leicester, University Rd, Leicester LE17RH, UK
| | | |
Collapse
|
47
|
Havelock JC, Keller P, Muleba N, Mayhew BA, Casey BM, Rainey WE, Word RA. Human myometrial gene expression before and during parturition. Biol Reprod 2004; 72:707-19. [PMID: 15509731 DOI: 10.1095/biolreprod.104.032979] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Identification of temporal and spatial changes in myometrial gene expression during parturition may further the understanding of the coordinated regulation of myometrial contractions during parturition. The objective of this study was to compare the gene expression profiles of human fundal myometrium from pregnant women before and after the onset of labor using a functional genomics approach, and to further characterize the spatial and temporal expression patterns of three genes believed to be important in parturition. Fundal myometrial mRNA was isolated from five women in labor and five women not in labor, and analyzed using human UniGEM-V microarrays with 9182 cDNA elements. Real-time polymerase chain reaction using myometrial RNA from pregnant women in labor or not in labor was used to examine mRNA levels for three of the genes; namely, prostaglandin-endoperoxide synthase 2 (PTGS2), calgranulin B (S100A9), and oxytocin receptor (OXTR). The spatial expression pattern of these genes throughout the pregnant uterus before and after labor was also determined. Immunolocalization of cyclooxygenase-2 (also known as PTGS2) and S100A9 within the uterine cervix and myometrium were analyzed by immunohistochemistry. Few genes were differentially expressed in fundal myometrial tissues at term with the onset of labor. However, there appears to be a subset of genes important in the parturition cascade. The cellular properties of S100A9, its spatial localization, and dramatic increase in cervix and myometrium of women in labor suggest that this protein may be very important in the initiation or propagation of human labor.
Collapse
Affiliation(s)
- Jon C Havelock
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9032, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Pfeifer I, Anderson C, Werner R, Oltra E. Redefining the structure of the mouse connexin43 gene: selective promoter usage and alternative splicing mechanisms yield transcripts with different translational efficiencies. Nucleic Acids Res 2004; 32:4550-4562. [PMID: 15328367 PMCID: PMC516064 DOI: 10.1093/nar/gkh792] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 08/08/2004] [Accepted: 08/08/2004] [Indexed: 11/12/2022] Open
Abstract
The connexin43 (cx43) gene was originally described as consisting of two exons, one coding for most of the 5'-untranslated region (5'-UTR), and the other for the protein sequence and 3'-UTR. We now report that in mouse four additional exons are expressed, all coding for novel 5'-UTRs. Altogether, we found nine different cx43 mRNA species (GenBank accession numbers NM010288, and AY427554 through AY427561) generated by differential promoter usage and alternative splicing mechanisms. The relative abundance of these different mRNAs varied with the tissue source. In addition, the different transcripts showed varying translational efficiencies in several cell lines, indicating the presence of cis-RNA elements that regulate cx43 translation. We propose that it is the promoter driving the expression of the cx43 gene that determines exon choice in the downstream splicing events in a cell-type-dependent fashion. This in turn will affect the translation efficiency of the transcript orchestrating the events that lead to the final expression profile of cx43. Since a similar organization of the cx43 gene was also observed in rat it is likely that the complex regulation of cx43 expression involving transcription, splicing and translation mechanisms is a common trait conserved during evolution.
Collapse
Affiliation(s)
- Ingrid Pfeifer
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
49
|
Gabriel HD, Ströbl B, Hellmann P, Buettner R, Winterhager E. Organization and regulation of the ratCx31gene. ACTA ACUST UNITED AC 2003. [DOI: 10.1046/j.1432-1327.2001.02040.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003; 83:1359-400. [PMID: 14506308 DOI: 10.1152/physrev.00007.2003] [Citation(s) in RCA: 893] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Members of the connexin gene family are integral membrane proteins that form hexamers called connexons. Most cells express two or more connexins. Open connexons found at the nonjunctional plasma membrane connect the cell interior with the extracellular milieu. They have been implicated in physiological functions including paracrine intercellular signaling and in induction of cell death under pathological conditions. Gap junction channels are formed by docking of two connexons and are found at cell-cell appositions. Gap junction channels are responsible for direct intercellular transfer of ions and small molecules including propagation of inositol trisphosphate-dependent calcium waves. They are involved in coordinating the electrical and metabolic responses of heterogeneous cells. New approaches have expanded our knowledge of channel structure and connexin biochemistry (e.g., protein trafficking/assembly, phosphorylation, and interactions with other connexins or other proteins). The physiological role of gap junctions in several tissues has been elucidated by the discovery of mutant connexins associated with genetic diseases and by the generation of mice with targeted ablation of specific connexin genes. The observed phenotypes range from specific tissue dysfunction to embryonic lethality.
Collapse
Affiliation(s)
- Juan C Saez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | | | | | | | |
Collapse
|