1
|
Jordan P, Verebi C, Hervé B, Perol S, Bernard V, Karila D, Jali E, Brac de la Perrière A, Grouthier V, Jonard-Catteau S, Touraine P, Fouveaut C, Plu-Bureau G, Michel Dupont J, Bachelot A, Christin-Maitre S, Bienvenu T. Revisiting GDF9 variants in primary ovarian insufficiency: A shift from dominant to recessive pathogenicity? Gene 2024; 927:148734. [PMID: 38942181 DOI: 10.1016/j.gene.2024.148734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Primary ovarian insufficiency (POI) affects around 2-4% of women before the age of 40. Genetic factors play an important role in POI. The GDF9 gene has been identified as a significant genetic contributor of POI. However, the pathogenicity and penetrance of GDF9 variants remain uncertain. METHODS A next-generation sequencing approach was employed to investigate the entire coding region of the GDF9 gene in a cohort of 1281 patients with POI or diminished ovarian reserve (DOR). The frequency of each identified GDF9 variant was then compared with that of the general population, taking into account the ethnicity of each individual. RESULTS By screening the entire coding region of the GDF9 gene, we identified 19 different variants, including 1 pathogenic frameshift variant. In total, 36 patients with POI/DOR (2.8%) carried at least one GDF9 variant. With regard to missense variants, no significant overrepresentation of the most common variants was observed in our POI/DOR cohort in comparison to the general or specific ethnic subgroups. Only one homozygous subject had a frameshift loss of function variant. CONCLUSION This epidemiological study suggests that the vast majority of heterozygous missense variants could be considered as variants of uncertain significance and the homozygous loss-of-function variant could be considered as a pathogenic variant. The identification of a novel case of a homozygous POI patient with a heterozygous mother carrying the same variant with normal ovarian function strongly suggests that GDF9 syndrome is an autosomal recessive disorder.
Collapse
Affiliation(s)
- Pénélope Jordan
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP.Centre Université de Paris Cité, 75014 Paris, France
| | - Camille Verebi
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP.Centre Université de Paris Cité, 75014 Paris, France
| | - Bérénice Hervé
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP.Centre Université de Paris Cité, 75014 Paris, France
| | - Sandrine Perol
- Unité de gynécologie médicale, APHP. Centre Université Paris Cité, Hôpital Cochin Port-Royal, 75014 Paris, France
| | - Valérie Bernard
- Service de Chirurgie gynécologique et Médecine de la reproduction · Gynécologie médicale, CHU Bordeaux, Bordeaux, France
| | - Daphné Karila
- Service d'endocrinologie, diabétologie et médecine de la reproduction, APHP. Sorbonne Université, Hôpital Saint-Antoine, 75012 Paris, France
| | - Eva Jali
- Service d'Endocrinologie, Hôpital de la Cavale Blanc, 29200 Brest, France
| | - Aude Brac de la Perrière
- Service d'Endocrinologie, de diabétologie et des maladies métaboliques A, Hospices Civiles de Lyon, 69000 Lyon, France
| | - Virginie Grouthier
- Service d'Endocrinologie, Diabétologie et Nutrition, Hôpital Haut-Lévêque, CHU de Bordeaux, 33000 Bordeaux, France
| | - Sophie Jonard-Catteau
- Département d'assistance médicale à la procréation, Hôpital Jeanne de Flandre, 59000 Lille, France
| | - Philippe Touraine
- Département d'Endocrinologie et médecine de la reproduction, APHP. Sorbonne Université, Pitié-Salpêtrière Hospital, Center for Rare Endocrine and Gynecological Disorders, ERN-HCP, Paris, France
| | - Corinne Fouveaut
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP.Centre Université de Paris Cité, 75014 Paris, France
| | - Geneviève Plu-Bureau
- Unité de gynécologie médicale, APHP. Centre Université Paris Cité, Hôpital Cochin Port-Royal, 75014 Paris, France
| | - Jean Michel Dupont
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP.Centre Université de Paris Cité, 75014 Paris, France
| | - Anne Bachelot
- Département d'Endocrinologie et médecine de la reproduction, APHP. Sorbonne Université, Pitié-Salpêtrière Hospital, Center for Rare Endocrine and Gynecological Disorders, ERN-HCP, Paris, France
| | - Sophie Christin-Maitre
- Service d'endocrinologie, diabétologie et médecine de la reproduction, APHP. Sorbonne Université, Hôpital Saint-Antoine, 75012 Paris, France
| | - Thierry Bienvenu
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP.Centre Université de Paris Cité, 75014 Paris, France.
| |
Collapse
|
2
|
Mehdizadeh A, Soleimani M, Amjadi F, Sene AA, Sheikhha MH, Dehghani A, Ashourzadeh S, Aali BS, Dabiri S, Zandieh Z. Implication of Novel BMP15 and GDF9 Variants in Unexpected Poor Ovarian Response. Reprod Sci 2024; 31:840-850. [PMID: 37848645 DOI: 10.1007/s43032-023-01370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Unexpected poor ovarian response (UPOR) occurs when nine or fewer oocytes are retrieved from a young patient with normal ovarian reserve. Bone morphogenetic protein15 (BMP15) and growth differentiation factor 9 (GDF9) are two oocyte-specific factors with pivotal role in folliculogenesis. The aim of this study was to assess the relation between BMP15 and GDF9 variants with UPOR. Hundred women aged ≤ 39 with AMH ≥ 1.27 IU/ml participated as UPOR and normal ovarian responders (NOR) based on their oocyte number. Each group consisted of 50 patients. After genomic DNA extraction, the entire exonic regions of BMP15 and GDF9 were amplified and examined by direct sequencing. Western blotting was performed to determine the expression levels of BMP15 and GDF9 in follicular fluid. Additionally, in silico analysis was applied to predict the effect of discovered mutations. From four novel variants of BMP15 and GDF9 genes, silent mutations (c.744 T > C) and (c.99G > A) occurred in both groups, whereas missense variants: c.967-968insA and c.296A > G were found exclusively in UPORs. The latter variants caused reduction in protein expression. Moreover, the mutant allele (T) in a GDF9 polymorphism (C447T) found to be more in NOR individuals (58% NOR vs. 37% UPOR (OR = 2.3, CI 1.32-4.11, p = 0.004).The novel missense mutations which were predicted as damaging, along with other mutations that happened in UPORs might result in ovarian resistance to stimulation. The mutant allele (T) in C447T polymorphism has a protective effect. It can be concluded that there is an association between BMP15 and GDF9 variants and follicular development and ovarian response.
Collapse
Affiliation(s)
- Anahita Mehdizadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Akbari Sene
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sheikhha
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Dehghani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sareh Ashourzadeh
- Afzalipour Clinical Center for Infertility, Kerman University of Medical Sciences, Kerman, Iran
| | - Bibi Shahnaz Aali
- FRANZCOG Rockingham Peel Group, South Metropolitan Health Service, Murdoch, Australia
| | - Shahriar Dabiri
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Zandieh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Massagué J, Sheppard D. TGF-β signaling in health and disease. Cell 2023; 186:4007-4037. [PMID: 37714133 PMCID: PMC10772989 DOI: 10.1016/j.cell.2023.07.036] [Citation(s) in RCA: 291] [Impact Index Per Article: 145.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
The TGF-β regulatory system plays crucial roles in the preservation of organismal integrity. TGF-β signaling controls metazoan embryo development, tissue homeostasis, and injury repair through coordinated effects on cell proliferation, phenotypic plasticity, migration, metabolic adaptation, and immune surveillance of multiple cell types in shared ecosystems. Defects of TGF-β signaling, particularly in epithelial cells, tissue fibroblasts, and immune cells, disrupt immune tolerance, promote inflammation, underlie the pathogenesis of fibrosis and cancer, and contribute to the resistance of these diseases to treatment. Here, we review how TGF-β coordinates multicellular response programs in health and disease and how this knowledge can be leveraged to develop treatments for diseases of the TGF-β system.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Dean Sheppard
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Kristensen SG, Kumar A, Mamsen LS, Kalra B, Pors SE, Bøtkjær JA, Macklon KT, Fedder J, Ernst E, Hardy K, Franks S, Andersen CY. Intrafollicular Concentrations of the Oocyte-secreted Factors GDF9 and BMP15 Vary Inversely in Polycystic Ovaries. J Clin Endocrinol Metab 2022; 107:e3374-e3383. [PMID: 35511085 PMCID: PMC9282257 DOI: 10.1210/clinem/dgac272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT The oocyte-secreted factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) play essential roles in follicle development and oocyte maturation, and aberrant regulation might contribute to the pathogenesis of polycystic ovary syndrome. OBJECTIVE Are there measurable differences in concentrations of GDF9, BMP15, and the GDF9/BMP15 heterodimer in small antral follicle fluids from women with and without polycystic ovaries (PCO)? DESIGN AND SETTING Follicle fluids (n = 356) were collected from 4- to 11-mm follicles in unstimulated ovaries of 87 women undergoing ovarian tissue cryopreservation for fertility preservation. PATIENTS Twenty-seven women with PCO were identified and 60 women without PCO-like characteristics (non-PCO women) were matched according to age and follicle size. MAIN OUTCOME MEASURES Intrafollicular concentrations of GDF9, BMP15, GDF9/BMP15 heterodimer, anti-Mullerian hormone (AMH), inhibin-A and -B, total inhibin, activin-B and -AB, and follistatin were measured using enzyme-linked immunosorbent assays. RESULTS The detectability of GDF9, BMP15, and the GDF9/BMP15 heterodimer were 100%, 94.4%, and 91.5%, respectively, and concentrations were significantly negatively correlated with increasing follicle size (P < 0.0001). GDF9 was significantly higher in women with PCO (PCO: 4230 ± 189 pg/mL [mean ± SEM], n = 188; non-PCO: 3498 ± 199 pg/mL, n = 168; P < 0.03), whereas BMP15 was lower in women with PCO (PCO: 431 ± 40 pg/mL, n = 125; non-PCO: 573 ± 55 pg/mL, n = 109; P = 0.10), leading to a significantly higher GDF9:BMP15 ratio in women with PCO (P < 0.01). Significant positive associations between BMP15 and AMH, activins, and inhibins in non-PCO women switched to negative associations in women with PCO. CONCLUSIONS Intrafollicular concentrations of GDF9 and BMP15 varied inversely in women with PCO reflecting an aberrant endocrine environment. An increased GDF9:BMP15 ratio may be a new biomarker for PCO.
Collapse
Affiliation(s)
- Stine Gry Kristensen
- Correspondence: Stine Gry Kristensen, PhD, Laboratory of Reproductive Biology, Section 5701, Copenhagen University Hospital – Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Jane Alrø Bøtkjær
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Kirsten Tryde Macklon
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Odense University Hospital, 5000 Odense, Denmark
| | - Erik Ernst
- Department of Gynecology and Obstetrics, Horsens Regional Hospital, 8700 Horsens, Denmark
| | - Kate Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Liu MN, Zhang K, Xu TM. The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency. HUM FERTIL 2019; 24:325-332. [PMID: 31607184 DOI: 10.1080/14647273.2019.1672107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Endocrine and paracrine signals can be key regulators of ovarian physiology. The oocyte secretes growth factors which directly induce follicular development by a complex paracrine signalling process, and the transforming growth factorβ (TGF-β) superfamily has a pivotal role in this process. The bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) genes are relevant members of the TGF-β superfamily that encode proteins secreted by the oocytes into the ovarian follicles, where they contribute to creating an environment supporting follicle selection and growth. Their main functions include regulating cellular proliferation/differentiation, follicular survival/atresia, and oocyte maturation. Recent functional studies have validated genetic factors (Progesterone receptor membrane component 1 (PGRMC1)), Fragile X mental retardation 1 (FMR1, GDF9 and BMP15) as being causative of primary ovarian insufficiency (POI), BMP15/GDF9 gene variants were found to have a high incidence on the POI phenotype. This review considers the most recent research regarding the role of BMP15 and GDF9 in the genetic control of follicular development, paying special attention to the pathogenesis of POI.
Collapse
Affiliation(s)
- Meng-Na Liu
- Department of Clinical Laboratory, Jilin University Second Hospital , Changchun , China
| | - Kun Zhang
- Department of Research Center, Jilin University Second Hospital , Changchun , China
| | - Tian-Min Xu
- Department of Gynecology and Obstetrics, Jilin University Second Hospital , Changchun , China
| |
Collapse
|
6
|
Santos M, Cordts EB, Peluso C, Dornas M, Neto FHV, Bianco B, Barbosa CP, Christofolini DM. Association of BMP15 and GDF9 variants to premature ovarian insufficiency. J Assist Reprod Genet 2019; 36:2163-2169. [PMID: 31392662 DOI: 10.1007/s10815-019-01548-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To identify genetic variation associated to premature ovarian insufficiency (POI). METHODS A total of 74 women with POI (group POI), 45 women with increased FSH levels (group high FSH), and 88 controls (non-POI) were studied. Genotyping of BMP15:c.-9C>G (rs3810682), BMP15:c.328+905A>G (rs3897937), and BMP15:c.852C>T (rs17003221); and GDF9:c.134-694G>A (rs4705974), GDF9:c.-31-951G>A (rs11748063), GDF9:c.-152G>C (rs30177), and GDF9:g.1073C>T (rs803224) was performed by the TaqMan methodology. Chi-square and Fisher's exact tests were performed to evaluate the distribution of genotypes, alleles, odds ratio, and the Hardy-Weinberg equilibrium of each variation. Haplotype analysis was performed for each gene considering the case and control groups. Bonferroni's correction was applied to chi-square and Fisher's exact test data, and p values < 0.007 for genotypes and alleles and < 0.006 for haplotypes were considered significant. RESULTS It was observed a statistically significant difference in genotype distribution of BMP15:c.852C>T between group POI and controls (p < 0.001). TT and TC genotypes were more frequently observed in group POI. Genotype distribution in case group POI, however, was not in the Hardy-Weinberg equilibrium, due to the increased number of heterozygotes in the sample. Concerning GDF9, no association was found among the studied genetic variants and POI or high FSH groups. CONCLUSION It is concluded from the present study that the genotypes CT and TT from BMP15:c.852C>T variation may be risk factors for the development of POI.
Collapse
Affiliation(s)
- Monise Santos
- Instituto Ideia Fértil, Avenida Príncipe de Gales, 821, Santo André, SP, 09060-650, Brazil
| | - Emerson Barchi Cordts
- Instituto Ideia Fértil, Avenida Príncipe de Gales, 821, Santo André, SP, 09060-650, Brazil.,Faculdade de Medicina do ABC, Av. Lauro Gomes, 2000, Room 101, CEPES, Santo André, SP, 09060-870, Brazil
| | - Carla Peluso
- Faculdade de Medicina do ABC, Av. Lauro Gomes, 2000, Room 101, CEPES, Santo André, SP, 09060-870, Brazil
| | - Mayla Dornas
- Faculdade de Medicina do ABC, Av. Lauro Gomes, 2000, Room 101, CEPES, Santo André, SP, 09060-870, Brazil
| | - Felipe Heurre Vieira Neto
- Faculdade de Medicina do ABC, Av. Lauro Gomes, 2000, Room 101, CEPES, Santo André, SP, 09060-870, Brazil
| | - Bianca Bianco
- Instituto Ideia Fértil, Avenida Príncipe de Gales, 821, Santo André, SP, 09060-650, Brazil.,Faculdade de Medicina do ABC, Av. Lauro Gomes, 2000, Room 101, CEPES, Santo André, SP, 09060-870, Brazil
| | - Caio Parente Barbosa
- Instituto Ideia Fértil, Avenida Príncipe de Gales, 821, Santo André, SP, 09060-650, Brazil.,Faculdade de Medicina do ABC, Av. Lauro Gomes, 2000, Room 101, CEPES, Santo André, SP, 09060-870, Brazil
| | - Denise Maria Christofolini
- Instituto Ideia Fértil, Avenida Príncipe de Gales, 821, Santo André, SP, 09060-650, Brazil. .,Faculdade de Medicina do ABC, Av. Lauro Gomes, 2000, Room 101, CEPES, Santo André, SP, 09060-870, Brazil.
| |
Collapse
|
7
|
Venturella R, De Vivo V, Carlea A, D'Alessandro P, Saccone G, Arduino B, Improda FP, Lico D, Rania E, De Marco C, Viglietto G, Zullo F. The Genetics of Non-Syndromic Primary Ovarian Insufficiency: A Systematic Review. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:161-168. [PMID: 31310068 PMCID: PMC6642427 DOI: 10.22074/ijfs.2019.5599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/15/2019] [Indexed: 01/19/2023]
Abstract
Several causes for primary ovarian insufficiency (POI) have been described, including iatrogenic and environmental
factor, viral infections, chronic disease as well as genetic alterations. The aim of this review was to collect all the ge-
netic mutations associated with non-syndromic POI. All studies, including gene screening, genome-wide study and as-
sessing genetic mutations associated with POI, were included and analyzed in this systematic review. Syndromic POI
and chromosomal abnormalities were not evaluated. Single gene perturbations, including genes on the X chromosome
(such as BMP15, PGRMC1 and FMR1) and genes on autosomal chromosomes (such as GDF9, FIGLA, NOBOX,
ESR1, FSHR and NANOS3) have a positive correlation with non-syndromic POI. Future strategies include linkage
analysis of families with multiple affected members, array comparative genomic hybridization (CGH) for analysis of
copy number variations, next generation sequencing technology and genome-wide data analysis. This review showed
variability of the genetic factors associated with POI. These findings may help future genetic screening studies on
large cohort of women.
Collapse
Affiliation(s)
- Roberta Venturella
- Department of Obstetrics and Gynaecology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Valentino De Vivo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Annunziata Carlea
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Pietro D'Alessandro
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Gabriele Saccone
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy. Electronic Address:
| | - Bruno Arduino
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Paolo Improda
- Department of Obstetrics and Gynaecology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Daniela Lico
- Department of Obstetrics and Gynaecology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Erika Rania
- Department of Obstetrics and Gynaecology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Fulvio Zullo
- Department of Obstetrics and Gynaecology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
8
|
Xu X, Zhang Y, Zhao S, Bian Y, Ning Y, Qin Y. Mutational analysis of theFAM175A gene in patients with premature ovarian insufficiency. Reprod Biomed Online 2019; 38:943-950. [PMID: 31000350 DOI: 10.1016/j.rbmo.2019.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/30/2018] [Accepted: 02/01/2019] [Indexed: 01/15/2023]
Abstract
RESEARCH QUESTION The family with sequence similarity 175 member A gene (FAM175A; also known as ABRAXAS1, CCDC98 and ABRA1), a member of the DNA repair family, contributes to the BRCA1 (BRCA1 DNA repair associated)-dependent DNA damage response and is associated with age at natural menopause. However, it remains poorly understood whether sequence variants in FAM175A are causative for premature ovarian insufficiency (POI). The aim of this study was to investigate whether mutations in the gene FAM175A were present in patients with POI. DESIGN A total of 400 women with idiopathic POI and 498 control women with regular menstruation (306 age-matched women and 192 women over 40 years old) were recruited. After Sanger sequencing of FAM175A, functional experiments were carried out to explore the deleterious effects of the identified variation. DNA damage was subsequently induced by mitomycin C (MMC), and DNA repair capacity and G2-M checkpoint activation were evaluated by examining the phosphorylation level of H2AX (H2A histone family, member X) and the percentage of mitotic cells, respectively. RESULTS One rare single-nucleotide polymorphism, rs755187051 in gene FAM175A, c.C727G (p.L243V), was identified in two patients but absent in the 498 controls. The functional experiments demonstrated that overexpression of variant p.L243V in HeLa cells resulted in a similar sensitivity to MMC-induced damage compared with cells transfected with wild-type FAM175A. Moreover, after treatment with MMC, there were no differences in DNA repair capacity and G2-M checkpoint activation between the mutant and wild-type genes. CONCLUSION Our results suggest that the p.L243V variant of FAM175A may not be causative for POI. The contribution of FAM175A to POI needs further exploration.
Collapse
Affiliation(s)
- Xiaofei Xu
- Centre for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yingxin Zhang
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shidou Zhao
- Centre for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yuehong Bian
- Centre for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yunna Ning
- Centre for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yingying Qin
- Centre for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
| |
Collapse
|
9
|
A hypothesis: Could telomere length and/or epigenetic alterations contribute to infertility in females with Turner syndrome? AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:108-116. [DOI: 10.1002/ajmg.c.31684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 11/07/2022]
|
10
|
Dean DD, Agarwal S, Tripathi P. Connecting links between genetic factors defining ovarian reserve and recurrent miscarriages. J Assist Reprod Genet 2018; 35:2121-2128. [PMID: 30219969 PMCID: PMC6289926 DOI: 10.1007/s10815-018-1305-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Approximately 1-2% of the women faces three or more successive spontaneous miscarriages termed as recurrent miscarriage (RM). Many clinical factors have been attributed so far to be the potential risk factors in RM, including uterine anomalies, antiphospholipid syndrome, endocrinological abnormalities, chromosomal abnormalities, and infections. However, in spite of extensive studies, reviews, and array of causes known to be associated with RM, about 50% cases encountered by treating physicians remains unknown. The aims of this study were to evaluate recent publications and to explore oocyte-specific genetic factors that may have role in incidence of recurrent miscarriages. METHOD Recent studies have identified common molecular factors contributing both in establishment of ovarian reserve and in early embryonic development. Also, studies have pointed out the relationship between the age-associated depletion of OR and increase in the risk of miscarriages, thus suggestive of an interacting biology. Here, we have gathered literature evidences in establishing connecting links between genetic factors associated with age induced or pathological OR depletion and idiopathic RM, which are the two extreme ends of female reproductive pathology. CONCLUSION In light of connecting etiological link between infertility and RM as reviewed in this study, interrogating the oocyte-specific genes with suspected roles in reproductive biology, in cases of unexplained RM, may open new possibilities in widening our understanding of RM pathophysiology.
Collapse
Affiliation(s)
- Deepika Delsa Dean
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| | - Sarita Agarwal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| | - Poonam Tripathi
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, U.P. 226014 India
| |
Collapse
|
11
|
GDF-9 and BMP-15 direct the follicle symphony. J Assist Reprod Genet 2018; 35:1741-1750. [PMID: 30039232 DOI: 10.1007/s10815-018-1268-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/13/2018] [Indexed: 01/12/2023] Open
Abstract
Understanding the physiology underlying the complex dialog between the oocyte and its surrounding somatic cells within the ovarian follicle has been crucial in defining optimal procedures for the development of clinical approaches in ART for women suffering from infertility and ovarian dysfunction. Recent studies have implicated oocyte-secreted factors like growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15), members of the transforming growth factor-beta (TGFβ) superfamily, as potent regulators of folliculogenesis and ovulation. These two factors act as biologically active heterodimers or as homodimers in a synergistic cooperation. Through autocrine and paracrine mechanisms, the GDF-9 and BMP-15 system has been shown to regulate growth, differentiation, and function of granulosa and thecal cells during follicular development playing a vital role in oocyte development, ovulation, fertilization, and embryonic competence. The present mini-review provides an overview of recent findings relating GDF-9 and BMP-15 as fundamental factors implicated in the regulation of ovarian function and discusses their potential role as markers of oocyte quality in women.
Collapse
|
12
|
Effect of the interaction of metformin and bone morphogenetic proteins on ovarian steroidogenesis by human granulosa cells. Biochem Biophys Res Commun 2018; 503:1422-1427. [PMID: 30017187 DOI: 10.1016/j.bbrc.2018.07.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Abstract
In the present study, we studied the effects of metformin and its interactions with the actions of bone morphogenetic proteins (BMPs) on ovarian steroidogenesis. It was revealed that metformin treatment enhanced progesterone production by human granulosa KGN cells and rat primary granulosa cells induced by forskolin and FSH, respectively. In human granulosa cells, it was found that metformin treatment suppressed phosphorylation of Smad1/5/9 activated by BMP-15 compared with that induced by other BMP ligands. Moreover, metformin treatment increased the expression of inhibitory Smad6, but not of that Smad7, in human granulosa cells, while metformin had no significant impact on the expression levels of BMP type-I and -II receptors. Thus, the mechanism by which metformin suppresses BMP-15-induced Smad1/5/9 phosphorylation is likely, at least in part, to be upregulation of inhibitory Smad6 expression in granulosa cells. The results suggest the existence of functional interaction between metformin and BMP signaling, in which metformin enhances progesterone production by downregulating endogenous BMP-15 activity in granulosa cells.
Collapse
|
13
|
Juárez-Rendón KJ, García-Ortiz JE. "Evaluation of four genes associated with primary ovarian insufficiency in a cohort of Mexican women". J Assist Reprod Genet 2018; 35:1483-1488. [PMID: 29916099 DOI: 10.1007/s10815-018-1232-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/01/2018] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Primary ovarian insufficiency (POI) is a clinical condition observed in women younger than 40 years of age, characterized by amenorrhea, hypoestrogenism, high levels of follicle-stimulating hormone (FSH), and infertility. Mutations in some master regulators of the development, maturation, and maintenance of ovarian follicles such as BMP15, FSHR, FOXL2, and GDF9 have been suggested as etiological factors in the development of POI. The aim of this study, the first in the Mexican population, is to evaluate the presence of mutations or polymorphisms in these four candidate genes. METHODS In a sample of 20 Mexican patients with idiopathic POI, we looked for and analyzed genetic variants in BMP15, FSHR, FOXL2, and GDF9 genes. RESULTS We observed two polymorphisms: a coding change, c.919G>A (p.Ala307Thr), in the FSHR gene and a synonymous variant, c.447C>T (p.Thr149Thr), in the GDF9 gene. These two variants have been reported previously as polymorphisms (rs6165 and rs254286, respectively). We observed no significant difference associated with POI in the patients when compared with a healthy control group (p > 0.05). Also, no exonic variants were found for the genes BMP15 and FOXL2 in the individuals tested. CONCLUSIONS The lack of association of the evaluated genes in this sample of Mexican women is consistent with the complex genetic etiology of POI that is observed across cohorts studied thus far.
Collapse
Affiliation(s)
- K J Juárez-Rendón
- CONACyT Research Fellow-Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Laboratorio de Medicina de Conservación, Blvd. del Maestro S/N, Esq. Elías Piña, 88710, Reynosa, Tamaulipas, Mexico
| | - J E García-Ortiz
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Laboratorio de Bioquímica 1B, Instituto Mexicano del Seguro Social, Sierra Mojada 800, 44340, Guadalajara, Jalisco, Mexico. .,Dirección de Educación e Investigación en Salud, UMAE, Hospital de Gineco-Obstretricia, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
14
|
Belli M, Shimasaki S. Molecular Aspects and Clinical Relevance of GDF9 and BMP15 in Ovarian Function. VITAMINS AND HORMONES 2018; 107:317-348. [PMID: 29544636 DOI: 10.1016/bs.vh.2017.12.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Growth and differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-secreted factors with a leading role in the control of ovarian function in female reproduction, modulating both the cell fate of the somatic granulosa cells and the quality and developmental competence of the egg. This short review aims to consolidate the molecular aspects of GDF9 and BMP15 and their integral actions in female fertility to understand particularly their effects on oocyte quality and fetal growth. The significant consequences of mutations in the GDF9 and BMP15 genes in women with dizygotic twins as well as the clinical relevance of these oocyte factors in the pathogenesis of primary ovarian insufficiency and polycystic ovary syndrome are also addressed.
Collapse
Affiliation(s)
- Martina Belli
- University of California San Diego, School of Medicine, La Jolla, CA, United States
| | - Shunichi Shimasaki
- University of California San Diego, School of Medicine, La Jolla, CA, United States.
| |
Collapse
|
15
|
El Fiky ZA, Hassan GM, Nassar MI. Genetic polymorphism of growth differentiation factor 9 (GDF9) gene related to fecundity in two Egyptian sheep breeds. J Assist Reprod Genet 2017; 34:1683-1690. [PMID: 28762037 DOI: 10.1007/s10815-017-1007-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE This study explores polymorphisms in the growth differentiation factor 9 (GDF9) gene (exon 1) with respect to fertility in Egyptian sheep. METHODS Blood samples were collected, and genomic DNA was extracted from 24 Saidi and 13 Ossimi ewes. A 710 bp portion of the GDF9 gene, was amplified using specific primers, and the sequence was analyzed to clarify the phylogenetic relationship of Egyptian breed sheep. In addition, the PCR-RFLP method using Pst1 or Msp1 restriction enzymes was used to mask polymorphisms of partial exon 1 of GDF9 gene to establish molecular markers for twinning. RESULTS The lambing rate percentage and litter size showed significant difference between ewes, which produce single and twin lamb for each breed individually, whereas the coefficient of variation of the Saidi breed is greater than that of the Ossimi breed. The results suggested that the GDF9 gene shared a similarity in sequence compared to six accession numbers of Ovis aries found in GenBank. Molecular phylogenetic analyses were performed based on nucleotide sequences in order to examine the position of the Egyptian breeds among many other sheep breeds. The results indicate that accession number AF078545 of O. aries is closely related with Saidi and Ossimi ewes that produce single or twin lamb using the unweighted pair group method with arithmetic mean (UPGMA) analysis. Results showed that Msp1 enzyme digestion revealed polymorphic restriction pattern consisting of one band with 710 bp for ewes producing single lamb and two bands with 710 and 600 bp for ewes producing twin lamb in Saidi sheep breed. CONCLUSION Sequence analysis and diversity of polymorphisms in the GDF9 gene (exon 1) have a novel base substitution (A-T) for detection of FecG mutations that serve as a molecular marker for twinning.
Collapse
Affiliation(s)
- Zaki A El Fiky
- Genetics Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Gamal M Hassan
- Genetics Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| | - Mohamed I Nassar
- Agricultural Research Center, Animal Production Research Institute, Giza, 12618, Egypt
| |
Collapse
|
16
|
Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet 2016; 91:183-198. [PMID: 27861765 DOI: 10.1111/cge.12921] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Primary ovarian insufficiency (POI) is characterized by a loss of ovarian function before the age of 40 and account for one major cause of female infertility. POI relevance is continuously growing because of the increasing number of women desiring conception beyond 30 years of age, when POI prevalence is >1%. POI is highly heterogeneous and can present with ovarian dysgenesis and primary amenorrhea, or with secondary amenorrhea, and it can be associated with other congenital or acquired abnormalities. In most cases POI remains classified as idiopathic. However, the age of menopause is an inheritable trait and POI has a strong genetic component. This is confirmed by the existence of several candidate genes, experimental and natural models. The variable expressivity of POI defect may indicate that, this disease may frequently be considered as a multifactorial or oligogenic defect. The most common genetic contributors to POI are the X chromosome-linked defects. Here, we review the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI with the expectation that this list will soon be upgraded, thus allowing the possibility to predict the risk of an early age at menopause in families with POI.
Collapse
Affiliation(s)
- R Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - I Ferrari
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - M Bonomi
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - L Persani
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Chang HM, Qiao J, Leung PCK. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 2016; 23:1-18. [PMID: 27797914 PMCID: PMC5155571 DOI: 10.1093/humupd/dmw039] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Initially identified for their capability to induce heterotopic bone formation,
bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong
to the transforming growth factor β superfamily. Using cellular and
molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as
potent regulators of ovarian follicular function. The bi-directional communication
of oocytes and the surrounding somatic cells is mandatory for normal follicle
development and oocyte maturation. This review summarizes the current knowledge on
the physiological role and molecular determinants of these ovarian regulatory
factors within the human germline-somatic regulatory loop. OBJECTIVE AND RATIONALE The regulation of ovarian function remains poorly characterized in humans because,
while the fundamental process of follicular development and oocyte maturation is
highly similar across species, most information on the regulation of ovarian
function is obtained from studies using rodent models. Thus, this review focuses
on the studies that used human biological materials to gain knowledge about human
ovarian biology and disorders and to develop strategies for preventing, diagnosing
and treating these abnormalities. SEARCH METHODS Relevant English-language publications describing the roles of BMPs or growth
differentiation factors (GDFs) in human ovarian biology and phenotypes were
comprehensively searched using PubMed and the Google Scholar database. The
publications included those published since the initial identification of BMPs in
the mammalian ovary in 1999 through July 2016. OUTCOMES Studies using human biological materials have revealed the expression of BMPs,
GDFs and their putative receptors as well as their molecular signaling in the
fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells)
of the ovarian follicles throughout follicle development. With the availability of
recombinant human BMPs/GDFs and the development of immortalized human cell lines,
functional studies have demonstrated the physiological role of intra-ovarian
BMPs/GDFs in all aspects of ovarian functions, from follicle development to
steroidogenesis, cell–cell communication, oocyte maturation, ovulation and
luteal function. Furthermore, there is crosstalk between these potent ovarian
regulators and the endocrine signaling system. Dysregulation or naturally
occurring mutations within the BMP system may lead to several female reproductive
diseases. The latest development of recombinant BMPs, synthetic BMP inhibitors,
gene therapy and tools for BMP-ligand sequestration has made the BMP pathway a
potential therapeutic target in certain human fertility disorders; however,
further clinical trials are needed. Recent studies have indicated that GDF8 is an
intra-ovarian factor that may play a novel role in regulating ovarian functions in
the human ovary. WIDER IMPLICATIONS Intra-ovarian BMPs/GDFs are critical regulators of folliculogenesis and human
ovarian functions. Any dysregulation or variations in these ligands or their
receptors may affect the related intracellular signaling and influence ovarian
functions, which accounts for several reproductive pathologies and infertility.
Understanding the normal and pathological roles of intra-ovarian BMPs/GDFs,
especially as related to GC functions and follicular fluid levels, will inform
innovative approaches to fertility regulation and improve the diagnosis and
treatment of ovarian disorders.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China.,Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jie Qiao
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
18
|
Mehdizadeh A, Sheikhha MH, Kalantar SM, Aali BS, Ghanei A. Mutation analysis of exon1 of bone morphogenetic protein-15 gene in Iranian patients with polycystic ovarian syndrome. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.8.527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
19
|
Serdyńska-Szuster M, Jędrzejczak P, Ożegowska KE, Hołysz H, Pawelczyk L, Jagodziński PP. Effect of growth differentiation factor‑9 C447T and G546A polymorphisms on the outcomes of in vitro fertilization. Mol Med Rep 2016; 13:4437-42. [PMID: 27035733 DOI: 10.3892/mmr.2016.5060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/02/2016] [Indexed: 11/06/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the growth differentiation factor (GDF)‑9 gene are associated with premature ovarian failure, insufficient ovarian stimulation and a poor in vitro fertilization (IVF) score in women with diminished ovarian reserve. The aim of the present study was to assess the effect of C447T (rs254286) and G546A (rs10491279) SNPs on ovary stimulation response, oocyte quality, fertilization rate and outcome of clinical pregnancy in an infertile population of Polish females (n=86) treated with IVF. The present study also included a group of fertile women (n=202). The P‑trend value, calculated for the GDF‑9 C447T transition in infertile women, was statistically significant and were equal to 0.0195. A significant association of the GDF‑9 C447T SNP was observed with infertility for the C/C vs. T/T + C/T model (OR= 2.140; 95% CI=1.043‑4.393; P=0.0349). The GDF‑9 G546A SNP was significantly associated with the G/A vs. G/G model with poor ovarian stimulation (OR=9.303; 95% CI=2.568‑33.745; P=0.0008) and poor fertilization rate (OR=2.981; 95% CI=1.033‑8.607; P=0.0385). For the GDF‑9 C447T SNP, a significant association was observed between the C/C + C/T vs. T/T model and a poor ovarian stimulation response (OR=15.309; 95% CI=0.875‑267.83; P=0.0078), and a poor fertilization rate (OR=4.842; 95% CI=1.310‑17.901; P=0.0121). The present genetic evaluation revealed associations between IVF outcomes and the GDF‑9 A546G and C447T SNPs. Additionally, these results indicated that the GDF‑9 C447T SNP is a possible candidate genetic risk factor for female infertility in the Polish population.
Collapse
Affiliation(s)
- Monika Serdyńska-Szuster
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Piotr Jędrzejczak
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Katarzyna Ewa Ożegowska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Hanna Hołysz
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60‑781 Poznań, Poland
| |
Collapse
|
20
|
Kovanci E, Schutt AK. Premature ovarian failure: clinical presentation and treatment. Obstet Gynecol Clin North Am 2015; 42:153-61. [PMID: 25681846 DOI: 10.1016/j.ogc.2014.10.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Premature ovarian failure is a devastating diagnosis for reproductive-aged women. The diagnosis is relatively easy. However, it has serious health consequences, including psychological distress, infertility, osteoporosis, autoimmune disorders, ischemic heart disease, and increased risk for mortality. Management should be initiated immediately to prevent long-term consequences. Estrogen therapy is the mainstay of management. Postmenopausal estrogen therapy studies should not be used to determine the risks of treatment in these young women.
Collapse
Affiliation(s)
- Ertug Kovanci
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, 6651 Main Street, Suite E350, Houston, TX 77030, USA.
| | - Amy K Schutt
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, 6651 Main Street, Suite E350, Houston, TX 77030, USA
| |
Collapse
|
21
|
Chapman C, Cree L, Shelling AN. The genetics of premature ovarian failure: current perspectives. Int J Womens Health 2015; 7:799-810. [PMID: 26445561 PMCID: PMC4590549 DOI: 10.2147/ijwh.s64024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Premature ovarian failure (POF) is a common cause of infertility in women, characterized by amenorrhea, hypoestrogenism, and elevated gonadotropin levels in women under the age of 40. Many genes have been identified over the past few years that contribute to the development of POF. However, few genes have been identified that can explain a substantial proportion of cases of POF. The unbiased approaches of genome-wide association studies and next-generation sequencing technologies have identified several novel genes implicated in POF. As only a small proportion of genes influencing idiopathic POF have been identified thus far, it remains to be determined how many genes and molecular pathways may influence idiopathic POF development. However, owing to POF’s diverse etiology and genetic heterogeneity, we expect to see the contribution of several new and novel molecular pathways that will greatly enhance our understanding of the regulation of ovarian function. Future genetic studies in large cohorts of well-defined, unrelated, idiopathic POF patients will provide a great opportunity to identify the missing heritability of idiopathic POF. The identification of several causative genes may allow for early detection and would provide better opportunity for early intervention, and furthermore, the identification of specific gene defects will help direct potential targets for future treatment.
Collapse
Affiliation(s)
- Chevy Chapman
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lynsey Cree
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update 2015; 21:787-808. [PMID: 26243799 PMCID: PMC4594617 DOI: 10.1093/humupd/dmv036] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) is characterized by marked heterogeneity, but with a significant genetic contribution. Identifying exact causative genes has been challenging, with many discoveries not replicated. It is timely to take stock of the field, outlining the progress made, framing the controversies and anticipating future directions in elucidating the genetics of POI. METHODS A search for original articles published up to May 2015 was performed using PubMed and Google Scholar, identifying studies on the genetic etiology of POI. Studies were included if chromosomal analysis, candidate gene screening and a genome-wide study were conducted. Articles identified were restricted to English language full-text papers. RESULTS Chromosomal abnormalities have long been recognized as a frequent cause of POI, with a currently estimated prevalence of 10-13%. Using the traditional karyotype methodology, monosomy X, mosaicism, X chromosome deletions and rearrangements, X-autosome translocations, and isochromosomes have been detected. Based on candidate gene studies, single gene perturbations unequivocally having a deleterious effect in at least one population include Bone morphogenetic protein 15 (BMP15), Progesterone receptor membrane component 1 (PGRMC1), and Fragile X mental retardation 1 (FMR1) premutation on the X chromosome; Growth differentiation factor 9 (GDF9), Folliculogenesis specific bHLH transcription factor (FIGLA), Newborn ovary homeobox gene (NOBOX), Nuclear receptor subfamily 5, group A, member 1 (NR5A1) and Nanos homolog 3 (NANOS3) seem likely as well, but mostly being found in no more than 1-2% of a single population studied. Whole genome approaches have utilized genome-wide association studies (GWAS) to reveal loci not predicted on the basis of a candidate gene, but it remains difficult to locate causative genes and susceptible loci were not always replicated. Cytogenomic methods (array CGH) have identified other regions of interest but studies have not shown consistent results, the resolution of arrays has varied and replication is uncommon. Whole-exome sequencing in non-syndromic POI kindreds has only recently begun, revealing mutations in the Stromal antigen 3 (STAG3), Synaptonemal complex central element 1 (SYCE1), minichromosome maintenance complex component 8 and 9 (MCM8, MCM9) and ATP-dependent DNA helicase homolog (HFM1) genes. Given the slow progress in candidate-gene analysis and relatively small sample sizes available for GWAS, family-based whole exome and whole genome sequencing appear to be the most promising approaches for detecting potential genes responsible for POI. CONCLUSION Taken together, the cytogenetic, cytogenomic (array CGH) and exome sequencing approaches have revealed a genetic causation in ∼20-25% of POI cases. Uncovering the remainder of the causative genes will be facilitated not only by whole genome approaches involving larger cohorts in multiple populations but also incorporating environmental exposures and exploring signaling pathways in intragenic and intergenic regions that point to perturbations in regulatory genes and networks.
Collapse
Affiliation(s)
- Yingying Qin
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan 250001, China
| | - Xue Jiao
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan 250001, China
| | - Joe Leigh Simpson
- Research and Global Programs March of Dimes Foundation, White Plains, NY, USA Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan 250001, China Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
23
|
Abstract
The bone morphogenetic protein (BMP) family consists of several growth factor proteins that belong to the transforming growth factor-β (TGF-β) superfamily. BMPs bind to type I and type II serine-threonine kinase receptors, and transduce signals through the Smad signalling pathway. BMPs have been identified in mammalian ovaries, and functional studies have shown that they are involved in the regulation of oogenesis and folliculogenesis. This review summarizes the role of the BMP system during formation, growth and maturation of ovarian follicles in mammals.
Collapse
|
24
|
Pu D, Xing Y, Gao Y, Gu L, Wu J. Gene variation and premature ovarian failure: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 2014; 182:226-37. [DOI: 10.1016/j.ejogrb.2014.09.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/12/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022]
|
25
|
Persani L, Rossetti R, Di Pasquale E, Cacciatore C, Fabre S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update 2014; 20:869-83. [PMID: 24980253 DOI: 10.1093/humupd/dmu036] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A large number of studies have contributed to understanding the general mechanisms driving ovarian folliculogenesis in humans and show a complex endocrine dialog between the central nervous system, the pituitary and the ovary, integrated by various intraovarian paracrine messages. The role of intraovarian paracrine regulation has acquired more relevance in the recent years owing to the discovery of previously unknown factors, such as the oocyte-derived bone morphogenetic protein (BMP)15. METHODS A thorough literature search was carried out in order to summarize what has been reported so far on the role of BMP15, and the BMP15 paralog, growth and differentiation factor 9 (GDF9), in ovarian function and female fertility. Research articles published in English until March 2014 were included. RESULTS The biological actions of BMP15 include: (i) the promotion of follicle growth and maturation starting from the primary gonadotrophin-independent phases of folliculogenesis; (ii) the regulation of follicular granulosa cell (GC) sensitivity to FSH action and the determination of ovulation quota; (iii) the prevention of GC apoptosis and (iv) the promotion of oocyte developmental competence. The existence of biologically active heterodimers with GDF9, and/or the synergistic co-operation of BMP15 and GDF9 homodimers are indeed relevant in this context. Experimental disruption of the bmp15 gene in mice resulted in a mild fertility defect limited to females, whereas natural missense mutations in ewes cause variable phenotypes (ranging from hyperprolificacy to complete sterility) depending on a fine gene dosage mechanism also involving GDF9. Strong evidence supports the concept that such a mechanism plays an important role in the regulation of ovulation rate across mammalian and non-mammalian species. Following the discovery of sheep fecundity genes, several research groups have focused on alterations in human BMP15 associated with primary ovarian insufficiency (POI) or polycystic ovary syndrome. Several variants of BMP15 are significantly associated with POI supporting their pathogenic role, but the underlying biological mechanism is still under investigation and of great interest in medicine. BMP15 maps to the Xp locus involved in the determination of the ovarian defect in Turner syndrome and significantly contributes to the determination of ovarian reserve. Pioneering studies in women undergoing controlled ovarian stimulation indicate that BMP15 may represent a marker of ovarian response or oocyte quality. CONCLUSIONS BMP15, an oocyte-derived growth and differentiation factor, is a critical regulator of folliculogenesis and GC activities. Variations in BMP15 gene dosage have a relevant influence on ovarian function and can account for several defects of female fertility. The modulation of BMP15 action may have interesting pharmacological perspectives and the analysis of BMP15 may become a useful marker in IVF procedures. Recent outcomes indicate that the close interactions of BMP15/GDF9 have a critical biological impact that should be taken into account in future studies.
Collapse
Affiliation(s)
- Luca Persani
- Department of Clinical Sciences & Community Health, University of Milan, 20100 Milan, Italy Laboratory of Endocrine & Metabolic Research and Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy
| | - Raffaella Rossetti
- Department of Clinical Sciences & Community Health, University of Milan, 20100 Milan, Italy
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research - UOS of Milan, National Research Council (CNR) and Istituto Clinico Humanitas, Via Manzoni 59, Rozzano, 20089 Milan, Italy
| | - Chiara Cacciatore
- Department of Clinical Sciences & Community Health, University of Milan, 20100 Milan, Italy Laboratory of Endocrine & Metabolic Research and Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy
| | - Stéphane Fabre
- INRA, Université de Toulouse INPT, UMR1388, Génétique, Physiologie et Systèmes D'Elevage, F-31326 Castanet-Tolosan, France
| |
Collapse
|
26
|
Ethnic specificity of variants of the ESR1, HK3, BRSK1 genes and the 8q22.3 locus: No association with premature ovarian failure (POF) in Serbian women. Maturitas 2014; 77:64-7. [DOI: 10.1016/j.maturitas.2013.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/27/2013] [Accepted: 09/09/2013] [Indexed: 02/04/2023]
|
27
|
Abstract
Ovarian reserve and its utilization, over a reproductive life span, are determined by genetic, epigenetic, and environmental factors. The establishment of the primordial follicle pool and the rate of primordial follicle activation have been under intense study to determine genetic factors that affect reproductive lifespan. Much has been learned from transgenic animal models about the developmental origins of the primordial follicle pool and mechanisms that lead to primordial follicle activation, folliculogenesis, and the maturation of a single oocyte with each menstrual cycle. Recent genome-wide association studies on the age of human menopause have identified approximately 20 loci, and shown the importance of factors involved in double-strand break repair and immunology. Studies to date from animal models and humans show that many genes determine ovarian aging, and that there is no single dominant allele yet responsible for depletion of the ovarian reserve. Personalized genomic approaches will need to take into account the high degree of genetic heterogeneity, family pedigree, and functional data of the genes critical at various stages of ovarian development to predict women's reproductive life span.
Collapse
Affiliation(s)
- Michelle A Wood
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | | |
Collapse
|
28
|
de Resende LOT, Vireque AA, Santana LF, Moreno DA, de Sá Rosa e Silva ACJ, Ferriani RA, Scrideli CA, Reis RM. Single-cell expression analysis of BMP15 and GDF9 in mature oocytes and BMPR2 in cumulus cells of women with polycystic ovary syndrome undergoing controlled ovarian hyperstimulation. J Assist Reprod Genet 2012; 29:1057-65. [PMID: 22825968 PMCID: PMC3492567 DOI: 10.1007/s10815-012-9825-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/26/2012] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To detect expression of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) in oocytes, and their receptor type 2 receptor for BMPs (BMPR2) in cumulus cells in women with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization (IVF), and determine if BMPR2, BMP15, and GDF9 expression correlate with hyperandrogenism in FF of PCOS patients. METHODS Prospective case-control study. Eighteen MII-oocytes and their respective cumulus cells were obtained from 18 patients with PCOS, and 48 MII-oocytes and cumulus cells (CCs) from 35 controls, both subjected to controlled ovarian hyperstimulation (COH), and follicular fluid (FF) was collected from small (10-14 mm) and large (>18 mm) follicles. RNeasy Micro Kit (Qiagen) was used for RNA extraction and gene expression was quantified in each oocyte individually and in microdissected cumulus cells from cumulus-oocyte complexes retrieved from preovulatory follicles using qRT-PCR. Chemiluminescence and RIA assays were used for hormone assays. RESULTS BMP15 and GDF9 expression per oocyte was higher among women with PCOS than the control group. A positive correlation was found between BMPR2 transcripts and hyperandrogenism in FF of PCOS patients. Progesterone values in FF were lower in the PCOS group. CONCLUSION We inferred that BMP15 and GDF9 transcript levels increase in mature PCOS oocytes after COH, and might inhibit the progesterone secretion by follicular cells in PCOS follicles, preventing premature luteinization in cumulus cells. BMPR2 expression in PCOS cumulus cells might be regulated by androgens.
Collapse
Affiliation(s)
| | - Alessandra Aparecida Vireque
- Department of Gynecology and Obstetrics - Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Laura Ferreira Santana
- Department of Gynecology and Obstetrics - Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Daniel Antunes Moreno
- Department of Pediatrics - Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics - Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Carlos Alberto Scrideli
- Department of Pediatrics - Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Rosana Maria Reis
- Department of Gynecology and Obstetrics - Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- Departamento de Ginecologia e Obstetrícia da Faculdade de Medicina de Ribeirão Preto/USP, Av. Bandeirantes 3900, Campus Universitário, CEP 14049-900 Ribeirão Preto, SP Brazil
| |
Collapse
|
29
|
Shelling AN. Mutations in inhibin and activin genes associated with human disease. Mol Cell Endocrinol 2012; 359:113-20. [PMID: 21827823 DOI: 10.1016/j.mce.2011.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/18/2022]
Abstract
Inhibins and activins are members of the transforming growth factor (TGFβ) superfamily, that includes the TGFβs, inhibins and activins, bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs). The family members are expressed throughout the human body, and are involved in the regulation of a range of important functions. The precise regulation of the TGFβ pathways is critical, and mutations of individual molecules or even minor alterations of signalling will have a significant affect on function, that may lead to development of disease or predisposition to the development of disease. The inhibins and activins regulate aspects of the male and female reproductive system, therefore, it is not surprising that most of the diseases associated with abnormalities of the inhibin and activin genes are focused on reproductive disorders and reproductive cancers. In this review, I highlight the role of genetic variants in the development of conditions such as premature ovarian failure, pre-eclampsia, and various reproductive cancers. Given the recent advances in human genetic research, such as genome wide association studies and next generation sequencing, it is likely that inhibins and activins will be shown to play more important roles in a range of human genetic diseases in the future.
Collapse
Affiliation(s)
- Andrew N Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
30
|
Liu J, Wang B, Wei Z, Zhou P, Zu Y, Zhou S, Wen Q, Wang J, Cao Y, Ma X. Mutational analysis of human bone morphogenetic protein 15 in Chinese women with polycystic ovary syndrome. Metabolism 2011; 60:1511-4. [PMID: 22014425 DOI: 10.1016/j.metabol.2010.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/23/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the common defects that cause ovary dysfunction and link to the aberrant process of folliculogenesis. Bone morphogenetic protein 15 (BMP15) is expressed in human oocytes and functions importantly to regulate early follicle growth and fertility. Previous studies have discovered several mutations in the screening of BMP15 in premature ovarian failure but none in PCOS. In this current study, we focused on the mutational analysis of the coding region of BMP15 among 216 Chinese PCOS patients. Five novel missense mutations in BMP15 were discovered, namely, c.34C>G, c.109G>C, c.169C>G, c.288G>C, and c.598C>T. These results are the first to indicate that BMP15 gene mutations may be potentially associated with PCOS patients.
Collapse
Affiliation(s)
- Jingjing Liu
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Persani L, Rossetti R, Cacciatore C, Fabre S. Genetic defects of ovarian TGF-β-like factors and premature ovarian failure. J Endocrinol Invest 2011; 34:244-51. [PMID: 21297384 DOI: 10.1007/bf03347073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Premature ovarian failure (POF) is an ovarian defect characterized by the premature depletion of ovarian follicles; POF affects approximately 1-2% of women under the age of 40 yr, thus representing one major cause of female infertility. POF relevance is continuously growing because women tend to conceive always more frequently beyond 30 yr. Frequently, POF is the end-stage of an occult process [primary ovarian insufficiency (POI)]. POI is a heterogeneous disease caused by a variety of mechanisms. Though the underlying cause remains unexplained in the majority of cases, several data indicate that POI has a strong genetic component. These data include the existence of several causal genetic defects in human, experimental, and natural models, as well as the frequent familiarity. The candidate genes are numerous, but POF remains unexplained in most of the cases. Several recent evidences have driven the attention of researchers on the possible involvement of various elements belonging to the transforming growth factor β family, which includes bone morphogenetic proteins, growth/differentiation factors, and inhibins. These peptides are produced by either the oocyte or granulosa cells to constitute a complex paracrine network within the ovarian follicle. Here, we review the studies reporting the genetic alterations of these factors in human and animal defects of ovarian folliculogenesis which support the fundamental roles played by these signals in ovarian morphogenesis and function.
Collapse
Affiliation(s)
- L Persani
- Department of Medical Sciences, University of Milan, Cusano, Milan, Italy.
| | | | | | | |
Collapse
|
32
|
Qiao J, Feng HL. Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update 2011; 17:17-33. [PMID: 20639519 PMCID: PMC3001338 DOI: 10.1093/humupd/dmq032] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 06/10/2010] [Accepted: 06/18/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common metabolic dysfunction and heterogeneous endocrine disorder in women of reproductive age. Although patients with PCOS are typically characterized by increased numbers of oocytes retrieved during IVF, they are often of poor quality, leading to lower fertilization, cleavage and implantation rates, and a higher miscarriage rate. METHODS For this review, we searched the database MEDLINE (1950 to January 2010) and Google for all full texts and/or abstract articles published in English with content related to oocyte maturation and embryo developmental competence. RESULTS The search showed that alteration of many factors may directly or indirectly impair the competence of maturating oocytes through endocrine and local paracrine/autocrine actions, resulting in a lower pregnancy rate in patients with PCOS. The extra-ovarian factors identified included gonadotrophins, hyperandrogenemia and hyperinsulinemia, although intra-ovarian factors included members of the epidermal, fibroblast, insulin-like and neurotrophin families of growth factors, as well as the cytokines. CONCLUSIONS Any abnormality in the extra- and/or intra-ovarian factors may negatively affect the granulosa cell-oocyte interaction, oocyte maturation and potential embryonic developmental competence, contributing to unsuccessful outcomes for patients with PCOS who are undergoing assisted reproduction.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100083, People's Republic of China
| | - Huai L. Feng
- Department of Obstetrics and Gynecology, North Shore University Hospital, NYU School of Medicine, Manhasset, NY 11030, USA
| |
Collapse
|
33
|
Inagaki K, Shimasaki S. Impaired production of BMP-15 and GDF-9 mature proteins derived from proproteins WITH mutations in the proregion. Mol Cell Endocrinol 2010; 328:1-7. [PMID: 20547206 PMCID: PMC2934881 DOI: 10.1016/j.mce.2010.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/03/2010] [Accepted: 05/28/2010] [Indexed: 11/21/2022]
Abstract
Mutations in the bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9 (GDF-9) genes have been identified in women with primary ovarian insufficiency (POI) and mothers of dizygotic twins. Here, we show that biological activities of the conditioned media from human embryonic kidney 293F cells transfected with two representative BMP-15 and GDF-9 mutants identified in the affected women have significantly reduced biological activities compared with the corresponding wild-type. Moreover, this difference is due to decreased production of the mature proteins, attributed most likely to impaired posttranslational processing of the proprotein. As genetic studies of the BMP-15 and/or GDF-9 genes in ewes established that a reduction of these proteins is associated with an increased ovulation rate, it is conceivable that women affected with these mutations may have an increased probability of bearing dizygotic twins during active reproductive ages before diagnosis with POI at later ages due to an earlier exhaustion of ovarian reserve.
Collapse
Affiliation(s)
- Kenichi Inagaki
- Department of Reproductive Medicine, University of California San Diego, School of Medicine, 9500 Gilman Dr., La Jolla, CA 92093-0633, United States
| | | |
Collapse
|
34
|
Sproul K, Jones MR, Mathur R, Azziz R, Goodarzi MO. Association study of four key folliculogenesis genes in polycystic ovary syndrome. BJOG 2010; 117:756-60. [PMID: 20236105 PMCID: PMC3085028 DOI: 10.1111/j.1471-0528.2010.02527.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Polycystic ovaries and impaired fertility are the result of abnormal folliculogenesis. Our objective was to determine the role of four candidate folliculogenesis genes in the development of polycystic ovary syndrome (PCOS). Women with and without PCOS (335 cases; 198 controls) were genotyped for single nucleotide polymorphisms in GDF9, BMP15, AMH, and AMHR2. Variants in these genes were not associated with PCOS. Certain GDF9 variants were associated with hirsutism scores and parity in PCOS patients. GDF9 may thus serve as a modifier gene. These results suggest that inherited defects in folliculogenesis are not major factors in the genetic susceptibility to PCOS.
Collapse
Affiliation(s)
- Kari Sproul
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, U.S.A
| | - Michelle R. Jones
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, U.S.A
| | - Ruchi Mathur
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, U.S.A
| | - Ricardo Azziz
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, U.S.A
| | - Mark O. Goodarzi
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, U.S.A
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, U.S.A
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, U.S.A
| |
Collapse
|
35
|
Wang B, Zhou S, Wang J, Liu J, Ni F, Yan J, Mu Y, Cao Y, Ma X. Identification of novel missense mutations of GDF9 in Chinese women with polycystic ovary syndrome. Reprod Biomed Online 2010; 21:344-8. [PMID: 20705511 DOI: 10.1016/j.rbmo.2010.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/09/2010] [Accepted: 04/07/2010] [Indexed: 11/25/2022]
Abstract
The gene for growth differentiation factor 9 (GDF9) is expressed in human oocytes and has an important function in regulating early follicle growth and fertility. Polycystic ovary syndrome (PCOS) is one of the common defects that causes ovary dysfunction and is linked to aberrant processes in folliculogenesis. Previous studies have discovered several mutations in the screening of GDF9 in premature ovarian failure but none in PCOS. This current study focused on the mutational analysis of the coding region of GDF9 among 216 Chinese PCOS patients. Of the 10 different variants found in this study, five novel missense mutations in GDF9 were discovered namely c.15C>G, c.118T>G, c.133A>G, c.1025A>T and c.1275C>A. The above-mentioned mutations indicate GDF9 may be potentially associated with PCOS patients. As far as is known, this study is the first to provide evidence for such an association.
Collapse
Affiliation(s)
- Binbin Wang
- National Research Institute for Family Planning, Beijing 100081, China; Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dixit H, Rao L, Padmalatha V, Raseswari T, Kapu AK, Panda B, Murthy K, Tosh D, Nallari P, Deenadayal M, Gupta N, Chakrabarthy B, Singh L. Genes governing premature ovarian failure. Reprod Biomed Online 2010; 20:724-40. [PMID: 20382564 DOI: 10.1016/j.rbmo.2010.02.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/09/2009] [Accepted: 02/04/2010] [Indexed: 11/30/2022]
Abstract
Premature ovarian failure (POF) is unexplained amenorrhoea (>6 months), increased FSH (>20 IU/l) and LH occurring before 40 years. Several genes are reported as having significance in POF, including genes governing regulation of the hypothalamic-pituitary-ovarian axis, but their role in ovarian physiology is not known. Deletions or translocations in Xq arm have been found to be associated with POF, assuming presence of ovarian-related genes but ovary-related function of these genes is unclear. Several researchers have suggested specific loci on Xq critical region, POF1 and POF2 and genes DIA, FMR1 and FMR2. The understanding of ovarian physiology, its regulation and genes involved is important to explain the causes of POF. Some genes coordinate development of germ cell to primordial stage, e.g. GDF9, BMP15 and NGF, while others regulate development of further stages, such as FSH and LH. Mutation in these genes may lead to female infertility and are likely to be candidate genes for POF. Recently, association between blepharophimosis-ptosis-epicanthus inversus syndrome type 1 and POF has emerged as a possibility. Galactosaemia is also shown to be important in POF due to toxic effects of accumulated galactose or downstream products. Thus, understanding the role of several genes can be used for the appropriate genetic diagnosis, research and in the clinical practice of POF.
Collapse
Affiliation(s)
- Hridesh Dixit
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jagarlamudi K, Reddy P, Adhikari D, Liu K. Genetically modified mouse models for premature ovarian failure (POF). Mol Cell Endocrinol 2010; 315:1-10. [PMID: 19643165 DOI: 10.1016/j.mce.2009.07.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/18/2009] [Accepted: 07/03/2009] [Indexed: 11/16/2022]
Abstract
Premature ovarian failure (POF) is a complex disorder that affects approximately 1% of women. POF is characterized by the depletion of functional ovarian follicles before the age of 40 years, and clinically, patients may present with primary amenorrhea or secondary amenorrhea. Although some genes have been hypothesized to be candidates responsible for POF, the etiology of most of the cases is idiopathic, with the underlying causes still unidentified because of the heterogeneity of the disease. In this review, we consider some mutant mouse models that exhibit phenotypes which are comparable to human POF, and we suggest that the use of these mouse models may help us to gain a better understanding of the molecular mechanisms underlying POF in humans.
Collapse
Affiliation(s)
- Krishna Jagarlamudi
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
38
|
Persani L, Rossetti R, Cacciatore C, Bonomi M. Primary ovarian insufficiency: X chromosome defects and autoimmunity. J Autoimmun 2009; 33:35-41. [DOI: 10.1016/j.jaut.2009.03.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 03/03/2009] [Accepted: 03/11/2009] [Indexed: 01/08/2023]
|
39
|
Peng C, Clelland E, Tan Q. Potential role of bone morphogenetic protein-15 in zebrafish follicle development and oocyte maturation. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:83-7. [DOI: 10.1016/j.cbpa.2008.09.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 09/26/2008] [Accepted: 09/27/2008] [Indexed: 11/29/2022]
|
40
|
Abstract
Genetic determinations of oocyte and ovarian follicle growth are still not well understood. Genes specifically expressed on oocytes seem to play an important role in these processes. Oocyte-specific genes are also involved in ovulation and early embryogenesis processes. Studies on the identification and characterization of new oocyte-specific genes can help in our understanding of cardinal fertility and infertility mechanisms. They can also be candidate genes for reproductive disorders such as polycystic ovary syndrome, premature ovarian failure and infertility. Infertility is an important worldwide problem affecting around 15% of couples. Approximately 20% of infertility is referred as idiopathic infertility. Studies on these genes could improve the diagnostic and therapeutic procedures of human infertility.
Collapse
Affiliation(s)
- B Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
41
|
Zhao SY, Qiao J, Chen YJ, Liu P, Li J, Yan J. Expression of growth differentiation factor-9 and bone morphogenetic protein-15 in oocytes and cumulus granulosa cells of patients with polycystic ovary syndrome. Fertil Steril 2009; 94:261-7. [PMID: 19376510 DOI: 10.1016/j.fertnstert.2009.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate the effect of growth differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15) on the development of follicles among patients with polycystic ovary syndrome (PCOS). DESIGN Case-control study. SETTING University Hospital. PATIENT(S) Twenty-two oocytes were obtained from 15 patients with PCOS and 67 oocytes from 58 controls. Cumulus granulosa cells (GC) were obtained from 16 patients with PCOS and controls treated with intracytoplasmic sperm injection. INTERVENTION(S) Immunofluorescence combined with laser scanning confocal microscopy and immunocytochemistry were used to analyze the expression of GDF-9 and BMP-15 in oocytes and cumulus GCs. MAIN OUTCOME MEASURE(S) To detect the protein expression levels. RESULT(S) No significant difference was found in the expression of GDF-9 and BMP-15 in the oocytes and BMP-15 in the cumulus GCs of patients with PCOS and controls. However, the expression of GDF-9 in cumulus GCs of patients with PCOS was decreased significantly compared with controls (8.88 +/- 1.52 vs. 5.01 +/- 0.83). CONCLUSION(S) The expression of GDF-9 and BMP-15 in the oocytes of patients with PCOS who received ovulation induction treatment was in the normal range, but the GDF-9 expression in cumulus GCs from patients with PCOS was significantly lower than the normal. Reduced GDF-9 expression in cumulus GCs of patients with PCOS appears to be associated with decreased long-term developmental potential of the oocytes of patients with PCOS.
Collapse
Affiliation(s)
- Shu-Yun Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Hua GH, Chen SL, Ai JT, Yang LG. None of polymorphism of ovine fecundity major genes FecB and FecX was tested in goat. Anim Reprod Sci 2008; 108:279-86. [DOI: 10.1016/j.anireprosci.2007.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/16/2007] [Accepted: 08/31/2007] [Indexed: 11/29/2022]
|
43
|
Oocyte-specific G-protein–coupled receptor 3 (GPR3): no perturbations found in 82 women with premature ovarian failure (first report). Fertil Steril 2008; 90:1269-71. [DOI: 10.1016/j.fertnstert.2007.07.1373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/24/2007] [Accepted: 07/24/2007] [Indexed: 11/20/2022]
|
44
|
Lakhal B, Laissue P, Elghèzal H, Fellous M. [Genetic analysis of premature ovarian failure: role of forkhead and TGF-beta genes]. ACTA ACUST UNITED AC 2008; 36:862-71. [PMID: 18692424 DOI: 10.1016/j.gyobfe.2008.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 07/01/2008] [Indexed: 11/29/2022]
Abstract
Premature ovarian failure is a common pathology affecting 1% of women. Although multiple etiologies have been described the majority of cases are idiopathic. Forkhead transcription factors as FOXL2 and FOXO3A are of particular interest in the research of genetic factors related with the pathology as they are present in diverse developmental pathways and ovarian physiology. Similarly, some TGF-beta factors (i.e. BMP 15 and GDF-9) have been demonstrated to play a key role in the regulation, at ovarian level, of female reproduction. In recent years numerous studies have been performed in order to elucidate the implication of these factors in the ovarian physiopathology. The aim of this manuscript is to describe some of these advances in the context of premature ovarian failure.
Collapse
Affiliation(s)
- B Lakhal
- Laboratoire de cytogénétique et de biologie de la reproduction, CHU Farhat-Hached, 4000 Sousse, Tunisie
| | | | | | | |
Collapse
|
45
|
Laissue P, Vinci G, Veitia RA, Fellous M. Recent advances in the study of genes involved in non-syndromic premature ovarian failure. Mol Cell Endocrinol 2008; 282:101-11. [PMID: 18164539 DOI: 10.1016/j.mce.2007.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Premature ovarian failure (POF) is a common pathology leading to infertility affecting about 1% of women under 40 years old. In POF patients, the ovarian dysfunction is characterized by the lack of the ovarian response to close a negative feedback loop on the synthesis of pituitary gonadotropins. Although the majority of cases are considered as idiopathic, diverse aetiologies have been associated, including genetic factors. Up to now, the potential genetic causes of non-syndromic POF have been established mainly by genetic linkage analysis of familial cases or by the screening of mutations in candidate genes based on animal models. Here, we review recent advances in the study of candidate genes.
Collapse
Affiliation(s)
- Paul Laissue
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; Inserm, U567 Paris, France
| | | | | | | |
Collapse
|
46
|
Chu MX, Jiao CL, He YQ, Wang JY, Liu ZH, Chen GH. Association Between PCR-SSCP of Bone Morphogenetic Protein 15 Gene and Prolificacy in Jining Grey Goats. Anim Biotechnol 2007; 18:263-74. [DOI: 10.1080/10495390701331114] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Gónzalez A, Ramírez-Lorca R, Calatayud C, Mendoza N, Ruiz A, Sáez ME, Morón FJ. Association of genetic markers within the BMP15 gene with anovulation and infertility in women with polycystic ovary syndrome. Fertil Steril 2007; 90:447-9. [PMID: 17905236 DOI: 10.1016/j.fertnstert.2007.06.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 10/22/2022]
Abstract
We analyzed two polymorphisms (-9C>G and IVS1+905A>G) within the BMP15 gene in women from Spain with polycystic ovary syndrome (PCOS). In this study, the BMP15 gene does not seem to be associated with PCOS. Nonetheless, we observed in both markers a genetic association with anovulation or infertility in these patients.
Collapse
Affiliation(s)
- Alejandro Gónzalez
- Unidad de Reproducción y Genética Humana, Centro Avanzado de Fertilidad, Jerez de la Frontera, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Polycystic ovarian syndrome is a complex disorder with multiple factors affecting its etiology. Elucidation of specific genes and mode of inheritance remains a significant challenge. Linkage and association studies have resulted in over 50 candidate genes as a source of heritable predisposition; however, small sample sizes and failure to reproduce results have hindered efforts. In addition, low fecundity, lack of a male phenotype, and variation of diagnostic criteria represent unique challenges to discovery of polycystic ovarian syndrome genes. A concerted effort will be necessary to conclusively rule in or rule out candidate genes.
Collapse
Affiliation(s)
- Marie Nam Menke
- Virginia Commonwealth University Health System, Richmond, Virginia, USA.
| | | |
Collapse
|
49
|
Kovanci E, Rohozinski J, Simpson JL, Heard MJ, Bishop CE, Carson SA. Growth differentiating factor-9 mutations may be associated with premature ovarian failure. Fertil Steril 2007; 87:143-6. [PMID: 17156781 DOI: 10.1016/j.fertnstert.2006.05.079] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/18/2006] [Accepted: 05/18/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To determine whether perturbations of the growth differentiating factor-9 (GDF9) gene are associated with premature ovarian failure (POF). DESIGN Mutational analysis of the GDF9 gene in 61 women with POF. SETTING Academic institution. PATIENT(S) Sixty-one women with POF; 60 control women. INTERVENTION(S) Peripheral blood sampling, genomic DNA extraction, mutational screening, and DNA sequencing. MAIN OUTCOME MEASURE(S) Genetic perturbations in GDF9 that are associated with POF. RESULT(S) A single missense mutation, substitution of a cytosine residue with thymidine in exon 1 of GDF9, was found in a white woman in whom POF developed at age 22. This mutation occurred in a highly conserved proprotein region and resulted in replacement of a nonpolar amino acid (proline) with a polar amino acid (serine) at position 103. Neither 60 control women nor 60 other women with POF demonstrated this genetic perturbation. Exon 2 showed only previously recognized single nucleotide polymorphisms. CONCLUSION(S) GDF9 mutations may be one explanation for POF, albeit uncommon.
Collapse
Affiliation(s)
- Ertug Kovanci
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
50
|
Chand AL, Ponnampalam AP, Harris SE, Winship IM, Shelling AN. Mutational analysis of BMP15 and GDF9 as candidate genes for premature ovarian failure. Fertil Steril 2006; 86:1009-12. [PMID: 17027369 DOI: 10.1016/j.fertnstert.2006.02.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/27/2006] [Accepted: 02/27/2006] [Indexed: 11/29/2022]
Abstract
Mutational screening of the bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) genes in a population with premature ovarian failure (POF) identified no new mutations. However, three single nucleotide polymorphisms in the BMP15 gene, two in the 5' untranslated region (31T>G and 71C>G) and another in exon 1 (387G>A), were found to be common in both POF and control groups.
Collapse
Affiliation(s)
- Ashwini L Chand
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | | | | | | | | |
Collapse
|