1
|
Daddangadi A, Saruparia S, Predheepan D, Uppangala S, Kabekkodu SP, Nadeem Khan G, Kalthur G, Talevi R, Adiga SK. Impact of vitrification conditions on genetic and functional competence of prepubertal mouse oocytes. Reprod Biol 2025; 25:101022. [PMID: 40279869 DOI: 10.1016/j.repbio.2025.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Oocyte in vitro maturation (IVM) and vitrification are being considered as fertility preservation strategies for prepubertal cancer patients. Since prepubertal oocytes have differential sensitivity and response to vitrification compared to adult oocytes, there is a need to optimize the technique to improve the outcome. This study specifically looked into the effect of varying equilibration time and temperatures on the survival and functional competence of prepubertal mouse oocytes. Germinal vesicle (GV) stage and in vitro matured, metaphase II stage sibling oocytes retrieved from 2-week-old Swiss albino mice were equilibrated at 24 °C and 37 °C for 10 and 15 min during vitrification. GV vitrified-IVM (GVV) and GV IVM-vitrified (MIIV) oocytes that survived post-warming were assessed for mitochondrial potential, spindle integrity, spindle checkpoint transcripts, and DNA integrity. The GVV oocytes equilibrated at 37 °C for 15 min had a significantly lower maturation rate (P < 0.01). Survival was reduced when MIIV oocytes were equilibrated at 37 °C, regardless of equilibration duration (P < 0.05). The meiotic spindle and DNA integrity were affected at 37 °C/15 min equilibration (P < 0.01). IVM prepubertal mouse oocytes are at higher risk of experiencing cryo-damage with 37 °C equilibration. Hence, fertility preservation protocols must be refined and individualized for prepubertal age to safeguard the genetic and functional integrity of such oocytes.
Collapse
Affiliation(s)
- Akshatha Daddangadi
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Siyona Saruparia
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Dhakshanya Predheepan
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Shubhashree Uppangala
- Division of Reproductive Genetics, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - G Nadeem Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Riccardo Talevi
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte S Angelo, Napoli, Italy
| | - Satish Kumar Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India.
| |
Collapse
|
2
|
Aarattuthodi S, Kang D, Gupta SK, Chen P, Redel B, Matuha M, Mohammed H, Sinha AK. Cryopreservation of biological materials: applications and economic perspectives. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01027-0. [PMID: 40266443 DOI: 10.1007/s11626-025-01027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/09/2025] [Indexed: 04/24/2025]
Abstract
Cryopreservation is a transformative technology that allows for the long-term storage of biological materials by cooling them to extremely low temperatures at which metabolic and biochemical processes are effectively slowed or halted. Cryopreservation utilizes various techniques to minimize ice crystal formation and cellular damage during freezing and thawing processes. This technology has broad applications in the fields of medicine, agriculture, and conservation, spanning across stem cell research, reproductive and regenerative medicine, organ transplantation, and cell-based therapies, each with significant economic implications. While current techniques and their associated costs present certain challenges, ongoing research advancements related to cryoprotectants, cooling methods, and automation promise to enhance efficiency and accessibility, potentially broadening the technology's impact across various sectors. This review focuses on the applications of cryopreservation, research advancements, and economic implications, emphasizing the importance of continued research to overcome the current limitations.
Collapse
Affiliation(s)
- Suja Aarattuthodi
- Plant Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA.
| | - David Kang
- Biological Control of Insects Research Laboratory, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA
| | - Sanjay Kumar Gupta
- Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, Jharkhand, 834003, India
| | - Paula Chen
- Plant Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA
| | - Bethany Redel
- Plant Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Columbia, MO, 65211, USA
| | - Moureen Matuha
- Department of Agriculture and Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO, 65101, USA
| | - Haitham Mohammed
- Department of Rangeland, Wildlife and Fisheries Management, Texas a&M University, College Station, TX, 77843, USA
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas Pine Bluff, Pine Bluff, AR, 71601, USA
| |
Collapse
|
3
|
Caliskan S, Liu D, Oldenhof H, Sieme H, Wolkers WF. Use of membrane transport models to design cryopreservation procedures for oocytes. Anim Reprod Sci 2024; 267:107536. [PMID: 38908169 DOI: 10.1016/j.anireprosci.2024.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Oocyte cryopreservation is increasingly being used in reproductive technologies for conservation and breeding purposes. Further development of oocyte cryopreservation techniques requires interdisciplinary insights in the underlying principles of cryopreservation. This review aims to serve this purpose by: (1) highlighting that preservation strategies can be rationally designed, (2) presenting mechanistic insights in volume and osmotic stress responses associated with CPA loading strategies and cooling, and (3) giving a comprehensive listing of oocyte specific biophysical membrane characteristics and commonly used permeation model equations. It is shown how transport models can be used to simulate the behavior of oocytes during cryopreservation processing steps, i.e., during loading of cryoprotective agents (CPAs), cooling with freezing as well as vitrification, warming and CPA unloading. More specifically, using defined cellular and membrane characteristics, the responses of oocytes during CPA (un)loading were simulated in terms of temperature- and CPA type-and-concentration-dependent changes in cell volume and intracellular solute concentration. In addition, in order to determine the optimal cooling rate for slow programmable cooling cryopreservation, the freezing-induced cell volume response was simulated at various cooling rates to estimate rates with tolerable limits. For vitrification, special emphasis was on prediction of the timing of reaching osmotic tolerance limits during CPA exposure, and the need to use step-wise CPA addition/removal protocols. In conclusion, we present simulations and schematic illustrations that explain the timing of events during slow cooling cryopreservation as well as vitrification, important for rationally designing protocols taking into account how different CPA types, concentrations and temperatures affect the oocyte.
Collapse
Affiliation(s)
- Sükrü Caliskan
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dejia Liu
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F Wolkers
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
4
|
Huang L, Benson JD, Almasri M. Microfluidic measurement of individual cell membrane water permeability. Anal Chim Acta 2021; 1163:338441. [PMID: 34024416 DOI: 10.1016/j.aca.2021.338441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
This paper reports a microfluidic lab-on-chip for dynamic particle sizing and real time individual cell membrane permeability measurements. To achieve this, the device measures the impedance change of individual cells or particles at up to ten time points after mixing with different media, e.g. dimethyl sulfoxide or DI water, from separate inlets. These measurements are enabled by ten gold electrode pairs spread across a 20 mm long microchannel. The device measures impedance values within 0.26 s after mixing with other media, has a detection throughput of 150 samples/second, measures impedance values at all ten electrodes at this rate, and allows tracking of individual cell volume changes caused by cell osmosis in anisosmotic fluids over a 1.3 s postmixing timespan, facilitating accurate individual cell estimates of water permeability. The design and testing were performed using yeast cells (Saccharomyces cerevisiae). The relationship between volume and impedance in both polystyrene calibration beads as well as the volume-osmolality relationship in yeast were demonstrated. Moreover, we present the first noninvasive and non-optically-based water permeability measurements in individual cells.
Collapse
Affiliation(s)
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
5
|
Lotz J, Içli S, Liu D, Caliskan S, Sieme H, Wolkers WF, Oldenhof H. Transport processes in equine oocytes and ovarian tissue during loading with cryoprotective solutions. Biochim Biophys Acta Gen Subj 2020; 1865:129797. [PMID: 33212229 DOI: 10.1016/j.bbagen.2020.129797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rational design of cryopreservation strategies for oocytes and ovarian cortex tissue requires insights in the rate at which cryoprotective agents (CPA) permeate and concomitant water transport takes place. The aim of the current study was to investigate possible differences in permeation kinetics of different CPAs (i.e., glycerol/GLY, ethylene glycol/EG, dimethyl sulfoxide/DMSO, and propylene glycol/PG), in equine oocytes as well as ovarian tissue. METHODS Membrane permeability of oocytes to water (Lp) and to CPAs (Ps) was inferred from video microscopic imaging of oocyte volume responses during perfusion with anisotonic and CPA solutions. CPA diffusion into ovarian tissue and tissue dehydration was monitored during incubation, using osmometer and weight measurements, to derive CPA diffusion coefficients (D). RESULTS Membrane permeability of oocytes towards CPAs was found to increase in the order GLY < EG < DMSO<PG. Permeability towards water in anisotonic solutions was determined to be higher than in CPA solutions, indicating CPAs alter membrane permeability properties. CPA diffusion in ovarian tissue increased in the order GLY,PG < EG,DMSO. Tissue dehydration was found to increase with exposure to increasing CPA concentrations, which inversely correlated with CPA diffusivity. CONCLUSIONS In conclusion, it is shown here that the rate of CPA movement across membrane bilayers is determined by different physical barrier factors than those determining CPA movement in tissues. GENERAL SIGNIFICANCE The parameters presented in this study can be applied in models describing solute and water transport in cells and tissues, as well as in cryopreservation protocols.
Collapse
Affiliation(s)
- Jürgen Lotz
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sercan Içli
- Biostabilization laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dejia Liu
- Biostabilization laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sükrü Caliskan
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F Wolkers
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
6
|
Chen Z, Memon K, Cao Y, Zhao G. A microfluidic approach for synchronous and nondestructive study of the permeability of multiple oocytes. MICROSYSTEMS & NANOENGINEERING 2020; 6:55. [PMID: 34567666 PMCID: PMC8433209 DOI: 10.1038/s41378-020-0160-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 05/11/2023]
Abstract
Investigation of oocyte membrane permeability plays a crucial role in fertility preservation, reproductive medicine, and reproductive pharmacology. However, the commonly used methods have disadvantages such as high time consumption, low efficiency, and cumbersome data processing. In addition, the developmental potential of oocytes after measurement has not been fully validated in previous studies. Moreover, oocytes can only maintain their best status in vitro within a very limited time. To address these limitations, we developed a novel multichannel microfluidic chip with newly designed micropillars that provide feasible and repeatable oocyte capture. The osmotic responses of three oocytes at different or the same cryoprotectant (CPA) concentrations were measured simultaneously, which greatly improved the measurement efficiency. Importantly, the CPA concentration dependence of mouse oocyte membrane permeability was found. Moreover, a neural network algorithm was employed to improve the efficiency and accuracy of data processing. Furthermore, analysis of fertilization and embryo transfer after perfusion indicated that the microfluidic approach does not damage the developmental potential of oocytes. In brief, we report a new method based on a multichannel microfluidic chip that enables synchronous and nondestructive measurement of the permeability of multiple oocytes.
Collapse
Affiliation(s)
- Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027 China
| | - Kashan Memon
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027 China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, Hefei, 230022 China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, Hefei, 230022 China
| |
Collapse
|
7
|
Lei Z, Xie D, Mbogba MK, Chen Z, Tian C, Xu L, Zhao G. A microfluidic platform with cell-scale precise temperature control for simultaneous investigation of the osmotic responses of multiple oocytes. LAB ON A CHIP 2019; 19:1929-1940. [PMID: 31038148 DOI: 10.1039/c9lc00107g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The temperature-dependent oocyte membrane permeability plays a significant role in oocyte cryopreservation, such as optimizing the addition/removal of cryoprotective agents and the rate of cooling/rewarming. However, the systems for studying the temperature dependence of oocyte membrane permeability are either too complicated or unable to achieve wide-range precise temperature control. In addition, these systems cannot achieve the simultaneous observation of multiple oocytes. Here, we report a novel microfluidic platform that combines a precise local temperature heater/detector and a simple global water bath to achieve wide-range accurate temperature control without increasing the difficulty of fabrication, and it also realizes non-interfering, position-controllable and non-missing capture of multiple oocytes for parallel experiments to increase throughput. The permeability coefficients (Lp, Ps) of the mouse oocyte membrane exposed to cryoprotective agents (1.5 M EG and 1.5 M PG) at four temperatures (4, 15, 25 and 37 °C) are consistent with those reported in previous works, which proves the feasibility and practicality of the microfluidic platform in this study.
Collapse
Affiliation(s)
- Zeling Lei
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Dongcheng Xie
- School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China. and Hefei National Laboratory for Physical Sciences at the Microscale and School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Momoh Karmah Mbogba
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Conghui Tian
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Lei Xu
- School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China. and Hefei National Laboratory for Physical Sciences at the Microscale and School of Microelectronics, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
8
|
Weng L, Ellett F, Edd J, Wong KHK, Uygun K, Irimia D, Stott SL, Toner M. A highly-occupied, single-cell trapping microarray for determination of cell membrane permeability. LAB ON A CHIP 2017; 17:4077-4088. [PMID: 29068447 PMCID: PMC5702951 DOI: 10.1039/c7lc00883j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Semi- and selective permeability is a fundamentally important characteristic of the cell membrane. Membrane permeability can be determined by monitoring the volumetric change of cells following exposure to a non-isotonic environment. For this purpose, several microfluidic perfusion chambers have been developed recently. However, these devices only allow the observation of one single cell or a group of cells that may interact with one another in an uncontrolled way. Some of these devices have integrated on-chip temperature control to investigate the temperature-dependence of membrane permeability, but they inevitably require sophisticated fabrication and assembly, and delicate temperature and pressure calibration. Therefore, it is highly desirable to design a simple single-cell trapping device that allows parallel monitoring of multiple separate, individual cells subjected to non-isotonic exposure at various temperatures. In this study, we developed a pumpless, single-layer microarray with high trap occupancy of single cells. The benchmark performance of the device was conducted by targeting spherical particles of 18.8 μm in diameter as a model, yielding trap occupancy of up to 86.8% with a row-to-row shift of 10-30 μm. It was also revealed that in each array the particles larger than a corresponding critical size would be excluded by the traps in a deterministic lateral displacement mode. Demonstrating the utility of this approach, we used the single-cell trapping device to determine the membrane permeability of rat hepatocytes and patient-derived circulating tumor cells (Brx-142) at 4, 22 and 37 °C. The membrane of rat hepatocytes was found to be highly permeable to water and small molecules such as DMSO and glycerol, via both lipid- and aquaporin-mediated pathways. Brx-142 cells, however, displayed lower membrane permeability than rat hepatocytes, which was associated with strong coupling of water and DMSO transport but less interaction between water and glycerol. The membrane permeability data reported here provide new insights into the biophysics of membrane transport such as aquaporin expression and coupling transport of water and solutes, as well as providing essential data for the ultimate goal of biobanking rare cells and precious tissues.
Collapse
Affiliation(s)
- Lindong Weng
- The Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Felix Ellett
- The Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Jon Edd
- The Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Keith HK Wong
- The Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Korkut Uygun
- The Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Daniel Irimia
- The Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Shannon L. Stott
- The Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mehmet Toner
- The Center for Engineering in Medicine, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospital for Children, Boston, MA 02114, USA
| |
Collapse
|
9
|
Zhao G, Zhang Z, Zhang Y, Chen Z, Niu D, Cao Y, He X. A microfluidic perfusion approach for on-chip characterization of the transport properties of human oocytes. LAB ON A CHIP 2017; 17:1297-1305. [PMID: 28244515 PMCID: PMC5399771 DOI: 10.1039/c6lc01532h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Accurate characterization of the cell membrane transport properties of human oocytes is of great significance to reproductive pharmacology, fertility preservation, and assisted reproduction. However, the commonly used manual method for quantifying the transport properties is associated with uncontrolled operator-to-operator and run-to-run variability. Here, we report a novel sandwich structured microfluidic device that can be readily fabricated for characterizing oocyte membrane transport properties. Owing to its capacity for excellent control of both solution replacement and temperature in the microchannel, the temperature-dependent permeability of the oocyte membrane can be precisely characterized. Furthermore, the fertilization and developmental competence analysis post perfusion indicate that our approach does not compromise the physiological function of in vitro matured human oocytes. Collectively, we present the development of a novel sandwich structured microfluidic device based approach that allows on-chip characterization of the transport properties of human oocytes under innocuous osmotic shock or injury to the cells.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yuntian Zhang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Dan Niu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
10
|
Edashige K. Permeability of the plasma membrane to water and cryoprotectants in mammalian oocytes and embryos: Its relevance to vitrification. Reprod Med Biol 2016; 16:36-39. [PMID: 29259448 PMCID: PMC5715871 DOI: 10.1002/rmb2.12007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/25/2016] [Indexed: 11/28/2022] Open
Abstract
The permeability of the plasma membrane to water and cryoprotectants is one of the important factors for determining the suitable condition for the vitrification of mammalian oocytes and embryos. Water and cryoprotectants move slowly through oocytes and early embryos, principally by simple diffusion, in the mouse, bovine, pig, and human. In contrast, water, glycerol, and ethylene glycerol move rapidly through morulae and blastocysts, principally by facilitated diffusion via aquaporin 3, in the mouse and bovine; whereas, in the pig, the permeability to water and these cryoprotectants increases not at the morula stage but at the blastocyst stage and further increases at the expanded blastocyst stage. Dimethyl sulfoxide also moves rapidly via channels other than aquaporin 3 in the mouse. In contrast, propylene glycol moves through morulae and blastocysts principally by simple diffusion in the mouse, bovine, and pig, as through oocytes. Therefore, the permeability of mammalian oocytes and embryos at early stages to water and cryoprotectants is low, but that of embryos at later stages to water and some cryoprotectants is markedly high by channel processes, although species specificity exists in some cases.
Collapse
|
11
|
Xu Y, Zhang L, Xu J, Wei Y, Xu X. Sensitivity of human embryonic stem cells to different conditions during cryopreservation. Cryobiology 2015; 71:486-92. [PMID: 26548334 DOI: 10.1016/j.cryobiol.2015.10.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/18/2022]
Abstract
Low cell recovery rate of human embryonic stem cells (hESCs) resulting from cryopreservation damages leads to the difficulty in their successful commercialization of clinical applications. Hence in this study, sensitivity of human embryonic stem cells (hESCs) to different cooling rates, ice seeding and cryoprotective agent (CPA) types was compared and cell viability and recovery after cryopreservation under different cooling conditions were assessed. Both extracellular and intracellular ice formation were observed. Reactive oxidative species (ROS) accumulation of hESCs was determined. Cryopreservation of hESCs at 1 °C/min with the ice seeding and at the theoretically predicted optimal cooling rate (TPOCR) led to lower level of intracellular ROS, and prevented irregular and big ice clump formation compared with cryopreservation at 1 °C/min. This strategy further resulted in a significant increase in the hESC recovery when glycerol and 1,2-propanediol were used as the CPAs, but no increase for Me2SO. hESCs after cryopreservation under all the tested conditions still maintained their pluripotency. Our results provide guidance for improving the hESC cryopreservation recovery through the combination of CPA type, cooling rate and ice seeding.
Collapse
Affiliation(s)
- Yanqing Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Liang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jiandong Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yuping Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Xia Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
12
|
Yoo IK, Kim JI, Kang YK. Conformational preferences and antimicrobial activities of alkanediols. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Xu Y, Zhang L, Xu J, Wei Y, Xu X. Membrane permeability of the human pluripotent stem cells to Me₂SO, glycerol and 1,2-propanediol. Arch Biochem Biophys 2014; 550-551:67-76. [PMID: 24780243 DOI: 10.1016/j.abb.2014.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/03/2014] [Accepted: 04/21/2014] [Indexed: 11/15/2022]
Abstract
Due to the unlimited capacity of self-renew and ability to differentiate into derivatives of three germ layers, human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), have a great potential in regenerative medicine. A major challenge we are facing during the long-term storage of human pluripotent stem cells with the conventional slow cooling rate is the low cell recovery rate after cryopreservation which cannot meet the requirements for the future clinical applications. Evaluating the cell membrane permeability and the corresponding activation energy of hESCs and hiPSCs for water and different cryoprotective agents (CPA), including dimethyl sulfoxide (Me2SO), 1,2-propandiol and glycerol, is important for facilitating the development of cryopreservation protocol to enhance cell recovery after the cryopreservation. The osmotically inactive volume of hESCs and hiPSCs determined using the Boyle-van't Hoff model was 0.32V0 and 0.42V0, respectively. The membrane permeability was assessed from the volume changes of cells exposed to Me2SO, 1,2-propanediol and glycerol at the temperatures ranging from 8 to 30°C. These results showed the biophysical differences between hESCs and hiPSCs. Their activation energy for water and CPAs extrapolated from the Arrhenius relationship indicated that the water transport was probably not through the channel-mediated mechanism.
Collapse
Affiliation(s)
- Yanqing Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiandong Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuping Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xia Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
14
|
Jiménez-Trigos E, Vicente JS, Marco-Jiménez F. Live birth from slow-frozen rabbit oocytes after in vivo fertilisation. PLoS One 2013; 8:e83399. [PMID: 24358281 PMCID: PMC3866232 DOI: 10.1371/journal.pone.0083399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/12/2013] [Indexed: 02/03/2023] Open
Abstract
In vivo fertilisation techniques such as intraoviductal oocyte transfer have been considered as alternatives to bypass the inadequacy of conventional in vitro fertilisation in rabbit. There is only one study in the literature, published in 1989, that reports live offspring from cryopreserved rabbit oocytes. The aim of the present study was to establish the in vivo fertilisation procedure to generate live offspring with frozen oocytes. First, the effect of two recipient models (i) ovariectomised or (ii) oviduct ligated immediately after transfer on the ability of fresh oocytes to fertilise were compared. Second, generation of live offspring from slow-frozen oocytes was carried out using the ligated oviduct recipient model. Throughout the experiment, recipients were artificially inseminated 9 hours prior to oocyte transfer. In the first experiment, two days after unilateral transfer of fresh oocytes, oviducts and uterine horns were flushed to assess embryo recovery rates. The embryo recovery rates were low compared to control in both ovariectomised and ligated oviduct groups. However, ligated oviduct recipient showed significantly (P<0.05) higher embryo recovery rates compared to ovariectomised and control-transferred. In the second experiment, using bilateral oviduct ligation model, all females that received slow-frozen oocytes became pregnant and delivered a total of 4 live young naturally. Thus, in vivo fertilisation is an effective technique to generate live offspring using slow-frozen oocytes in rabbits.
Collapse
Affiliation(s)
- Estrella Jiménez-Trigos
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universitat Politècnica de València, Valencia, Spain
| | - José S. Vicente
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universitat Politècnica de València, Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
15
|
Karlsson JOM, Szurek EA, Higgins AZ, Lee SR, Eroglu A. Optimization of cryoprotectant loading into murine and human oocytes. Cryobiology 2013; 68:18-28. [PMID: 24246951 DOI: 10.1016/j.cryobiol.2013.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 11/28/2022]
Abstract
Loading of cryoprotectants into oocytes is an important step of the cryopreservation process, in which the cells are exposed to potentially damaging osmotic stresses and chemical toxicity. Thus, we investigated the use of physics-based mathematical optimization to guide design of cryoprotectant loading methods for mouse and human oocytes. We first examined loading of 1.5 M dimethyl sulfoxide (Me(2)SO) into mouse oocytes at 23°C. Conventional one-step loading resulted in rates of fertilization (34%) and embryonic development (60%) that were significantly lower than those of untreated controls (95% and 94%, respectively). In contrast, the mathematically optimized two-step method yielded much higher rates of fertilization (85%) and development (87%). To examine the causes for oocyte damage, we performed experiments to separate the effects of cell shrinkage and Me(2)SO exposure time, revealing that neither shrinkage nor Me(2)SO exposure single-handedly impairs the fertilization and development rates. Thus, damage during one-step Me(2)SO addition appears to result from interactions between the effects of Me(2)SO toxicity and osmotic stress. We also investigated Me(2)SO loading into mouse oocytes at 30°C. At this temperature, fertilization rates were again lower after one-step loading (8%) in comparison to mathematically optimized two-step loading (86%) and untreated controls (96%). Furthermore, our computer algorithm generated an effective strategy for reducing Me(2)SO exposure time, using hypotonic diluents for cryoprotectant solutions. With this technique, 1.5 M Me(2)SO was successfully loaded in only 2.5 min, with 92% fertilizability. Based on these promising results, we propose new methods to load cryoprotectants into human oocytes, designed using our mathematical optimization approach.
Collapse
Affiliation(s)
- Jens O M Karlsson
- Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, USA
| | - Edyta A Szurek
- Institute of Molecular Medicine and Genetics, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Adam Z Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Sang R Lee
- Institute of Molecular Medicine and Genetics, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Ali Eroglu
- Institute of Molecular Medicine and Genetics, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Obstetrics and Gynecology, and Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
16
|
Vanderzwalmen P, Connan D, Grobet L, Wirleitner B, Remy B, Vanderzwalmen S, Zech N, Ectors FJ. Lower intracellular concentration of cryoprotectants after vitrification than after slow freezing despite exposure to higher concentration of cryoprotectant solutions. Hum Reprod 2013; 28:2101-10. [DOI: 10.1093/humrep/det107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Lee JA, Barritt J, Moschini RM, Slifkin RE, Copperman AB. Optimizing human oocyte cryopreservation for fertility preservation patients: should we mature then freeze or freeze then mature? Fertil Steril 2012; 99:1356-62. [PMID: 23266213 DOI: 10.1016/j.fertnstert.2012.11.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 11/09/2012] [Accepted: 11/20/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the maturation and post-thaw survival rates of immature oocytes to determine whether in vitro maturation (IVM) should be attempted prior to or after cryopreservation. DESIGN Nonrandomized observational study. SETTING Private academic and clinical reproductive center. PATIENT(S) Patients (n = 71) who donated immature unusable oocytes after vaginal oocyte retrieval (VOR) after undergoing controlled ovarian hyperstimulation using a standard GnRH antagonist protocol. INTERVENTION(S) Germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) oocytes (n = 175) were obtained from consenting IVF patients for fresh IVM, post-thaw IVM, or control group. In the fresh IVM group, GV- and MI- stage oocytes (n = 69) were cultured for 24 hours, matured in vitro (IVM-MII), cryopreserved, thawed, and evaluated for survival. In the post-thaw IVM group, GV- and MI- stage oocytes (n = 27) were frozen on day 0, thawed, evaluated for survival, and cultured for 24-hour IVM. MII donor oocytes (n = 79) were cryopreserved and thawed as a control. MAIN OUTCOME MEASURE(S) Survival postfreeze and oocyte development to the MII stage was analyzed using a χ(2) analysis. RESULT(S) Fresh IVM had a significantly higher maturation rate than post-thaw IVM. CONCLUSION(S) Oocyte cryopreservation is important for patients at risk of ovarian cancer, elective fertility preservation, and, potentially, for ovum donation. The superior maturation rate of GV and MI oocytes in the fresh versus post-thaw groups provides strong evidence for maturing oocytes to the MII stage before cryopreservation.
Collapse
Affiliation(s)
- Joseph A Lee
- Reproductive Medicine Associates of New York, New York, NY 10022, USA.
| | | | | | | | | |
Collapse
|
18
|
Benson JD, Chicone CC, Critser JK. Analytical optimal controls for the state constrained addition and removal of cryoprotective agents. Bull Math Biol 2012; 74:1516-30. [PMID: 22527943 DOI: 10.1007/s11538-012-9724-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
Abstract
Cryobiology is a field with enormous scientific, financial, and even cultural impact. Successful cryopreservation of cells and tissues depends on the equilibration of these materials with high concentrations of permeating chemicals (CPAs) such as glycerol or 1,2 propylene glycol. Because cells and tissues are exposed to highly anisosmotic conditions, the resulting gradients cause large volume fluctuations that have been shown to damage cells and tissues. On the other hand, there is evidence that toxicity to these high levels of chemicals is time dependent, and therefore it is ideal to minimize exposure time as well. Because solute and solvent flux is governed by a system of ordinary differential equations, CPA addition and removal from cells is an ideal context for the application of optimal control theory. Recently, we presented a mathematical synthesis of the optimal controls for the ODE system commonly used in cryobiology in the absence of state constraints and showed that controls defined by this synthesis were optimal. Here we define the appropriate model, analytically extend the previous theory to one encompassing state constraints, and as an example apply this to the critical and clinically important cell type of human oocytes, where current methodologies are either difficult to implement or have very limited success rates. We show that an enormous increase in equilibration efficiency can be achieved under the new protocols when compared to classic protocols, potentially allowing a greatly increased survival rate for human oocytes and pointing to a direction for the cryopreservation of many other cell types.
Collapse
Affiliation(s)
- James D Benson
- Department of Mathematical Sciences, Northern Illinois University, Dekalb, IL 60178, USA.
| | | | | |
Collapse
|
19
|
Heo YS, Lee HJ, Hassell BA, Irimia D, Toth TL, Elmoazzen H, Toner M. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. LAB ON A CHIP 2011; 11:3530-7. [PMID: 21887438 PMCID: PMC3755277 DOI: 10.1039/c1lc20377k] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oocyte cryopreservation has become an essential tool in the treatment of infertility by preserving oocytes for women undergoing chemotherapy. However, despite recent advances, pregnancy rates from all cryopreserved oocytes remain low. The inevitable use of the cryoprotectants (CPAs) during preservation affects the viability of the preserved oocytes and pregnancy rates either through CPA toxicity or osmotic injury. Current protocols attempt to reduce CPA toxicity by minimizing CPA concentrations, or by minimizing the volume changes via the step-wise addition of CPAs to the cells. Although the step-wise addition decreases osmotic shock to oocytes, it unfortunately increases toxic injuries due to the long exposure times to CPAs. To address limitations of current protocols and to rationally design protocols that minimize the exposure to CPAs, we developed a microfluidic device for the quantitative measurements of oocyte volume during various CPA loading protocols. We spatially secured a single oocyte on the microfluidic device, created precisely controlled continuous CPA profiles (step-wise, linear and complex) for the addition of CPAs to the oocyte and measured the oocyte volumetric response to each profile. With both linear and complex profiles, we were able to load 1.5 M propanediol to oocytes in less than 15 min and with a volumetric change of less than 10%. Thus, we believe this single oocyte analysis technology will eventually help future advances in assisted reproductive technologies and fertility preservation.
Collapse
Affiliation(s)
- Yun Seok Heo
- BioMEMS Resource Center, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA, 02114, USA
| | - Ho-Joon Lee
- The Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bryan A. Hassell
- BioMEMS Resource Center, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA, 02114, USA
| | - Thomas L. Toth
- Vincent Obstetrics and Gynecology Services, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Heidi Elmoazzen
- BioMEMS Resource Center, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA, 02114, USA
| | - Mehmet Toner
- BioMEMS Resource Center, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
20
|
Jiménez-Trigos E, Naturil-Alfonso C, Vicente JS, Marco-Jiménez F. Effects of cryopreservation on the meiotic spindle, cortical granule distribution and development of rabbit oocytes. Reprod Domest Anim 2011; 47:472-8. [PMID: 22497624 DOI: 10.1111/j.1439-0531.2011.01906.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although much progress has been made in oocyte cryopreservation since 1971, live offspring have only been obtained in a few species and in rabbits. The aim of our study was to evaluate the effect of vitrification and slow freezing on the meiotic spindle, cortical granule (CG) distribution and their developmental competence. Oocytes were vitrified in 16.84% ethylene glycol, 12.86% formamide, 22.3% dimethyl sulphoxide, 7% PVP and 1% of synthetic ice blockers using Cryotop as device or slow freezing in 1.5 m PROH and 0.2 m sucrose in 0.25 ml sterile French mini straws. Meiotic spindle and CG distribution were assessed using a confocal laser-scanning microscope. To determine oocyte competence, in vitro development of oocytes from each cryopreservation procedure was assessed using parthenogenesis activation. Our data showed that oocytes were significantly affected by both cryopreservation procedures. In particular, meiotic spindle organization was dramatically altered after cryopreservation. Oocytes with peripheral CG distribution have a better chance of survival in cryopreservation after slow-freezing procedures compared to vitrification. In addition, slow freezing of oocytes led to higher cleavage and blastocyst rates compared to vitrification. Our data showed that, in rabbits, structural alterations are more evident in vitrified oocytes than in slow-frozen oocytes, probably as a consequence of sensitivity to high levels of cryoprotectants. Slow-freezing method is currently the recommended option for rabbit oocyte cryopreservation.
Collapse
Affiliation(s)
- E Jiménez-Trigos
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universidad Politécnica de Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
21
|
Assessment of 1,2-propanediol (PrOH) genotoxicity on mouse oocytes by comet assay. Fertil Steril 2011; 96:1002-7. [DOI: 10.1016/j.fertnstert.2011.07.1106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 06/30/2011] [Accepted: 07/19/2011] [Indexed: 11/19/2022]
|
22
|
De Santis L, Coticchio G. Reprint of: Theoretical and experimental basis of slow freezing. Reprod Biomed Online 2011; 23:290-7. [PMID: 21889729 DOI: 10.1016/j.rbmo.2011.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/14/2010] [Accepted: 10/19/2010] [Indexed: 11/17/2022]
Abstract
In human IVF, cryopreservation of oocytes has become an alternative to embryo storage. It has also shown enormous potential for oocyte donation, fertility preservation and animal biotechnology. Mouse oocytes have represented the elective model to develop oocyte cryopreservation in the human and over several decades their use has made possible the development of theoretical and empirical approaches. Progress in vitrification has overshadowed slow freezing to such an extent that it has been suggested that vitrification could soon become the exclusive cryopreservation choice in human IVF. However, recent studies have clearly indicated that human embryo slow freezing, a practice considered well established for decades, can be significantly improved by a simple empirical approach. Alternatively, recent and more advanced theoretical models can predict oocyte responses to the diverse factors characterizing an entire slow-freezing procedure, offering a global method for the improvement of current protocols. This gives credit to the notion that oocyte slow freezing still has considerable margins for improvement. In human IVF, cryopreservation of oocytes has become an alternative to embryo storage. It has also shown enormous potential for oocyte donation, fertility preservation and animal biotechnology. Mouse oocytes have represented the elective model to develop oocyte cryopreservation in the human and over several decades their use has made possible the development of theoretical and empirical approaches. Progress in vitrification has overshadowed slow freezing to such an extent that it has been suggested that vitrification could soon become the exclusive cryopreservation choice in human IVF. However, recent studies have clearly indicated that human embryo slow freezing, a practice considered well established for decades, can be significantly improved by a simple empirical approach. Alternatively, recent and more advanced theoretical models can predict oocyte responses to the diverse factors characterizing an entire slow freezing procedure, offering a global method for the improvement of current protocols. This gives credit to the notion that oocyte slow freezing still has considerable margins of improvement.
Collapse
Affiliation(s)
- Lucia De Santis
- IVF Unit, Dept. Ob/Gyn, H S. Raffaele, Vita-Salute University, Milan, Italy
| | | |
Collapse
|
23
|
Leibo S, Pool TB. The principal variables of cryopreservation: solutions, temperatures, and rate changes. Fertil Steril 2011; 96:269-76. [DOI: 10.1016/j.fertnstert.2011.06.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
|
24
|
Theoretical and experimental basis of slow freezing. Reprod Biomed Online 2011; 22:125-32. [DOI: 10.1016/j.rbmo.2010.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/14/2010] [Accepted: 10/19/2010] [Indexed: 11/22/2022]
|
25
|
|
26
|
|
27
|
Deutsch M, Afrimzon E, Namer Y, Shafran Y, Sobolev M, Zurgil N, Deutsch A, Howitz S, Greuner M, Thaele M, Zimmermann H, Meiser I, Ehrhart F. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. I: methodology. BMC Cell Biol 2010; 11:54. [PMID: 20609216 PMCID: PMC2912820 DOI: 10.1186/1471-2121-11-54] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 07/07/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient. RESULTS The present study suggests a new approach in cryopreservation, utilizing the Individual Cell-based Cryo-Chip (i3C). The i3C is made of materials having appropriate durability for cryopreservation conditions. The core of this approach is an array of picowells, each picowell designed to maintain an individual cell during the severe conditions of the freezing--thawing cycle and accompanying treatments. More than 97% of cells were found to retain their position in the picowells throughout the entire freezing--thawing cycle and medium exchange. Thus the comparison between pre-freezing and post-thawing data can be achieved at an individual cell resolution. The intactness of cells undergoing slow freezing and thawing, while residing in the i3C, was found to be similar to that obtained with micro-vials. However, in a fast freezing protocol, the i3C was found to be far superior. CONCLUSIONS The results of the present study offer new opportunities for cryopreservation. Using the present methodology, the cryopreservation of individual identifiable cells, and their observation and retrieval, at an individual cell resolution become possible for the first time. This approach facilitates the correlation between cell characteristics before and after the freezing--thawing cycle. Thus, it is expected to significantly enhance current cryopreservation procedures for successful regenerative and reproductive medicine.
Collapse
Affiliation(s)
- Mordechai Deutsch
- The Biophysical Interdisciplinary Schottenstein Center for the Research and Technology of the Cellome, Bar-Ilan University, Ramat Gan 52900, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aye M, Di Giorgio C, De Mo M, Botta A, Perrin J, Courbiere B. Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: Dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem Toxicol 2010; 48:1905-12. [DOI: 10.1016/j.fct.2010.04.032] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/28/2010] [Accepted: 04/21/2010] [Indexed: 11/25/2022]
|
29
|
Affiliation(s)
- Susan L Barrett
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | |
Collapse
|
30
|
Keskintepe L, Agca Y, Sher G, Keskintepe M, Maassarani G. High survival rate of metaphase II human oocytes after first polar body biopsy and vitrification: determining the effect of previtrification conditions. Fertil Steril 2009; 92:1706-15. [DOI: 10.1016/j.fertnstert.2008.08.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/16/2008] [Accepted: 08/21/2008] [Indexed: 11/28/2022]
|
31
|
Liu J, Mullen S, Meng Q, Critser J, Dinnyes A. Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model. Cryobiology 2009; 59:127-34. [DOI: 10.1016/j.cryobiol.2009.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 04/22/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
|
32
|
Karlsson JOM, Younis AI, Chan AWS, Gould KG, Eroglu A. Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol Reprod Dev 2009; 76:321-33. [PMID: 18932214 DOI: 10.1002/mrd.20956] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful cryopreservation of oocytes of the rhesus monkey (Macaca mulatta) would facilitate the use of this valuable animal model in research on reproduction and development, while providing a stepping stone towards human oocyte cryopreservation and the conservation of endangered primate species. To enable rational design of cryopreservation techniques for rhesus monkey oocytes, we have determined their osmotic and permeability characteristics in the presence of dimethylsulfoxide (DMSO), ethylene glycol (EG), and propylene glycol (PROH), three widely used cryoprotectants. Using nonlinear regression to fit a membrane transport model to measurements of dynamic cell volume changes, we estimated the hydraulic conductivity (L(p)) and cryoprotectant permeability (P(s)) of mature and immature oocytes at 23.5 degrees C. Mature oocyte membranes were most permeable to PROH (P(s) = 0.56 +/- 0.05 microm/sec) and least permeable to DMSO (P(s) = 0.24 +/- 0.02 microm/sec); the permeability to EG was 0.34 +/- 0.07 microm/sec. In the absence of penetrating cryoprotectants, mature oocytes had L(p) = 0.55 +/- 0.05 microm/min/atm, whereas the hydraulic conductivity increased to 1.01 +/- 0.10, 0.61 +/- 0.07, or 0.86 +/- 0.06 microm/min/atm when mature oocytes were exposed to DMSO, EG, or PROH, respectively. The osmotically inactive volume (V(b)) in mature oocytes was 19.7 +/- 2.4% of the isotonic cell volume. The only statistically significant difference between mature and immature oocytes was a larger hydraulic conductivity in immature oocytes that were exposed to DMSO. The biophysical parameters measured in this study were used to demonstrate the design of cryoprotectant loading and dilution protocols by computer-aided optimization.
Collapse
Affiliation(s)
- Jens O M Karlsson
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
33
|
Greco E, Litwicka K, Ferrero S, Sapienza F, Minasi MG, Iacobelli M, Zavaglia D, Nagy ZP. Co-transfer of embryos derived from cryopreserved and fresh natural cycle oocytes: a pilot study. Reprod Biomed Online 2008; 17:530-6. [PMID: 18854108 DOI: 10.1016/s1472-6483(10)60241-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Italian legislation regarding reproductive medicine prohibits embryo storage while allowing cryopreservation of supernumerary oocytes. This study evaluated the effect of fresh oocytes obtained from natural unstimulated cycles on the clinical success rates derived from the use of frozen-thawed (FR-TH) oocytes obtained following ovarian stimulation. For 36 women, intracytoplasmic sperm injection was performed on FR-TH oocytes supplemented by a fresh oocyte, if available, derived from a natural cycle in which gonadotrophin-releasing hormone-antagonist was used for premature LH surge control. The retrieval rate of fresh oocytes was 61.1% and survival rate of FR-TH oocytes was 43.6%. The fertilization rate of fresh and FR-TH oocytes was 70% and 52.5%, respectively. Fifty embryos were transferred, 14 of them developed from fresh oocytes and 36 from FR-TH oocytes. Six pregnancies occurred in 10 cycles in which the embryos developed from fresh and FR-TH oocytes (pregnancy rate 60.0%) and two in 12 patients in whom the embryos were obtained from only FR-TH oocytes (pregnancy rate 16.7%) (P < 0.05). In summary, the data demonstrate that the transfer of embryos derived from oocytes cryopreserved following a previous ovarian stimulation and an embryo developed from a fresh one retrieved in natural cycle ensures an excellent clinical outcome.
Collapse
Affiliation(s)
- E Greco
- Assisted Reproduction Centre, European Hospital, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mullen SF, Li M, Li Y, Chen ZJ, Critser JK. Human oocyte vitrification: the permeability of metaphase II oocytes to water and ethylene glycol and the appliance toward vitrification. Fertil Steril 2008; 89:1812-25. [PMID: 17681308 PMCID: PMC2494737 DOI: 10.1016/j.fertnstert.2007.06.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/06/2007] [Accepted: 06/06/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the permeability of human metaphase II oocytes to ethylene glycol and water in the presence of ethylene glycol, and to use this information to develop a method to vitrify human oocytes. DESIGN An incomplete randomized block design. SETTING A university-affiliated assisted reproductive center. PATIENT(S) Women undergoing assisted reproduction in the Center for Reproductive Medicine at Shandong University. INTERVENTION(S) Oocytes were exposed to 1.0 molar ethylene glycol in a single step and photographed during subsequent volume excursions. MAIN OUTCOME MEASURE(S) A two-parameter model was employed to estimate the permeability to water and ethylene glycol. RESULT(S) Water permeability ranged from 0.15 to 1.17 microm/(min.atm), and ethylene glycol permeability ranged from 1.5 to 30 microm/min between 7 degrees C at 36 degrees C. The activation energies for water and ethylene glycol permeability were 14.42 Kcal/mol and 21.20 Kcal/mol, respectively. CONCLUSION(S) Despite the lower permeability of human metaphase II oocytes to ethylene glycol compared with previously published values for propylene glycol and dimethylsulfoxide, methods to add and remove human oocytes with a vitrifiable concentration of ethylene glycol can be designed that prevent excessive osmotic stress and minimize exposure to high concentrations of this compound.
Collapse
Affiliation(s)
- Steven F. Mullen
- The Comparative Medicine Center and Department of Veterinary Pathobiology, The University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Mei Li
- The Reproductive Medical Center of Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
| | - Yuan Li
- The Reproductive Medical Center of Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
| | - Zi-Jiang Chen
- The Reproductive Medical Center of Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- The Department of Medical Microbiology and Immunology, The University of Missouri at Columbia, Columbia, MO 65211, USA
| | - John K. Critser
- The Comparative Medicine Center and Department of Veterinary Pathobiology, The University of Missouri at Columbia, Columbia, MO 65211, USA
- The Reproductive Medical Center of Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- The Department of Medical Microbiology and Immunology, The University of Missouri at Columbia, Columbia, MO 65211, USA
| |
Collapse
|
35
|
Abstract
The clinical role of oocyte cryopreservation in assisted reproduction, as an adjunct to sperm and embryo cryopreservation, has been comparatively slow to evolve as a consequence of theoretical concerns related to efficacy and safety. Basic biological studies in the 1990's alleviated many of these concerns leading to more widespread adoption of the technology. While a number of babies were born from the approach validated in the 1990's, its perceived clinical inefficiency led to the search for improved methods. Introduction of elevated dehydrating sucrose concentrations during cryopreservation increased survival and fertilization rates, but there is no well-controlled evidence of improved clinical outcome. Similarly, the use of sodium-depleted cryopreservation media has not been demonstrated to increase clinical efficiency. More recently, and in the absence of basic biological studies addressing safety issues, the application of vitrification techniques to human oocytes has resulted in reports of a number of live births. The small number of babies born from clinical oocyte cryopreservation and the paucity of well-controlled studies currently preclude valid comparisons between approaches. Legal restrictions on the ability to select embryos from cryopreserved oocytes in Italy, where many of the available reports originate, also obscure attempts to assess oocyte cryopreservation objectively.
Collapse
Affiliation(s)
- Debra A Gook
- Reproductive Services/Melbourne IVF, Royal Women's Hospital, 132 Grattan Street, Carlton, Victoria 3053, and Department of Obstetrics and Gynaecology, University of Melbourne, Australia.
| | | |
Collapse
|
36
|
Coticchio G, Bonu MA, Sciajno R, Sereni E, Bianchi V, Borini A. Truths and myths of oocyte sensitivity to controlled rate freezing. Reprod Biomed Online 2007; 15:24-30. [PMID: 17623530 DOI: 10.1016/s1472-6483(10)60687-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mammalian oocyte is especially sensitive to cryopreservation. Because of its size and physiology, it can easily undergo cell death or sub-lethal damage as a consequence of intracellular ice formation, increase in the concentration of solutes and other undesired effects during the conversion of extracellular water into ice. This has generated the belief that oocyte storage cannot be achieved with the necessary efficiency and safety. However, many concerns raised by oocyte freezing are the result of unproven hypotheses or observations conducted under sometimes inappropriate conditions. For instance, spindle organization can undergo damage under certain freezing conditions but not with other protocols. The controversial suggestion that cryopreservation induces cortical granule discharge and zona pellucida hardening somehow questions the routine use of sperm microinjection. Damage to mouse oocytes caused by solute concentration is well documented but, in the human, there is no solid evidence that modifications of freezing mixtures, to prevent this problem, provide an actual advantage. The hope of developing oocyte cryopreservation as a major IVF option is becoming increasingly realistic, but major efforts are still required to clarify the authentic implications of oocyte cryopreservation at the cellular level and identify freezing conditions compatible with the preservation of viability and developmental ability.
Collapse
Affiliation(s)
- G Coticchio
- Tecnobios Procreazione, via Dante 15, 40125 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
De Santis L, Cino I, Rabellotti E, Papaleo E, Calzi F, Fusi FM, Brigante C, Ferrari A. Oocyte cryopreservation: clinical outcome of slow-cooling protocols differing in sucrose concentration. Reprod Biomed Online 2007; 14:57-63. [PMID: 17207332 DOI: 10.1016/s1472-6483(10)60764-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oocyte cryopreservation represents an important option for management of female fertility, avoiding the ethical concerns associated with embryo storage. This retrospective study evaluated the clinical outcome of two alternative slow freezing protocols involving different sucrose concentrations. From January 2004 to March 2006, spare oocytes from selected couples undergoing IVF or intracytoplasmic sperm injection were frozen using a slow-cooling protocol and thawed at a later stage. Patients were divided into two groups: group A (n = 65), whose oocytes were frozen with propane-1,2-diol (PrOH) and 0.1 mol/l sucrose; and group B (n = 66) whose oocytes were frozen with 0.3 mol/l sucrose. A total of 543 oocytes were thawed in group A and 601 in group B, achieving a survival rate of 24.3 and 71.2% respectively. Whilst fertilization rate (53.5 and 80.4% respectively) was higher in group B, enhanced results for group A were achieved over all (implantation rate per transferred embryos 12.2 versus 5.7%; pregnancy rate per transfer 16.7 versus 9.5%). Normal births and ongoing pregnancies have occurred in both groups. Although in slow-cooling methods higher sucrose concentration in the freezing mixture allows higher post-thaw survival and fertilization rates, overall this did not coincide with an improved clinical outcome.
Collapse
Affiliation(s)
- L De Santis
- Vita-Salute University, IVF Unit, H S Raffaele, Via Olgettina 60, 20132 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Li G, Thirumala S, Leibo SP, Devireddy RV. Subzero water transport characteristics and optimal rates of freezing rhesus monkey (Macaca mulatta) ovarian tissue. Mol Reprod Dev 2006; 73:1600-11. [PMID: 16902954 DOI: 10.1002/mrd.20541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of the present study was to examine the effect of two different suprazero (room temperature +25 degrees C to +4 degrees C) cooling conditions on the measured water transport response of primate (Macaca mulatta) ovarian tissue in the presence and absence of cryoprotective agents (CPAs). Freshly collected Macaca mulatta (rhesus monkey) ovarian tissue sections were cooled at either 0.5 degrees C/min or 40 degrees C/min from 25 to 4 degrees C. A shape independent differential scanning calorimeter (DSC) technique was then used to measure the volumetric shrinkage during freezing of ovarian tissue sections at a freezing rate of 5 degrees C/min in the presence and absence of three different CPAs (0.85 M glycerol, 0.85 M dimethylsulfoxide, and 0.85 M ethylene glycol). Thus, water transport during freezing of primate ovarian tissue was obtained at eight different conditions (i.e., at four different freezing media with two different suprazero cooling conditions). The water transport response of ovarian tissue cooled rapidly from 25 to 4 degrees C was significantly different (P < 0.01) than that of slow cooled tissue, in the freezing media without CPAs and with dimethylsulfoxide. However, the differences in the measured water transport response due to the imposed suprazero cooling conditions were reduced with the addition of glycerol and ethylene glycol (statistically different with P < 0.05). By fitting a model of water transport to the experimentally obtained volumetric shrinkage data the best-fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The best-fit parameters of water transport in primate ovarian tissue sections ranged from: L(pg) = 0.7 to 0.15 microm/min-atm and E(Lp) = 22.1 to 32.1 kcal/mol (the goodness of fit parameter, R(2) > 0.96). These parameters suggest that the "optimal rates of cryopreservation" for ovarian tissue are significantly dependent upon suprazero cooling conditions and the choice of CPA.
Collapse
Affiliation(s)
- G Li
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, 70803, USA
| | | | | | | |
Collapse
|
39
|
Amorim CA, Rondina D, Lucci CM, Gonçalves PBD, Figueiredo JRD, Giorgetti A. Permeability of ovine primordial follicles to different cryoprotectants. Fertil Steril 2006; 85 Suppl 1:1077-81. [PMID: 16616077 DOI: 10.1016/j.fertnstert.2005.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To determine the behavior of isolated primordial follicles that were exposed to different concentrations of dimethyl sulfoxide (DMSO), ethylene glycol (EG), propylene glycol (PROH), and glycerol (GLY). DESIGN Isolated primordial follicles were exposed to the cryoprotectant (CPA) solution and photographed to calculate their volume at different periods of exposure. SETTING Laboratorio Renzo Giuliani, University of Florence, Italy. ANIMAL(S) Lambs, 30-40 days old. INTERVENTION(S) Isolation of primordial follicles and subsequent exposure to CPA. MAIN OUTCOME MEASURE(S) Follicular volume. RESULT(S) At 2 minutes of CPA exposure, all follicles appeared to be shrunken. At approximately 5 minutes, shrinkage ceased, and follicles started to swell, absorbing the CPA and water to maintain osmotic equilibrium. When DMSO was tested, follicular dehydration in all concentrations did not exceed 17%; with PROH and EG, it reached 33% and 27%, respectively. The highest degree of dehydration (48%) was seen with GLY. In almost all tested concentrations, follicular shrinkage occurred up to 5 minutes. CONCLUSION(S) Volume changes in isolated primordial follicles can fluctuate according to the CPA used and its concentration.
Collapse
|
40
|
Wang P, Shu Z, He L, Chen S, Wang Y, Li Wang X. The Structural and Cellular Viability in Cryopreserved Rabbit Carotid Arteries. J Surg Res 2006; 131:241-51. [PMID: 16427085 DOI: 10.1016/j.jss.2005.11.573] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 10/21/2005] [Accepted: 11/01/2005] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We investigated the histological and mechanical changes in addition to viable cellular recovery in cryopreserved blood vessels. MATERIALS AND METHODS Rabbit carotids were cryopreserved in a cryoprotective medium containing 1.5 M of 1,2-propanediol (PD) and then were thawed slowly in an ice bag that had been precooled in liquid nitrogen. Fresh carotids were used as the control. The fresh and freeze-thawed arteries were cultured for the growth of vascular smooth muscle cells (VSMCs). The freeze-thawed arterial tissues were perfused in vitro for 6, 12, or 24 h, respectively, to assess the integrity of carotid walls and the mechanical properties. RESULTS The results showed that it took almost the same time (24 approximately 36 h) for the VSMCs of the PD-cryopreserved arteries to regenerate as those from the fresh arteries. Their growing speeds also were similar. On the contrary, Me2SO-cryopreserved (1.5 M) arteries were unable to regenerate VSMCs in culture. After freeze-thawing, the mechanical properties decreased significantly (P < 0.003 for elastic modulus and P < 0.001 for fracture strength). After in vitro perfusion of the freeze-thawed carotid arteries, all of the survived endothelial cells fell off, and some of the VSMCs denaturalized or necrosed. The internal elastic fibers and collagen showed various degrees of cracking. The mechanical properties were decreased (P < 0.05). CONCLUSION Our findings demonstrate that the PD-containing cryoprotective medium can preserve regenerative capacity of VSMCs, which makes it a useful technique for viable VSMC recovery. However, the freeze-thawing process and the in vitro perfusion caused serious disruption in the arterial mechanical properties, rendering the cryopreserved blood vessels less useful for vessel reconstruction.
Collapse
Affiliation(s)
- Peitao Wang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, China.
| | | | | | | | | | | |
Collapse
|
41
|
Coticchio G, De Santis L, Rossi G, Borini A, Albertini D, Scaravelli G, Alecci C, Bianchi V, Nottola S, Cecconi S. Sucrose concentration influences the rate of human oocytes with normal spindle and chromosome configurations after slow-cooling cryopreservation. Hum Reprod 2006; 21:1771-6. [PMID: 16549422 DOI: 10.1093/humrep/del073] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recently described slow-cooling cryopreservation protocols involving elevated sucrose concentration have improved survival frequencies of human oocytes, potentially overcoming a major hurdle that has limited the adoption of oocyte storage. Because implantation rates of embryos from frozen oocytes remain generally low, it is still debated whether, irrespective of survival rates, this form of cryopreservation leads inevitably to the disruption or complete loss of the metaphase II (MII) spindle. METHODS Human oocytes with an extruded polar body I (PBI) were cryopreserved using a slow-cooling method including 1.5 mol/l propane-1,2-diol (PrOH) and alternative sucrose concentrations (either 0.1 or 0.3 mol/l) in the freezing solution. Fresh control and frozen-thawed survived oocytes were analysed by confocal microscopy to evaluate MII spindle and chromosome organizations. RESULTS Of the 104 oocytes included in the unfrozen group, 76 (73.1%) displayed normal bipolar spindles with equatorially aligned chromosomes. Spindle and chromatin organizations were significantly affected (50.8%) after cryopreservation involving lower sucrose concentration (61 oocytes), whereas these parameters were unchanged (69.7%) using the 0.3 mol/l sucrose protocol (152 oocytes). CONCLUSIONS Partial disruption of the MII spindle and associated chromosomes accompanies inadequate cryopreservation during slow cooling. However, protocols adopting higher sucrose concentration in the freezing solution promote the retention of an intact chromosome segregation apparatus comparable in incidence to freshly collected oocytes.
Collapse
|
42
|
Pegg DE. The role of vitrification techniques of cryopreservation in reproductive medicine. HUM FERTIL 2006; 8:231-9. [PMID: 16393823 DOI: 10.1080/14647270500054803] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Traditional cryopreservation methods allow ice to form and solute concentrations to rise during the preservation process: both ice and high solute concentrations can cause damage. Cryoprotectants are highly soluble, permeating compounds of low toxicity; they reduce the amount of ice that crystallises at any given temperature and thereby limit the solute concentration factor. Vitrification methods use cryoprotectant concentrations that are sufficient to prevent the crystallisation of ice altogether: the material solidifies as an amorphous glass and both ice and solute concentration are avoided. However, the concentrations of cryoprotectant required are very high indeed and therefore are potentially, and often actually, harmful to cells. Optimisation of the temperature and the rate of introduction and removal of such high cryoprotectant concentrations are critical. The necessary concentration can be lowered if very rapid cooling, and even more rapid warming, are used. This paper draws on experience in other fields of cryobiology to discuss these basic phenomena and to consider the place of vitrification techniques in the cryopreservation of human gametes, embryos and gonads.
Collapse
Affiliation(s)
- David E Pegg
- Medical Cryobiology Unit, Biology Department, University of York, York, UK.
| |
Collapse
|
43
|
Devireddy RV, Li G, Leibo SP. Suprazero cooling conditions significantly influence subzero permeability parameters of mammalian ovarian tissue. Mol Reprod Dev 2006; 73:330-41. [PMID: 16362972 DOI: 10.1002/mrd.20418] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To model the cryobiological responses of cells and tissues, permeability characteristics are often measured at suprazero temperatures and the measured values are used to predict the responses at subzero temperatures. The purpose of the present study was to determine whether the rate of cooling from +25 to +4 degrees C influenced the measured water transport response of ovarian tissue at subzero temperatures in the presence or absence of cryoprotective agents (CPAs). Sections of freshly collected equine ovarian tissue were first cooled either at 40 degrees C/min or at 0.5 degrees C/min from 25 to 4 degrees C, and then cooled to subzero temperatures. A shape-independent differential scanning calorimeter (DSC) technique was used to measure the volumetric shrinkage during freezing of equine ovarian tissue sections. After ice was induced to form in the extracellular fluid within the specimen, the sample was frozen from the phase change temperature to -50 degrees C at 5 degrees C/min. Replicate samples were frozen in isotonic medium alone or in medium containing 0.85 M glycerol or 0.85 M dimethylsulfoxide. The water transport response of ovarian tissue samples cooled at 40 degrees C/min from 25 to 4 degrees C was significantly different (confidence level >95%) from that of tissue samples cooled at 0.5 degrees C/min, whether in the presence or absence of CPAs. We fitted a model of water transport to the experimentally-derived volumetric shrinkage data and determined the best-fit membrane permeability parameters (L(pg) and E(Lp)) of equine ovarian tissue during freezing. Subzero water transport parameters of ovarian tissue samples cooled at 0.5 degrees C/min from 25 to 4 degrees C ranged from: L(pg) = 0.06 to 0.73 microm/min.atm and E(Lp) = 6.1 to 20.5 kcal/mol. The corresponding parameters of samples cooled at 40 degrees C/min from 25 to 4 degrees C ranged from: L(pg) = 0.04 to 0.61 microm/min.atm and E(Lp) = 8.2 to 54.2 kcal/mol. Calculations made of the theoretical response of tissue at subzero temperatures suggest that the optimal cooling rates to cryopreserve ovarian tissue are significantly dependent upon suprazero cooling conditions.
Collapse
Affiliation(s)
- R V Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
44
|
Pedro PB, Yokoyama E, Zhu SE, Yoshida N, Valdez DM, Tanaka M, Edashige K, Kasai M. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J Reprod Dev 2005; 51:235-46. [PMID: 15883485 DOI: 10.1262/jrd.16079] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess the permeability of mouse oocytes and embryos, matured oocytes and embryos at various stages of development were placed in five cryoprotectant solutions at 25 C for 25 min. From the cross-sectional areas of the oocytes/embryos, the relative change in volume was analyzed. In oocytes, shrinkage was least extensive and recovery was quickest in the propylene glycol solution, showing that propylene glycol permeates the oocytes most rapidly. Dimethyl sulfoxide, acetamide, and ethylene glycol permeated the oocytes slightly more slowly than propylene glycol. The oocytes in glycerol shrunk extensively and then expanded marginally, indicating slow permeation. The volume changes of 1-cell and 2-cell embryos were similar to those of oocytes, showing little change in permeability. In 8-cell embryos, the volume recovered much faster than in the earlier stages especially in glycerol and acetamide. In morulae, the volume recovery was much faster in glycerol and in ethylene glycol; in ethylene glycol, the extent of shrinkage was small and the recovery was fast, indicating an extremely rapid permeation. Although the permeability of oocytes/embryos generally increased as embryo development proceeded, the degree of increase varied greatly among the cryoprotectants. Interestingly, the volume change in propylene glycol was virtually unaffected by the stage of development. Such information will be valuable for determining a suitable protocol for the cryopreservation of oocytes/embryos at different stages of development.
Collapse
Affiliation(s)
- Prudencio B Pedro
- Laboratory of Animal Science, College of Agriculture, Kochi University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Paynter SJ, Borini A, Bianchi V, De Santis L, Flamigni C, Coticchio G. Volume changes of mature human oocytes on exposure to cryoprotectant solutions used in slow cooling procedures. Hum Reprod 2005; 20:1194-9. [PMID: 15665009 DOI: 10.1093/humrep/deh742] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Despite the recent increase in pregnancies from cryopreserved human oocytes, success in terms of births per thawed oocyte is still poor. Modifications to cryopreservation protocols have not been based on measurement of the osmotic response of oocytes, and methodologies are often poorly described or protocols not strictly adhered to, inevitably resulting in variability. METHODS Volume change of mature human oocytes was measured on exposure to cryoprotectant. Oocytes were exposed to either 0.75 mol/l propane-1,2-diol (PrOH) for 10 min; 1.5 mol/l PrOH for 10 min, having been exposed to 0.75 mol/l PrOH for 7.5 min; or 1.5 mol/l PrOH plus 0.2 or 0.3 mol/l sucrose for 10 min, having been exposed to 1.5 mol/l PrOH for 10 min. RESULTS On exposure to PrOH alone, oocytes shrank and then re-expanded, having reached 75 and 84% of their starting volume in 0.75 and 1.5 mol/l, respectively. Oocytes shrank continuously in PrOH plus sucrose, reaching 67 or 55% of their initial volume in 0.2 or 0.3 mol/l sucrose, respectively. CONCLUSIONS To improve consistency following cryopreservation, protocols must be strictly adhered to; small changes in duration of exposure to cryoprotectant can result in drastic changes in cellular hydration and thus the fate of the cell during freezing/thawing.
Collapse
Affiliation(s)
- S J Paynter
- Department of Obstetrics and Gynaecology, Wales College of Medicine, Cardiff University, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Bianchi V, Coticchio G, Fava L, Flamigni C, Borini A. Meiotic spindle imaging in human oocytes frozen with a slow freezing procedure involving high sucrose concentration. Hum Reprod 2005; 20:1078-83. [PMID: 15760952 DOI: 10.1093/humrep/deh736] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND One of the major concerns derived from the cryopreservation of meiotically mature oocytes is possible damage to the cytoskeletal apparatus, and in particular the meiotic spindle. METHODS One hundred fresh oocytes showing the polar body I and high meiotic spindle birefringence (maximum retardance+/-1.5 mol/l SD = 2.58+/-0.1 nm), assessed through analysis, were included in this study. Oocytes were cryopreserved with a 1.5 mol/l 1,2-propanediol +0.3 mol/l sucrose solution. After thawing, spindles were imaged at 0, 3 and 5 h. Spindle birefringence was quantified by measuring microtubule maximum retardance. Signals of thawed oocytes were classified as absent (non-detectable), weak (1.55+/-0.3 nm) or high (2.50+/-0.2 nm). RESULTS Immediately after thawing, only 22.9% of oocytes showed a weak birefringence signal, while only 1.2% of oocytes displayed a high signal. Three hours after thawing, the proportion of oocytes exhibiting a weak or high intensity signal was 49.4% and 18.1%, respectively. Finally, after culture for 5 h following thawing, a weak birefringence signal was detected in 51.8% of oocytes, while 24.1% showed a high signal. There was a statistically significant increase in signal restoration after 3 h of culture (P < 0.001). CONCLUSIONS These results suggest that in mature oocytes stored via slow freezing, the meiotic spindle undergoes transient disappearance immediately after thawing but is reorganized in the majority of oocytes, at least to some extent, after 3-5 h of culture.
Collapse
Affiliation(s)
- V Bianchi
- Tecnobios Procreazione, Via Dante 15, 40125 Bologna and University of Bologna, 40125 Bologna, Italy
| | | | | | | | | |
Collapse
|
47
|
Abstract
Reports of clinical pregnancies from cryopreserved human oocytes have been steadily increasing in recent years. However, success in terms of births per thawed oocyte remains poor. A wide variety of freezing techniques has been used lately, but modifications to protocols are made on an empirical basis. Methods of cryopreservation are often poorly described or protocols are not strictly adhered to, resulting in variability of outcome. The first stage of a freezing protocol is exposure to cryoprotectant. If performed inappropriately, such exposure can result in damage due to chemical toxicity and/or osmotic stress. Measurement of cell volume change during exposure to cryoprotectants demonstrates the extent of osmotic stress experienced by that cell. Such measurements have been performed during perfusion of murine and human oocytes with cryoprotectant concentrations commonly used for cryopreservation of these cells. It has been demonstrated that changes in the cryoprotectant type, concentration and temperature of exposure can dramatically affect the extent of cell volume change. Even small changes in duration of exposure to cryoprotectant prior to cooling can result in drastic changes in cellular hydration. Such factors will potentially influence the ability of the cell to survive the stresses experienced during the subsequent stages of the cryopreservation protocol.
Collapse
Affiliation(s)
- S J Paynter
- Department of Obstetrics and Gynaecology, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
48
|
Borini A, Bonu MA, Coticchio G, Bianchi V, Cattoli M, Flamigni C. Pregnancies and births after oocyte cryopreservation. Fertil Steril 2004; 82:601-5. [PMID: 15374702 DOI: 10.1016/j.fertnstert.2004.04.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 04/04/2004] [Accepted: 04/04/2004] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine the potential of oocyte cryopreservation techniques. DESIGN Retrospective data analysis. SETTING A tertiary infertility center. PATIENT(S) Sixty-eight patients (29 to 37 years of age) undergoing assisted reproduction procedures for infertility problems. INTERVENTION(S) Oocytes from women treated for infertility were cryopreserved with a slow cooling/rapid thawing protocol in which 1,2 propanediol and sucrose were used as cryoprotectants. Eighty-six thawing cycles were performed. MAIN OUTCOME MEASURE(S) Rates of survival after thawing, fertilization after intracytoplasmic sperm injection, cleavage, implantation, and pregnancy. RESULT(S) We treated 68 patients through 86 thawing cycles. Seven hundred thirty-seven oocytes were thawed, and 59 transfer cycles were performed. The survival rate was 37%. The fertilization and cleavage rates were 45.4% and 86.3%, respectively. A total of 15 clinical pregnancies were achieved with pregnancy rates of 25.4% per transfer and 22% per patient. There were three miscarriages, resulting in an abortion rate of 20%. Seventeen of the 104 transferred embryos implanted, corresponding to an implantation rate of 16.4%. Thirteen babies were born, 8 females and 5 males. CONCLUSION(S) Statistically significant results were obtained for fertilization, cleavage, and pregnancy rates. Our results show oocyte cryopreservation may represent an alternative to embryo storage in selected cases.
Collapse
Affiliation(s)
- Andrea Borini
- Tecnobios Procreazione, Via Dante 15, 40125 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Coticchio G, Bonu MA, Borini A, Flamigni C. Oocyte cryopreservation: a biological perspective. Eur J Obstet Gynecol Reprod Biol 2004; 115 Suppl 1:S2-7. [PMID: 15196707 DOI: 10.1016/j.ejogrb.2004.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oocyte cryopreservation would amount to a major breakthrough in reproductive medicine. Diverse strategies have been tested to minimise cooling-induced cell injury. Nevertheless, oocytes from various species have shown a particular sensitivity to freezing, due to their unique biological characteristics. Storage of human mature oocytes with slow freezing has resulted in low survival rates, although recent studies based on modified methods have reported higher success. Survival after thawing is not necessarily a guarantee of unaltered viability. Developmental failure at pre- or postimplantation stages may originate from critical perturbations of various cell components, such as the chromosome segregation apparatus, the intracellular calcium signalling system, and the cytoskeleton. Germinal vesicle (GV)-stage oocytes have been suggested to be more amenable to freezing. But their use would require efficient in vitro maturation systems, which are not presently available. Oocyte cryopreservation remains a realistic objective, provided that more systematic approaches are applied, such as thorough analysis of the plasmalemma permeability to water and the diverse cryoprotectants.
Collapse
Affiliation(s)
- G Coticchio
- Giovanni Coticchio, Tecnobios Procreazione, Via Dante 15, University of Bologna, 40125 Bologna, Italy.
| | | | | | | |
Collapse
|
50
|
NTP-CERHR Expert Panel report on the reproductive and developmental toxicity of propylene glycol. Reprod Toxicol 2004; 18:533-79. [PMID: 15135851 DOI: 10.1016/j.reprotox.2004.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|