1
|
Parker ET, Karki M, Glavin DP, Dworkin JP, Krishnamurthy R. A sensitive quantitative analysis of abiotically synthesized short homopeptides using ultraperformance liquid chromatography and time-of-flight mass spectrometry. J Chromatogr A 2020; 1630:461509. [PMID: 32927393 DOI: 10.1016/j.chroma.2020.461509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/04/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
In the origins of life field understanding the abiotic polymerization of simple organic monomers (e.g., amino acids) into larger biomolecules (e.g., oligopeptides), remains a seminal challenge. Recently, preliminary observations showed a limited set of peptides formed in the presence of the plausible prebiotic phosphorylating agent, diamidophosphate (DAP), highlighting the need for an analytical tool to critically evaluate the ability of DAP to induce oligomerization of simple organics under aqueous conditions. However, performing accurate and precise, targeted analyses of short oligopeptides remains a distinct challenge in the analytical chemistry field. Here, we developed a new technique to detect and quantitate amino acids and their homopeptides in a single run using ultraperformance liquid chromatography-fluorescence detection/time of flight mass spectrometry. Over an 8-minute retention time window, 18 target analytes were identified and quantitated, 16 of which were chromatographically separated at, or near baseline resolution. Compound identity was confirmed by accurate mass analysis using a 10 ppm mass tolerance window. This method featured limits of detection < 5 nM (< 1 fmol on column) and limits of quantitation (LOQs) <15 nM (< 3 fmol on column). The LODs and LOQs were upwards of ∼28x and ∼788x lower, respectively, than previous methods for the same analytes, highlighting the quantifiable advantages of this new method. Both detectors provided good quantitative linearity (R2 > 0.985) for all analytes spanning concentration ranges ∼3 - 4 orders of magnitude. We performed a series of laboratory experiments to investigate DAP-mediated oligomerization of amino acids and peptides and analyzed experimental products with the new method. DAP readily polymerized amino acids and peptides under a range of simulated environmental conditions. This research underscores the potential of DAP to have generated oligopeptides on the primordial Earth, enhancing prebiotic chemical diversity and complexity at or near the origin of life.
Collapse
Affiliation(s)
- Eric T Parker
- NASA Goddard Space Flight Center, Solar System Exploration Division, 8800 Greenbelt Road, Greenbelt, MD 20771, United States
| | - Megha Karki
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, 8800 Greenbelt Road, Greenbelt, MD 20771, United States
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Solar System Exploration Division, 8800 Greenbelt Road, Greenbelt, MD 20771, United States.
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
2
|
do Nascimento Vieira A, Kleinermanns K, Martin WF, Preiner M. The ambivalent role of water at the origins of life. FEBS Lett 2020; 594:2717-2733. [PMID: 32416624 DOI: 10.1002/1873-3468.13815] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Life as we know it would not exist without water. However, water molecules not only serve as a solvent and reactant but can also promote hydrolysis, which counteracts the formation of essential organic molecules. This conundrum constitutes one of the central issues in origin of life. Hydrolysis is an important part of energy metabolism for all living organisms but only because, inside cells, it is a controlled reaction. How could hydrolysis have been regulated under prebiotic settings? Lower water activities possibly provide an answer: geochemical sites with less free and more bound water can supply the necessary conditions for protometabolic reactions. Such conditions occur in serpentinising systems, hydrothermal sites that synthesise hydrogen gas via rock-water interactions. Here, we summarise the parallels between biotic and abiotic means of controlling hydrolysis in order to narrow the gap between biochemical and geochemical reactions and briefly outline how hydrolysis could even have played a constructive role at the origin of molecular self-organisation.
Collapse
Affiliation(s)
| | | | - William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, Germany
| | - Martina Preiner
- Institute for Molecular Evolution, University of Düsseldorf, Germany
| |
Collapse
|
3
|
Bouza M, Li A, Forsythe JG, Petrov A, Wang ZL, Fernández FM. Compositional characterization of complex protopeptide libraries via triboelectric nanogenerator Orbitrap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1293-1300. [PMID: 31021462 DOI: 10.1002/rcm.8469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/27/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Understanding of the molecular processes that led to the first biomolecules on Earth is one of the key aspects of origins-of-life research. Depsipeptides, or polymers with mixed amide and ester backbones, have been proposed as plausible prebiotic precursors for peptide formation. Chemical characterization of depsipeptides in complex prebiotic-like mixtures should benefit from more efficient ion sources and ultrahigh-resolution mass spectrometry (UHR-MS) for elemental composition elucidation. METHODS A sliding freestanding (SF) Triboelectric Nanogenerator (TENG) was coupled to glass nanoelectrospray emitters for the analysis of a depsipeptide library created using 11 amino acids and 3 alpha-hydroxy acids subjected to environmentally driven polymerization. The TENG nanoelectrospray ionization (nanoESI) source was coupled to an UHR Orbitrap mass spectrometer operated at 1,000,000 resolution for detecting depsipeptides and oligoesters in such libraries. Tandem mass spectrometry (MS/MS) experiments were performed on an Orbitrap Q-Exactive mass spectrometer. RESULTS Our previous proteomics-like approach to depsipeptide library characterization showed the enormous complexity of these dynamic combinatorial systems. Here, direct infusion UHR-MS along with de novo sequencing enabled the identification of 524 sequences corresponding to 320 different depsipeptide compositions. Van Krevelen and mass defect diagrams enabled better visualization of the chemical diversity in these synthetic libraries. CONCLUSIONS TENG nanoESI coupled to UHR-MS is a powerful method for depsipeptide library characterization in an origins-of-life context.
Collapse
Affiliation(s)
- Marcos Bouza
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30033, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anyin Li
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30033, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jay G Forsythe
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA
| | - Anton Petrov
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30033, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Facundo M Fernández
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30033, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
4
|
Dalai P, Sahai N. Mineral–Lipid Interactions in the Origins of Life. Trends Biochem Sci 2019; 44:331-341. [DOI: 10.1016/j.tibs.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
|
5
|
Chemical Transformations in Proto-Cytoplasmic Media. Phosphorus Coupling in the Silica Hydrogel Phase. Life (Basel) 2017; 7:life7040045. [PMID: 29156594 PMCID: PMC5745558 DOI: 10.3390/life7040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 01/03/2023] Open
Abstract
It has been proposed that prebiotic chemical studies on the emergence of primitive life would be most relevant when performed in a hydrogel, rather than an aqueous, environment. In this paper we describe the ambient temperature coupling of phosphorus oxyacids [Pi] mediated by Fe(II) under aerobic conditions within a silica hydrogel (SHG) environment. We have chosen to examine SHGs as they have considerable geological precedence as key phases in silicification en route to rock formation. Following a description of the preparation and characterization studies on our SHG formulations, coupling experiments between Pi species are described across multiple permutations of (i) Pi compound; (ii) gel formulation; (iii) metal salt additive; and (iv) pH-modifying agent. The results suggest that successful Pi coupling, indicated by observation of pyrophosphate [PPi(V)] via 31P-NMR spectroscopy, takes place when the following components are present: (i) a mixture of mixture of Pi(III) and Pi(V) or pure PPi(III– V); (ii) Fe(II); (iii) acetic or formic acid (not hydrochloric acid); (iv) aerobic conditions or the presence of H2O2 as an oxidant; and (v) the presence of a gel system. On the basis of these, and aqueous control reactions, we suggest mechanistic possibilities.
Collapse
|
6
|
Mamajanov I, MacDonald PJ, Ying J, Duncanson DM, Dowdy GR, Walker CA, Engelhart AE, Fernández FM, Grover MA, Hud NV, Schork FJ. Ester Formation and Hydrolysis during Wet–Dry Cycles: Generation of Far-from-Equilibrium Polymers in a Model Prebiotic Reaction. Macromolecules 2014. [DOI: 10.1021/ma402256d] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Irena Mamajanov
- School of Chemistry and Biochemistry, ‡School of Chemical & Biomolecular Engineering, and §Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Patrick J. MacDonald
- School of Chemistry and Biochemistry, ‡School of Chemical & Biomolecular Engineering, and §Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jingya Ying
- School of Chemistry and Biochemistry, ‡School of Chemical & Biomolecular Engineering, and §Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daniel M. Duncanson
- School of Chemistry and Biochemistry, ‡School of Chemical & Biomolecular Engineering, and §Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Garrett R. Dowdy
- School of Chemistry and Biochemistry, ‡School of Chemical & Biomolecular Engineering, and §Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chelsea A. Walker
- School of Chemistry and Biochemistry, ‡School of Chemical & Biomolecular Engineering, and §Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Aaron E. Engelhart
- School of Chemistry and Biochemistry, ‡School of Chemical & Biomolecular Engineering, and §Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, ‡School of Chemical & Biomolecular Engineering, and §Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Martha A. Grover
- School of Chemistry and Biochemistry, ‡School of Chemical & Biomolecular Engineering, and §Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry, ‡School of Chemical & Biomolecular Engineering, and §Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - F. Joseph Schork
- School of Chemistry and Biochemistry, ‡School of Chemical & Biomolecular Engineering, and §Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Fuchida S, Masuda H, Shinoda K. Peptide formation mechanism on montmorillonite under thermal conditions. ORIGINS LIFE EVOL B 2014; 44:13-28. [PMID: 24917118 DOI: 10.1007/s11084-014-9359-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/23/2014] [Indexed: 11/25/2022]
Abstract
The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.
Collapse
Affiliation(s)
- Shigeshi Fuchida
- Department of Geosciences, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan,
| | | | | |
Collapse
|
8
|
Ribó JM, Crusats J, El-Hachemi Z, Moyano A, Blanco C, Hochberg D. Spontaneous mirror symmetry breaking in the limited enantioselective autocatalysis model: abyssal hydrothermal vents as scenario for the emergence of chirality in prebiotic chemistry. ASTROBIOLOGY 2013; 13:132-142. [PMID: 23379530 DOI: 10.1089/ast.2012.0904] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an adequate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temperature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role.
Collapse
Affiliation(s)
- Josep M Ribó
- Department of Organic Chemistry, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
9
|
Beck W. Metal Complexes of Biologically Important Ligands, CLXXVI.[1] Formation of Peptides within the Coordination Sphere of Metal Ions and of Classical and Organometallic Complexes and Some Aspects of Prebiotic Chemistry. Z Anorg Allg Chem 2011. [DOI: 10.1002/zaac.201100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Fraser DG, Greenwell HC, Skipper NT, Smalley MV, Wilkinson MA, Demé B, Heenan RK. Chiral interactions of histidine in a hydrated vermiculite clay. Phys Chem Chem Phys 2011; 13:825-30. [DOI: 10.1039/c0cp01387k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Lambert JF. Adsorption and polymerization of amino acids on mineral surfaces: a review. ORIGINS LIFE EVOL B 2008; 38:211-42. [PMID: 18344011 DOI: 10.1007/s11084-008-9128-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
The present paper offers a review of recent (post-1980) work on amino acid adsorption and thermal reactivity on oxide and sulfide minerals. This review is performed in the general frame of evaluating Bernal's hypothesis of prebiotic polymerization in the adsorbed state, but written from a surface scientist's point of view. After a general discussion of the thermodynamics of the problem and exactly what effects surfaces should have to make adsorbed-state polymerization a viable scenario, we examine some practical difficulties in experimental design and their bearing on the conclusions that can be drawn from extant works, including the relevance of the various available characterization techniques. We then present the state of the art concerning the mechanisms of the interactions of amino acids with mineral surfaces, including results from prebiotic chemistry-oriented studies, but also from several different fields of application, and discuss the likely consequences for adsorption selectivities. Finally, we briefly summarize the data concerning thermally activated amide bond formation of adsorbed amino acids without activating agents. The reality of the phenomenon is established beyond any doubt, but our understanding of its mechanism and therefore of its prebiotic potential is very fragmentary. The review concludes with a discussion of future work needed to fill the most conspicuous gaps in our knowledge of amino acids/mineral surfaces systems and their reactivity.
Collapse
Affiliation(s)
- Jean-François Lambert
- Laboratoire de Réactivité de Surface, UMR CNRS 7609, UPMC Univ Paris 06 and CNRS, Paris, France.
| |
Collapse
|
12
|
Abstract
Numerous hypotheses about how life on earth could have started can be found in the literature. In this article, we give an overview about the most widespread ones and try to point out which of them might have occurred on the primordial earth with highest probability from a chemical point of view. The idea that a very early stage of life was the "RNA world" encounters crucial problems concerning the formation of its building blocks and their stability in a prebiotic environment. Instead, it seems much more likely that a "peptide world" originated first and that RNA and DNA took up their part at a much later stage. It is shown that amino acids and peptides can be easily formed in a realistic primordial scenario and that these biomolecules can start chemical evolution without the help of RNA. The origin of biohomochirality seems strongly related to the most probable formation of the first peptides via the salt-induced peptide formation (SIPF) reaction.
Collapse
|
13
|
|