1
|
Moubarak S, Rippers Y, Elghobashi-Meinhardt N, Mroginski MA. Structural and electronic properties of the active site of [ZnFe] SulE. Front Mol Biosci 2022; 9:945415. [DOI: 10.3389/fmolb.2022.945415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The function of the recently isolated sulerythrin (SulE) has been investigated using a combination of structural and electronic analyses based on quantum mechanical calculations. In the SulE structure of Fushinobu et al. (2003), isolated from a strictly aerobic archaeon, Sulfolobus tokadaii, a dioxygen-containing species was tentatively included at the active site during crystallographic refinement although the substrate specificity of SulE remains unclear. Studies have suggested that a structurally related enzyme, rubrerythrin, functions as a hydrogen peroxide reductase. Since SulE is a truncated version of rubrerythrin, the enzymes are hypothesized to function similarly. Hence, using available X-ray crystallography data (1.7 Å), we constructed various models of SulE containing a ZnII–Fe active site, differing in the nature of the substrate specificity (O2, H2O2), the oxidation level and the spin state of the iron ion, and the protonation states of the coordinating glutamate residues. Also, the substrate H2O2 is modeled in two possible configurations, differing in the orientation of the hydrogen atoms. Overall, the optimized geometries with an O2 substrate do not show good agreement with the experimentally resolved geometry. In contrast, excellent agreement between crystal structure arrangement and optimized geometries is achieved considering a H2O2 substrate and FeII in both spin states, when Glu92 is protonated. These results suggest that the dioxo species detected at the [ZnFe] active site of sulerythrin is H2O2, rather than an O2 molecule in agreement with experimental data indicating that only the diferrous oxidation state of the dimetal site in rubrerythrin reacts rapidly with H2O2. Based on our computations, we proposed a possible reaction pathway for substrate binding at the ZnFeII site of SulE with a H2O2 substrate. In this reaction pathway, Fe or another electron donor, such as NAD(P)H, catalyzes the reduction of H2O2 to water at the zinc–iron site.
Collapse
|
2
|
Cho J, Kim S, Lee H. Peroxidase‐like activity of an azamacrocyclic Ni(II) complex. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jang‐Hoon Cho
- Department of Chemistry and Green‐Nano Research Center Kyungpook National University Daegu South Korea
| | - Sunghwan Kim
- Department of Chemistry and Green‐Nano Research Center Kyungpook National University Daegu South Korea
| | - Hong‐In Lee
- Department of Chemistry and Green‐Nano Research Center Kyungpook National University Daegu South Korea
| |
Collapse
|
3
|
Unlocking Survival Mechanisms for Metal and Oxidative Stress in the Extremely Acidophilic, Halotolerant Acidihalobacter Genus. Genes (Basel) 2020; 11:genes11121392. [PMID: 33255299 PMCID: PMC7760498 DOI: 10.3390/genes11121392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022] Open
Abstract
Microorganisms used for the biohydrometallurgical extraction of metals from minerals must be able to survive high levels of metal and oxidative stress found in bioleaching environments. The Acidihalobacter genus consists of four species of halotolerant, iron–sulfur-oxidizing acidophiles that are unique in their ability to tolerate chloride and acid stress while simultaneously bioleaching minerals. This paper uses bioinformatic tools to predict the genes and mechanisms used by Acidihalobacter members in their defense against a wide range of metals and oxidative stress. Analysis revealed the presence of multiple conserved mechanisms of metal tolerance. Ac. yilgarnensis F5T, the only member of this genus that oxidizes the mineral chalcopyrite, contained a 39.9 Kb gene cluster consisting of 40 genes encoding mobile elements and an array of proteins with direct functions in copper resistance. The analysis also revealed multiple strategies that the Acidihalobacter members can use to tolerate high levels of oxidative stress. Three of the Acidihalobacter genomes were found to contain genes encoding catalases, which are not common to acidophilic microorganisms. Of particular interest was a rubrerythrin genomic cluster containing genes that have a polyphyletic origin of stress-related functions.
Collapse
|
4
|
|
5
|
Jozwiuk A, Ingram AL, Powell DR, Moubaraki B, Chilton NF, Murray KS, Houser RP. Redox and acid-base properties of asymmetric non-heme (hydr)oxo-bridged diiron complexes. Dalton Trans 2015; 43:9740-53. [PMID: 24841725 DOI: 10.1039/c4dt00047a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The diiron unit is commonly found as the active site in enzymes that catalyze important biological transformations. Two μ-(hydr)oxo-diiron(iii) complexes with the ligands 2,2'-(2-methyl-2-(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)diphenol (H2L) and 2,2'-(2-methyl-2(pyridine-2-yl)propane-1,3-diyl)bis(azanediyl)bis(methylene)bis(4-nitrophenol) (H2L(NO2)), namely [(FeL)2(μ-O)] () and [(FeL(NO2))2(μ-OH)]ClO4 () were synthesized and characterized. In the solid state, both structures are asymmetric, with unsupported (hydr)oxo bridges. Intramolecular hydrogen bonding of the ligand NH groups to the phenolate O atoms hold the diiron cores in a bent configuration (Fe-O-Fe angle of 143.7° for and 140.1° for ). A new phenolate bridged diferrous complex, [(FeL)2] (), was synthesized and characterized. Upon exposure to air the diferrous complex is oxidized to the diferric . Cyclic voltammetry at different scan rates and chemical reduction of [(FeL)2(μ-OH)]BPh4 () with cobaltocene revealed disproportionation followed by proton transfer, and a mixed-valence species could not be trapped. Subsequent exposure to molecular oxygen results in the formation of . Electrochemical studies of indicate easier reduction of the diiron(iii/iii) to the mixed-valence state than for . The protonation of by benzoic acid to form [(FeL)2(μ-OH)](+) only changes the Fe-O-Fe angle by 5° (from 143.7° to 138.6°), and the pKa of the hydroxo bridge is estimated to be about 20.4. We attribute this high pKa partly to stabilization of the benzoate by hydrogen bonding to the ligand's amine proton. Magnetic susceptibility studies on solid samples of and yielded values of the antiferromagnetic exchange coupling constants, J, for these S = 5/2 dimers of -13.1 cm(-1) and -87.5 cm(-1), respectively, typical of such unsupported hydroxo- and oxo-bridges.
Collapse
Affiliation(s)
- Anna Jozwiuk
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Hathazi D, Mot AC, Vaida A, Scurtu F, Lupan I, Fischer-Fodor E, Damian G, Kurtz DM, Silaghi-Dumitrescu R. Oxidative protection of hemoglobin and hemerythrin by cross-linking with a nonheme iron peroxidase: potentially improved oxygen carriers for use in blood substitutes. Biomacromolecules 2014; 15:1920-7. [PMID: 24716617 DOI: 10.1021/bm5004256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nonheme peroxidase, rubrerythrin, shows the ability to reduce hydrogen peroxide to water without involving strongly oxidizing and free-radical-creating powerful oxidants such as compounds I and II [formally Fe(IV)] formed in peroxidases and catalases. Rubrerythrin could, therefore, be a useful ingredient in protein-based artificial oxygen carriers. Here, we report that the oxygen-carrying proteins, hemoglobin (Hb) and hemerythrin (Hr), can each be copolymerized with rubrerythrin using glutaraldehyde yielding high molecular weight species. These copolymers show additional peroxidase activity compared to Hb-only and Hr-only polymers, respectively and also generate lower levels of free radicals in reactions that involve hydrogen peroxide. Tests on human umbilical vein endothelial cells (HUVEC) reveal slightly better performance of the Rbr copolymers compared to controls, as measured at 24 h, but not at later times.
Collapse
Affiliation(s)
- Denisa Hathazi
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University , 11 Arany Janos St., Cluj-Napoca, Romania
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cooley RB, Arp DJ, Karplus PA. Symerythrin structures at atomic resolution and the origins of rubrerythrins and the ferritin-like superfamily. J Mol Biol 2011; 413:177-94. [PMID: 21872605 DOI: 10.1016/j.jmb.2011.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 11/25/2022]
Abstract
Rubrerythrins are diiron-containing peroxidases that belong to the ferritin-like superfamily (FLSF). Here, we describe the structures of symerythrin, a novel rubrerythrin variant from the oxygenic phototroph Cyanophora paradoxa, at 1.20-1.40 Å resolution in three different states: diferric, azide-bound diferric and chemically reduced. The symerythrin metallocenter has a unique eighth ligating residue compared to rubrerythrin-an additional glutamate inserted into helix A of the four-helix bundle that resides on a π-helical segment. Otherwise, the diferric metallocenter structure is highly similar to that of characterized rubrerythrins. Azide binds the diferric center in a μ-1,1 orientation similar to how peroxide binds to diferric rubrerythrin. The structure of the diferrous metallocenter shows heterogeneity that we ascribe to the acidic pH of the crystals. In what we consider the neutral pH conformation, reduction causes a 2.0-Å shift in Fe1 and the toggling of a Glu to a His ligand, as seen with rubrerythrins. The function of symerythrin remains unknown, but preliminary tests showing oxidase and peroxidase activities and the similarities of its metallocenter to other rubrerythrins suggest similar functionalities between the two despite the additional ligating glutamate in symerythrin. Of particular interest is the high internal symmetry of symerythrin, which supports the notion that its core four-helix bundle was formed by the gene duplication and fusion of a two-helix peptide. Sequence comparisons with another family in the FLSF that also has notable internal symmetry provide compelling evidence that, contrary to previous assumptions, there have been multiple gene fusion events that have generated the single-chain FLSF fold.
Collapse
Affiliation(s)
- Richard B Cooley
- Department of Biochemistry and Biophysics, 2011 Ag and Life Sciences Building, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
8
|
Tempel W, Liu ZJ, Schubot FD, Shah A, Weinberg MV, Jenney FE, Arendall WB, Adams MWW, Richardson JS, Richardson DC, Rose JP, Wang BC. Structural genomics of Pyrococcus furiosus: X-ray crystallography reveals 3D domain swapping in rubrerythrin. Proteins 2006; 57:878-82. [PMID: 15468318 DOI: 10.1002/prot.20280] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wolfram Tempel
- Southeast Collaboratory for Structural Genomics, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kurtz DM. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin. J Inorg Biochem 2006; 100:679-93. [PMID: 16504301 DOI: 10.1016/j.jinorgbio.2005.12.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
The Fenton or Fenton-type reaction between aqueous ferrous ion and hydrogen peroxide generates a highly oxidizing species, most often formulated as hydroxyl radical or ferryl ([Fe(IV)O](2+)). Intracellular Fenton-type chemistry can be lethal if not controlled. Nature has, therefore, evolved enzymes to scavenge superoxide and hydrogen peroxide, the reduced dioxygen species that initiate intracellular Fenton-type chemistry. Two such enzymes found predominantly in air-sensitive bacteria and archaea, superoxide reductase (SOR) and rubrerythrin (Rbr), functioning as a peroxidase (hydrogen peroxide reductase), contain non-heme iron. The iron coordination spheres in these enzymes contain five or six protein ligands from His and Glu residues, and, in the case of SOR, a Cys residue. SOR contains a mononuclear active site that is designed to protonate and rapidly expel peroxide generated as a product of the enzymatic reaction. The ferrous SOR reacts adventitiously but relatively slowly (several seconds to a few minutes) with exogenous hydrogen peroxide, presumably in a Fenton-type reaction. The diferrous active site of Rbr reacts more rapidly with hydrogen peroxide but can divert Fenton-type reactions towards the two-electron reduction of hydrogen peroxide to water. Proximal aromatic residues may function as radical sinks for Fenton-generated oxidants. Fenton-initiated damage to these iron active sites may become apparent only under extremely oxidizing intracellular conditions.
Collapse
Affiliation(s)
- Donald M Kurtz
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Pütz S, Gelius-Dietrich G, Piotrowski M, Henze K. Rubrerythrin and peroxiredoxin: two novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon Trichomonas vaginalis. Mol Biochem Parasitol 2005; 142:212-23. [PMID: 15904985 DOI: 10.1016/j.molbiopara.2005.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 03/22/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
The parasitic flagellate Trichomonas vaginalis contains hydrogenosomes, anaerobic organelles related to mitochondria, that generate ATP from the fermentative conversion of pyruvate to acetate, CO2 and molecular hydrogen. Although an essentially anaerobic organism, Trichomonas encounters low oxygen concentrations in its natural habitat and has to protect itself, and especially the oxygen-sensitve enzymes of hydrogenosomal metabolism, from oxidative damage. We have identified two novel proteins in the hydrogenosomal proteome with strong similarity to two putative prokaryotic peroxidases, rubrerythrin and periplasmic thiol peroxidase. Both proteins have previously been found in many prokaryotes but were not known from eukaryotes, suggesting a significant prokaryotic component in the oxygen-detoxification system of trichomonad hydrogenosomes.
Collapse
Affiliation(s)
- Simone Pütz
- Institut für Botanik III, Heinrich Heine Universtität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
11
|
Iyer RB, Silaghi-Dumitrescu R, Kurtz DM, Lanzilotta WN. High-resolution crystal structures of Desulfovibrio vulgaris (Hildenborough) nigerythrin: facile, redox-dependent iron movement, domain interface variability, and peroxidase activity in the rubrerythrins. J Biol Inorg Chem 2005; 10:407-16. [PMID: 15895271 DOI: 10.1007/s00775-005-0650-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 04/13/2005] [Indexed: 10/25/2022]
Abstract
High-resolution crystal structures of Desulfovibrio vulgaris nigerythrin (DvNgr), a member of the rubrerythrin (Rbr) family, demonstrate an approximately 2-A movement of one iron (Fe1) of the diiron site from a carboxylate to a histidine ligand upon conversion of the mixed-valent ([Fe2(II),Fe1(III)]) to diferrous states, even at cryogenic temperatures. This Glu<-->His ligand "toggling" of one iron, which also occurs in DvRbr, thus, appears to be a characteristic feature of Rbr-type diiron sites. Unique features of DvNgr revealed by these structures include redox-induced flipping of a peptide carbonyl that reversibly forms a hydrogen bond to the histidine ligand to Fe1 of the diiron site, an intra-subunit proximal orientation of the rubredoxin-(Rub)-like and diiron domains, and an electron transfer pathway consisting of six covalent and two hydrogen bonds connecting the Rub-like iron with Fe2 of the diiron site. This pathway can account for DvNgr's relatively rapid peroxidase turnover. The characteristic combination of iron sites together with the redox-dependent iron toggling between protein ligands can account for the selectivity of Rbrs for hydrogen peroxide over dioxygen.
Collapse
Affiliation(s)
- Ramesh B Iyer
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
12
|
Jin S, Kurtz DM, Liu ZJ, Rose J, Wang BC. Displacement of iron by zinc at the diiron site of Desulfovibrio vulgaris rubrerythrin: X-ray crystal structure and anomalous scattering analysis. J Inorg Biochem 2005; 98:786-96. [PMID: 15134924 DOI: 10.1016/j.jinorgbio.2004.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 01/09/2004] [Accepted: 01/15/2004] [Indexed: 10/26/2022]
Abstract
X-ray crystal structures of recombinant Desulfovibrio (D.) vulgaris rubrerythrin (Rbr) have shown a diiron site, whereas the crystal structure of Rbr "as-isolated" from D. vulgaris was reported to contain a mixed Zn,Fe binuclear site. To investigate the possibility that zinc had displaced iron during isolation or crystallization of the "as-isolated" D. vulgaris Rbr, the X-ray crystal structure of recombinant D. vulgaris all-iron Rbr that had been incubated with excess zinc sulfate prior to crystallization, yielding a protein labeled Zn,FeRbr, was solved. Analysis of the anomalous scattering data obtained at two different wavelengths showed that zinc had displaced a significant proportion of iron from both iron centers of the diiron site, and that no iron had been displaced from the [Fe(SCys)(4)] site. UV-visible absorption spectra of the redissolved Zn,FeRbr crystals showed 30-40% retention of oxo-bridged diferric sites, and the redissolved crystals had 37% of the peroxidase specific activity of the starting all-iron Rbr, which, together with the crystallographic results, indicate a predominant mixture of Fe1,Fe2 and Zn1,Zn2 sites. The structure of the Zn(Fe)1,Fe(Zn)2 binuclear site in the Zn,FeRbr crystals was very similar to that of the Zn,Fe binuclear site reported for the "as-isolated" D. vulgaris Rbr, including tetrahedral four-coordination at the Zn(Fe)1 site. The diiron sites in the recombinant Zn,FeRbr crystals were likely at least partially reduced during synchrotron irradiation. Our results suggest that the mixed-metal binuclear site reported for the "as-isolated" D. vulgaris Rbr could be due to displacement of iron from a native diiron site by adventitious zinc during isolation and/or crystallization, and that reduced diiron and dizinc sites can adopt very similar structures in Rbr.
Collapse
Affiliation(s)
- Shi Jin
- Department of Chemistry, Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
13
|
Weinberg MV, Jenney FE, Cui X, Adams MWW. Rubrerythrin from the hyperthermophilic archaeon Pyrococcus furiosus is a rubredoxin-dependent, iron-containing peroxidase. J Bacteriol 2004; 186:7888-95. [PMID: 15547260 PMCID: PMC529063 DOI: 10.1128/jb.186.23.7888-7895.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rubrerythrin was purified by multistep chromatography under anaerobic, reducing conditions from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimer with a molecular mass of 39.2 kDa and contains 2.9 +/- 0.2 iron atoms per subunit. The purified protein had peroxidase activity at 85 degrees C using hydrogen peroxide with reduced P. furiosus rubredoxin as the electron donor. The specific activity was 36 micromol of rubredoxin oxidized/min/mg with apparent K(m) values of 35 and 70 microM for hydrogen peroxide and rubredoxin, respectively. When rubrerythrin was combined with rubredoxin and P. furiosus NADH:rubredoxin oxidoreductase, the complete system used NADH as the electron donor to reduce hydrogen peroxide with a specific activity of 7.0 micromol of H(2)O(2) reduced/min/mg of rubrerythrin at 85 degrees C. Strangely, as-purified (reduced) rubrerythrin precipitated when oxidized by either hydrogen peroxide, air, or ferricyanide. The gene (PF1283) encoding rubrerythrin was expressed in Escherichia coli grown in medium with various metal contents. The purified recombinant proteins each contained approximately three metal atoms/subunit, ranging from 0.4 Fe plus 2.2 Zn to 1.9 Fe plus 1.2 Zn, where the metal content of the protein depended on the metal content of the E. coli growth medium. The peroxidase activities of the recombinant forms were proportional to the iron content. P. furiosus rubrerythrin is the first to be characterized from a hyperthermophile or from an archaeon, and the results are the first demonstration that this protein functions in an NADH-dependent, hydrogen peroxide:rubredoxin oxidoreductase system. Rubrerythrin is proposed to play a role in the recently defined anaerobic detoxification pathway for reactive oxygen species.
Collapse
Affiliation(s)
- Michael V Weinberg
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| | | | | | | |
Collapse
|
14
|
Kurtz DM. Microbial detoxification of superoxide: the non-heme iron reductive paradigm for combating oxidative stress. Acc Chem Res 2004; 37:902-8. [PMID: 15612680 DOI: 10.1021/ar0200091] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A reductive paradigm has emerged in recent years for detoxification of superoxide and other redox active diatomic molecules in air-sensitive bacteria and archaea. Adventitiously generated superoxide in many anaerobic or microaerophilic bacteria and archaea is scavenged by superoxide reductase (SOR) rather than the classical superoxide dismutases characteristic of aerobic microbes. SORs contain a novel five-coordinate, square-pyramidal [Fe(His)4(Cys)] ferrous active site, which adds a sixth glutamate ligand upon oxidation. This Account summarizes the recently elucidated structural and mechanistic features of SORs. The non-heme iron reductive scavenging paradigm in these air-sensitive microbes also extends to recently characterized enzymes that scavenge hydrogen peroxide and nitric oxide and to oxygen sensing proteins.
Collapse
Affiliation(s)
- Donald M Kurtz
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
15
|
May A, Hillmann F, Riebe O, Fischer RJÃ, Bahl H. A rubrerythrin-like oxidative stress protein ofClostridium acetobutylicumis encoded by a duplicated gene and identical to the heat shock protein Hsp21. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09763.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Jin S, Kurtz DM, Liu ZJ, Rose J, Wang BC. X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures. Biochemistry 2004; 43:3204-13. [PMID: 15023070 DOI: 10.1021/bi0356193] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The X-ray crystal structure of recombinant Desulfovibrio vulgaris rubrerythrin (Rbr) that was subjected to metal constitution first with zinc and then iron, yielding ZnS(4)Rbr, is reported. A [Zn(SCys)(4)] site with no iron and a diiron site with no appreciable zinc in ZnS(4)Rbr were confirmed by analysis of the anomalous scattering data. Partial reduction of the diiron site occurred during the synchrotron X-ray irradiation at 95 K, resulting in two different diiron site structures in the ZnS(4)Rbr crystal. These two structures can be classified as containing mixed-valent Fe1(III)(mu-OH(-))(mu-GluCO(2)(-))(2)Fe2(II) and Fe1(II)(mu-GluCO(2)(-))(2)Fe2(III)-OH(-) cores. The data do not show any evidence for alternative positions of the protein or solvent ligands. The iron and ligand positions of the solvent-bridged site are close to those of the diferric site in all-iron Rbr. The diiron site with only the two carboxylato bridges differs by an approximately 2 A shift in the position of Fe1, which changes from six- to four-coordination. The Fe1- - -Fe2 distance (3.6 A) in this latter site is significantly longer than that of the site with the additional solvent bridge (3.4 A) but significantly shorter than that previously reported for the diferrous site (4.0 A) in all-iron Rbr. The apparent redox-induced movement of Fe1 at 95 K in the ZnS(4)Rbr crystal implies an extremely low activation barrier, which is consistent with the rapid (approximately 30 s(-1)) room temperature turnover of the all-iron Rbr during its catalysis of two-electron reduction of hydrogen peroxide. ZnS(4)Rbr does not show peroxidase activity, presumably because the [Zn(SCys)(4)] site, unlike the [Fe(SCys)(4)] site, cannot mediate electron transfer to the diiron site. One or both of the diiron site structures in the cryoreduced ZnS(4)Rbr crystal are likely to represent that (those) of transient mixed-valent diiron site(s) that must occur upon return of the diferric to the diferrous oxidation level during peroxidase turnover.
Collapse
Affiliation(s)
- Shi Jin
- Department of Chemistry, Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
17
|
Yamasaki M, Igimi S, Katayama Y, Yamamoto S, Amano F. Identification of an oxidative stress-sensitive protein fromCampylobacter jejuni, homologous to rubredoxin oxidoreductase/rubrerythrin. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09567.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Fushinobu S, Shoun H, Wakagi T. Crystal structure of sulerythrin, a rubrerythrin-like protein from a strictly aerobic archaeon, Sulfolobus tokodaii strain 7, shows unexpected domain swapping. Biochemistry 2004; 42:11707-15. [PMID: 14529281 DOI: 10.1021/bi034220b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulerythrin is the first rubrerythrin-like protein to be isolated from an aerobic organism, Sulfolobus tokodaii strain 7, and it lacks a C-terminal rubredoxin-like FeS(4) domain. The protein purified from Sulfolobus cells was crystallized, and the crystal structure was determined at 1.7 A resolution. The dimer of sulerythrin exhibited "domain-swapping" at the loop connecting alphaB and alphaC, hybrid four-helix bundles consisting of alphaA/B and alphaC/D being formed. The structure and atomic identity of the binuclear metal center were determined by means of anomalous scattering analysis. The site contained 1.0 mol of hexacoordinate Fe, 0.80-0.87 mol of tetracoordinate Zn, and 0.73-0.88 mol of putative O(2) per monomer. The metal ions were found at exchanged positions compared to those in the Fe/Zn-containing rubrerythrin from Desulfovibrio vulgaris. The results demonstrate that the binuclear metal center of rubrerythrin-like proteins is plastic in its ability to bind metal ions.
Collapse
Affiliation(s)
- Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
19
|
Moche M, Shanklin J, Ghoshal A, Lindqvist Y. Azide and acetate complexes plus two iron-depleted crystal structures of the di-iron enzyme delta9 stearoyl-acyl carrier protein desaturase. Implications for oxygen activation and catalytic intermediates. J Biol Chem 2003; 278:25072-80. [PMID: 12704186 DOI: 10.1074/jbc.m301662200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Delta9 stearoyl-acyl carrier protein (ACP) desaturase is a mu-oxo-bridged di-iron enzyme, which belongs to the structural class I of large helix bundle proteins and that catalyzes the NADPH and O2-dependent formation of a cis-double bond in stearoyl-ACP. The crystal structures of complexes with azide and acetate, respectively, as well as the apoand single-iron forms of Delta9 stearoyl-ACP desaturase from Ricinus communis have been determined. In the azide complex, the ligand forms a mu-1,3-bridge between the two iron ions in the active site, replacing a loosely bound water molecule. The structure of the acetate complex is similar, with acetate bridging the di-iron center in the same orientation with respect to the di-iron center. However, in this complex, the iron ligand Glu196 has changed its coordination mode from bidentate to monodentate, the first crystallographic observation of a carboxylate shift in Delta9 stearoyl-ACP desaturase. The two complexes are proposed to mimic a mu-1,2 peroxo intermediate present during catalytic turnover. There are striking structural similarities between the di-iron center in the Delta9 stearoyl-ACP desaturase-azide complex and in the reduced rubrerythrin-azide complex. This suggests that Delta9 stearoyl-ACP desaturase might catalyze the formation of water from exogenous hydrogen peroxide at a low rate. From the similarity in iron center structure, we propose that the mu-oxo-bridge in oxidized desaturase is bound to the di-iron center as in rubrerythrin and not as reported for the R2 subunit of ribonucleotide reductase and the hydroxylase subunit of methane monooxygenase. The crystal structure of the one-iron depleted desaturase species demonstrates that the affinities for the two iron ions comprising the di-iron center are not equivalent, Fe1 being the higher affinity site and Fe2 being the lower affinity site.
Collapse
Affiliation(s)
- Martin Moche
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm S-171 77, Sweden
| | | | | | | |
Collapse
|
20
|
Smoukov SK, Davydov RM, Doan PE, Sturgeon B, Kung IY, Hoffman BM, Kurtz DM. EPR and ENDOR evidence for a 1-His, hydroxo-bridged mixed-valent diiron site in Desulfovibrio vulgaris rubrerythrin. Biochemistry 2003; 42:6201-8. [PMID: 12755623 DOI: 10.1021/bi0300027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Key features differentiating the coordination environment of the two irons in the mixed-valent (Fe(2+),Fe(3+)) diiron site of Desulfovibrio vulgaris rubrerythrin (Rbr(mv)) were determined by continuous wave (CW) and pulsed ENDOR spectroscopy at 35GHz. (14)N ENDOR evidence indicates that a nitrogen is bound only to the Fe(2+) ion of the mixed-valent site. Assuming that this nitrogen is from His131Ndelta, the same one that furnishes an iron ligand in the crystal structure of the diferric site, the ENDOR data allow us to specify the Fe(2+) and Fe(3+) positions within the molecular reference frame. In addition, the (1,2)H ENDOR on Rbr(mv) indicates the presence of a solvent-derived aqua/hydroxo ligand bound either terminally or in a bridging mode to Fe(3+) in the mixed-valent site. The relatively large g anisotropy of Rbr(mv) and weak antiferromagnetic coupling, J approximately -8 cm(-)(1) (in the 2JS(1)*S(2) formalism), between the irons is more consistent with a bridging than terminal hydroxo ligand. gamma-Irradiation was used to cryoreduce Rbr at 77 K, thereby producing a mixed-valent diiron site [(Rbr(ox))(mv)] that retains the structure of the diferric site. The EPR spectrum of (Rbr(ox))(mv) was nearly identical to that of the as-isolated or chemically reduced samples. This near identity implies that the structure of the mixed-valent Rbr diiron site is essentially identical to that of the diferric site, except for protonation of the oxo bridge, which apparently occurred via a proton jump from hydrogen-bonded solvent at 77 K. The EPR spectrum of (Rbr(ox))(mv) thus supports the (14)N ENDOR-assigned His131 ligation to Fe(2+) and assignment of the solvent-derived ligand observed in the (1,2)H ENDOR to a hydroxo bridge between the irons of the mixed-valent diiron site.
Collapse
Affiliation(s)
- Stoyan K Smoukov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Emerson JP, Cabelli DE, Kurtz DM. An engineered two-iron superoxide reductase lacking the [Fe(SCys)4] site retains its catalytic properties in vitro and in vivo. Proc Natl Acad Sci U S A 2003; 100:3802-7. [PMID: 12637682 PMCID: PMC153002 DOI: 10.1073/pnas.0537177100] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Superoxide reductases (SORs) contain a characteristic square-pyramidal [Fe(NHis)(4)(SCys)] active site that catalyzes reduction of superoxide to hydrogen peroxide in several anaerobic bacteria and archaea. Some SORs, referred to as two-iron SORs (2Fe-SORs), also contain a lower-potential [Fe(SCys)(4)] site that is presumed to have an electron transfer function. However, the intra- and inter-subunit distances between [Fe(SCys)(4)] and [Fe(NHis)(4)(SCys)] iron centers within the 2Fe-SOR homodimer seem too long for efficient electron transfer between these sites. The possible role of the [Fe(SCys)(4)] site in 2Fe-SORs was addressed in this work by examination of an engineered Desulfovibrio vulgaris 2Fe-SOR variant, C13S, in which one ligand residue of the [Fe(SCys)(4)] site, cysteine 13, was changed to serine. This single amino acid residue change destroyed the native [Fe(SCys)(4)] site with complete loss of its iron, but left the [Fe(NHis)(4)(SCys)] site and the protein homodimer intact. The spectroscopic, redox and superoxide reactivity properties of the [Fe(NHis)(4)(SCys)] site in the C13S variant were nearly indistinguishable from those of the wild-type 2Fe-SOR. Aerobic growth complementation of a superoxide dismutase (SOD)-deficient Escherichia coli strain showed that the presence of the [Fe(NHis)(4)(SCys)] site in C13S 2Fe-SOR was apparently sufficient to catalyze reduction of the intracellular superoxide to nonlethal levels. As is the case for the wild-type protein, C13S 2Fe-SOR did not show any detectable SOD activity, i.e., destruction of the [Fe(SCys)(4)] site did not unmask latent SOD activity of the [Fe(NHis)(4)(SCys)] site. Possible alternative roles for the [Fe(SCys)(4)] site in 2Fe-SORs are considered.
Collapse
Affiliation(s)
- Joseph P Emerson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30605, USA
| | | | | |
Collapse
|
22
|
Fournier M, Zhang Y, Wildschut JD, Dolla A, Voordouw JK, Schriemer DC, Voordouw G. Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris hildenborough. J Bacteriol 2003; 185:71-9. [PMID: 12486042 PMCID: PMC141827 DOI: 10.1128/jb.185.1.71-79.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two mutant strains of Desulfovibrio vulgaris Hildenborough lacking either the sod gene for periplasmic superoxide dismutase or the rbr gene for rubrerythrin, a cytoplasmic hydrogen peroxide (H(2)O(2)) reductase, were constructed. Their resistance to oxidative stress was compared to that of the wild-type and of a sor mutant lacking the gene for the cytoplasmic superoxide reductase. The sor mutant was more sensitive to exposure to air or to internally or externally generated superoxide than was the sod mutant, which was in turn more sensitive than the wild-type strain. No obvious oxidative stress phenotype was found for the rbr mutant, indicating that H(2)O(2) resistance may also be conferred by two other rbr genes in the D. vulgaris genome. Inhibition of Sod activity by azide and H(2)O(2), but not by cyanide, indicated it to be an iron-containing Sod. The positions of Fe-Sod and Sor were mapped by two-dimensional gel electrophoresis (2DE). A strong decrease of Sor in continuously aerated cells, indicated by 2DE, may be a critical factor in causing cell death of D. vulgaris. Thus, Sor plays a key role in oxygen defense of D. vulgaris under fully aerobic conditions, when superoxide is generated mostly in the cytoplasm. Fe-Sod may be more important under microaerophilic conditions, when the periplasm contains oxygen-sensitive, superoxide-producing targets.
Collapse
Affiliation(s)
- Marjorie Fournier
- Department of Biological Sciences. Department of Biochemistry and Molecular Biology, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Jin S, Kurtz DM, Liu ZJ, Rose J, Wang BC. X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase. J Am Chem Soc 2002; 124:9845-55. [PMID: 12175244 DOI: 10.1021/ja026587u] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rubrerythrin (Rbr) is a 44-kDa homodimeric protein, found in many air-sensitive bacteria and archaea, which contains a unique combination of a rubredoxin-like [Fe(SCys)(4)] site and a non-sulfur, oxo/dicarboxylato-bridged diiron site. The diiron site structure resembles those found in O2-activating diiron enzymes. However, Rbr instead appears to function as a hydrogen peroxide reductase (peroxidase). The diferrous site in all-ferrous Rbr (Rbr(red)) shows a much greater reactivity with H2O2 than does the diferric site in all-ferric Rbr (Rbr(ox)), but only the latter structure has been reported. Here we report the X-ray crystal structures of the recombinant Rbr(red) from the sulfate reducing bacterium, Desulfovibrio vulgaris, as well as its azide adduct (Rbr(red)N3). We have also redetermined the structure of Rbr(ox) to a higher resolution than previously reported. The structural differences between Rbr(ox) and Rbr(red) are localized entirely at the diiron site. The most striking structural change upon reduction of the diferric to the diferrous site of Rbr is a 1.8-A movement of one iron away from a unique glutamate carboxylate ligand and toward a trans-disposed histidine side chain, which replaces the glutamate as a ligand. This movement increases the inter-iron distance from 3.3 to 4 A. Rbr(red)N(3) shows this same iron movement and His-->Glu ligand replacement relative to Rbr(ox), and, in addition, an azide coordinated to the diiron site in a cis mu-1,3 fashion, replacing two solvent ligands in Rbr(red). Relative to those in O2-activating enzymes, the bridging carboxylate ligation of the Rbr diiron site is less flexible upon diferric/diferrous interconversion. The diferrous site is also much more rigid, symmetrical, and solvent-exposed than those in O2-activating enzymes. On the basis of these unique structural features, a mechanism is proposed for facile reduction of hydrogen peroxide by Rbr involving a cis mu-eta(2) H2O2 diferrous intermediate.
Collapse
Affiliation(s)
- Shi Jin
- Department of Chemistry and Biochemistry, Center for Metalloenzyme Studies and Georgia X-ray Crystallography Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
24
|
Sztukowska M, Bugno M, Potempa J, Travis J, Kurtz DM. Role of rubrerythrin in the oxidative stress response of Porphyromonas gingivalis. Mol Microbiol 2002; 44:479-88. [PMID: 11972784 DOI: 10.1046/j.1365-2958.2002.02892.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rubrerythrins are non-haem iron proteins that have been implicated in oxidative stress protection in anaerobic bacteria and archaea. However, up to now, this role has not been confirmed directly by inactivation of a rubrerythrin gene. Here we report generation of an rbr- mutant of Porphyromonas gingivalis, an obligately anaerobic gingival pathogenic bacterium. Characterization of the rbr- strain clearly showed that P. gingivalis produces a rubrerythrin-like protein that is absent in the rbr- strain, and that the P. gingivalis rbr- strain is more dioxygen- and hydrogen peroxide-sensitive than the wild type. The latter conclusion is based on two independent results, namely, deeper no-growth zones upon diffusion of the oxidants through soft agar culture tubes and growth impairment of liquid cultures exposed to the oxidants. A same-site rbr+ revertant showed increased hydrogen peroxide and dioxygen resistance relative to the rbr- strain. Transcription of the P. gingivalis rubrerythrin gene is induced above its constitutive anaerobic level in response to dioxygen or hydrogen peroxide exposures. Purified rubrerythrins from other organisms have been shown to catalyse reduction of hydrogen peroxide, while showing relatively sluggish reaction with dioxygen and little or no catalase or superoxide dismutase activities. Porphyromonas gingivalis contains a superoxide dismutase but lacks catalase and haem peroxidases. We therefore suggest that rubrerythrin provides oxidative stress protection via catalytic reduction of intracellular hydrogen peroxide.
Collapse
Affiliation(s)
- Maryta Sztukowska
- Institute of Molecular Biology, Jagiellonian University, 31-120 Krakow, Poland
| | | | | | | | | |
Collapse
|
25
|
Coulter ED, Kurtz DM. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Arch Biochem Biophys 2001; 394:76-86. [PMID: 11566030 DOI: 10.1006/abbi.2001.2531] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Desulfovibrio vulgaris rubredoxin, which contains a single [Fe(SCys)4] site, is shown to be a catalytically competent electron donor to two enzymes from the same organism, namely, rubrerythrin and two-iron superoxide reductase (a.k.a. rubredoxin oxidoreductase or desulfoferrodoxin). These two enzymes have been implicated in catalytic reduction of hydrogen peroxide and superoxide, respectively, during periods of oxidative stress in D. vulgaris, but their proximal electron donors had not been characterized. We further demonstrate the incorrectness of a previous report that rubredoxin is not an electron donor to the superoxide reductase and describe convenient assays for demonstrating the catalytic competence of all three proteins in their respective functions. Rubrerythrin is shown to be an efficient rubredoxin peroxidase in which the rubedoxin:hydrogen peroxide redox stoichiometry is 2:1 mol:mol. Using spinach ferredoxin-NADP+ oxidoreductase (FNR) as an artificial, but proficient, NADPH:rubredoxin reductase, rubredoxin was further found to catalyze rapid and complete reduction of all Fe3+ to Fe2+ in rubrerythrin by NADPH under anaerobic conditions. The combined system, FNR/rubredoxin/rubrerythrin, was shown to function as a catalytically competent NADPH peroxidase. Another small rubredoxin-like D. vulgaris protein, Rdl, could not substitute for rubredoxin as a peroxidase substrate of rubrerythrin. Similarly, D. vulgaris rubredoxin was demonstrated to efficiently catalyze reduction of D. vulgaris two-iron superoxide reductase and, when combined with FNR, to function as an NADPH:superoxide oxidoreductase. We suggest that, during periods of oxidative stress, rubredoxin could divert electron flow from the electron transport chain of D. vulgaris to rubrerythrin and superoxide reductase, thereby simultaneously protecting autoxidizable redox enzymes and lowering intracellular hydrogen peroxide and superoxide levels.
Collapse
Affiliation(s)
- E D Coulter
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
26
|
Das A, Coulter ED, Kurtz DM, Ljungdahl LG. Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase- rubredoxin and rubrerythrin-type A flavoprotein- high-molecular-weight rubredoxin. J Bacteriol 2001; 183:1560-7. [PMID: 11160086 PMCID: PMC95040 DOI: 10.1128/jb.183.5.1560-1567.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A five-gene cluster encoding four nonheme iron proteins and a flavoprotein from the thermophilic anaerobic bacterium Clostridium thermoaceticum (Moorella thermoacetica) was cloned and sequenced. Based on analysis of deduced amino acid sequences, the genes were identified as rub (rubredoxin), rbo (rubredoxin oxidoreductase), rbr (rubrerythrin), fprA (type A flavoprotein), and a gene referred to as hrb (high-molecular-weight rubredoxin). Northern blot analysis demonstrated that the five-gene cluster is organized as two subclusters, consisting of two divergently transcribed operons, rbr-fprA-hrb and rbo-rub. The rbr, fprA, and rub genes were expressed in Escherichia coli, and their encoded recombinant proteins were purified. The molecular masses, UV-visible absorption spectra, and cofactor contents of the recombinant rubrerythrin, rubredoxin, and type A flavoprotein were similar to those of respective homologs from other microorganisms. Antibodies raised against Desulfovibrio vulgaris Rbr reacted with both native and recombinant Rbr from C. thermoaceticum, indicating that this protein was expressed in the native organism. Since Rbr and Rbo have been recently implicated in oxidative stress protection in several anaerobic bacteria and archaea, we suggest a similar function of these proteins in oxygen tolerance of C. thermoaceticum.
Collapse
Affiliation(s)
- A Das
- Center for Biological Resource Recovery and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | | | |
Collapse
|
27
|
Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz DM. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J Bacteriol 2001; 183:101-8. [PMID: 11114906 PMCID: PMC94855 DOI: 10.1128/jb.183.1.101-108.2001] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2000] [Accepted: 10/11/2000] [Indexed: 11/20/2022] Open
Abstract
Evidence is presented for an alternative to the superoxide dismutase (SOD)-catalase oxidative stress defense system in Desulfovibrio vulgaris (strain Hildenborough). This alternative system consists of the nonheme iron proteins, rubrerythrin (Rbr) and rubredoxin oxidoreductase (Rbo), the product of the rbo gene (also called desulfoferrodoxin). A Deltarbo strain of D. vulgaris was found to be more sensitive to internal superoxide exposure than was the wild type. Unlike Rbo, expression of plasmid-borne Rbr failed to restore the aerobic growth of a SOD-deficient strain of Escherichia coli. Conversely, plasmid-borne expression of two different Rbrs from D. vulgaris increased the viability of a catalase-deficient strain of E. coli that had been exposed to hydrogen peroxide whereas Rbo actually decreased the viability. A previously undescribed D. vulgaris gene was found to encode a protein having 50% sequence identity to that of E. coli Fe-SOD. This gene also encoded an extended N-terminal sequence with high homologies to export signal peptides of periplasmic redox proteins. The SOD activity of D. vulgaris is not affected by the absence of Rbo and is concentrated in the periplasmic fraction of cell extracts. These results are consistent with a superoxide reductase rather than SOD activity of Rbo and with a peroxidase activity of Rbr. A joint role for Rbo and Rbr as a novel cytoplasmic oxidative stress protection system in D. vulgaris and other anaerobic microorganisms is proposed.
Collapse
Affiliation(s)
- H L Lumppio
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|